
Design of Low-Power High-Speed Maximum a Priori Decoder Architectures

Alexander Worm�, Holger Lamm, Norbert Wehn
Institute of Microelectronic Systems

Department of Electrical Engineering and Information Technology, University of Kaiserslautern
fworm, lamm, wehng@eit.uni-kl.de

Abstract

Future applications demand high-speed maximum a pos-
teriori (MAP) decoders. In this paper, we present an in-
depth study of design alternatives for high-speed MAP ar-
chitectures with special emphasis on low power consump-
tion. We exploit the inherent parallelism of the MAP algo-
rithm to reduce power consumption on various abstraction
levels. A fully parameterizable architecture is introduced,
which allows to optimally adapt the architecture to the ap-
plication requirements and the throughput. Intensive de-
sign space exploration has been carried out on a state-of-
the-art 0:2 µm technology, including efficient parallelism
techniques, a data flow transformation for reduced power
consumption, and an optimized FIFO implementation.

1. Introduction

For many communication systems, low power consump-
tion is an important design goal; this is not restricted to mo-
bile applications. Low power implementation does not only
increase the battery life time, it also allows cheaper pack-
ages and increases the reliability of a system.

Important parts of communication systems are channel
coding and decoding, which combat errors induced by noisy
channels. At the transmitter side, a channel encoder adds re-
dundancy to the data to be transmitted. This redundancy is
exploited at the receiver side by the channel decoder to cor-
rect the errors. A common measure for the performance of
a coding scheme is the bit-error-rate (BER) as a function of
the signal-to-noise ratio (SNR)Es=N0. Turbo-Codes, first
published in 1993 [3], show the best forward error correc-
tion performance known up to now. Thus, Turbo-Codes be-
came part of the third generation wireless systems standard,
which offers data-rate services up to 2 Mbit/s for internet
and multimedia applications. Beyond that, Turbo-Codes are
used in or in discussion for WLAN, VDSL, satellite com-

�A. Worm is the recipient of a Motorola Partnerships in Research Grant.

munications, digital broadcasting, optical transmission and
hard disk applications. Some of these applications demand
fast data transmission in the range of 10–100 Mbit/s and
even above. For fiber optics, even channel coding speeds of
several Gbit/s are foreseeable.

Turbo-Codes operate on block level, that is the data is
separated into blocks. A block is decoded in an iterative
procedure [3] by maximum a posteriori (MAP) or soft out-
put Viterbi algorithm (SOVA) component decoders. These
are, along with an interleaver, the primary building blocks
of a Turbo-decoder. We put emphasis on the decoder, be-
cause the complexity of the decoder is much higher than the
complexity of the encoder. MAP decoders are superior with
respect to communications performance and for that rea-
son preferred in advanced implementations. The MAP de-
coder throughput is up to 20 times higher (@ 10 iterations)
than the Turbo-decoder throughput. Turbo-decoding in the
range of 10–100 Mbit/s, which will be quite common for
WLAN and VDSL, requires therefore 200 Mbit/s–2 Gbit/s
MAP decoding speed. Yet MAP decoding at a speed of
500 Mbit/s is quite conceivable for applications like mag-
netic recording, even without the multiplicative effect of the
Turbo-iterations. Because of the emerging importance of
high-speed Turbo-decoders, low power implementation of
high-speed MAP decoders is an important objective.

This paper concentrates on the MAP decoder and leaves
issues related to the interleaver for future work. We present
an in-depth study of design alternatives for low power high-
speed VLSI MAP decoder architectures. We try to reduce
the power consumption on various abstraction levels. A
fully parameterizable architecture is introduced that allows
to optimally adapt the architecture to the application re-
quirements and the throughput. In detail we present

� efficient parallelism techniques that can nearly arbi-
trarily increase the throughput,

� a data-flow transformation that has a great impact on
the power consumption,

� optimized FIFO implementations, which are very ben-
eficial for low power high-speed implementations,

� and, most importantly, an intensive design space ex-
ploration, based on a fully parameterizable VHDL
model, to quantify these techniques with respect to
area and power consumption.

The paper is structured as follows: Section 2 discusses
related work. Section 3 introduces the MAP algorithm and
section 4 presents the different design alternatives. We give
results in section 5 and draw conclusions in section 6.

2. Related work

Up to date, some papers on Turbo-decoder implemen-
tation with the MAP algorithm have been published (see,
for example, [11, 9]), but most of them target modest com-
munication speeds at about 2 Mbit/s. In contrast to high-
speed Viterbi decoders, only very few publications exist on
high-speed Turbo-decoders (�50 Mbit/s) and on high-speed
MAP decoders. One of those publications that presents a
high-speed MAP decoder is [10], which allows a Turbo-
decoder implementation of 50 Mbit/s throughput. The pa-
per states that the MAP decoder kernel would be able to run
at 1 GHz on a 0:5 µm technology. The recursions are imple-
mented as FIR filters, which implies, however, acquisition
for each trellis step and is therefore inefficient from an algo-
rithm point of view (see sections 3 and 4); power consump-
tion is not considered. In another set of papers, Dawid ex-
tended the work of Fettweis on the Viterbi algorithm toward
the MAP algorithm and proposed architectures for high-
speed MAP decoding [5, 4], but power consumption was
not a primary concern. In [13], we introduced a new data-
flow transformation for high-speed MAP architectures that
outperforms Dawid’s architecture with respect to area and
power consumption, but we could not yet provide a detailed
design space exploration for a broad range of architectures,
which is the focus of this paper.

Some papers indeed target low power consumption as a
primary goal, but they, instead of aiming at high throughput
rates, concentrate on memory size and transfer optimiza-
tion, add control flow to the MAP algorithm or target pro-
grammable architectures (see, for example, [9, 6]).

3. The MAP algorithm

This section only contains some fundamentals on the
MAP algorithm; for a detailed description see, for exam-
ple, [1, 4, 8]. The MAP algorithm computes the proba-
bility of the source symbolIk in step k, conditioned on
the knowledge of the received distorted symbol sequence
zN
0 = (z0;z1; : : : ;zk; : : : ;zN):

PrfIkjz
N
0 g: (1)

The soft-output of the MAP algorithm

Λk = log
PrfIk = 1jzN

0 g

PrfIk = 0jzN
0 g

(2)

is termed log-likelihood ratio (LLR). The probability
PfIkjzN

0 g is computed by determining the probability to
reach a certain encoder statem after reception ofk symbols
zk�1
0 = (z0;z1; : : : ;zk�1),

αk(m) = Prfmjzk�1
0 g; (3)

and the probability to get from encoder statem0 to the final
state with the symbolszN

k+1,

βk+1(m
0) = PrfzN

k+1jm
0g: (4)

The probability of the transitionm! m0 using the source
symbol Ik, under knowledge of the received symbolzk, is
calledγk:

γk(m;m
0; Ik) = Prfm;m0; Ikjzkg: (5)

The branch metricsγk are a function of the received symbols
and the channel model. We term the process of computing
theγk branch metric calculation. The probabilitiesαk and
βk+1 can be found recursively over theγ during forward
recursionandbackward recursion, respectively. The prob-
ability of having sent the symbolIk in stepk is the sum over
all paths using the symbolIk in stepk. With φ(Ik) being the
set of all transitions with symbolIk, we can write:

PrfIkjz
N
0 g= ∑

(m;m0)2φ(Ik)
αk(m) � γk(m;m

0; Ik) �βk+1(m
0): (6)

The calculation of equation (2) using equation (6) is termed
soft-output calculation.

As pointed out in [8], it is mandatory to implement the
MAP algorithm in the logarithmic domain (Log-MAP) to
avoid numerical problems without degrading the decod-
ing performance. This simplifies the arithmetic operations:
multiplication becomes addition, and addition becomes the
max*-operator [8]. Throughout the remainder of this paper,
the definitionsδ = logα, ε = logβ, andµ= logγ are used
for notational convenience.

4. MAP decoder design space

An efficient MAP decoder implementation is the result
of a trade-off between communications performance (here:
achievable bit-error rate at a signal-to-noise ratioEs=N0)
and VLSI performance (throughput, area, power consump-
tion). Simplifying the algorithm reduces the implemen-
tation complexity but often decreases the communications
performance. Typical examples are the Max-Log-MAP
simplification and the quantization process. The Max-Log-
MAP algorithm [8] is obtained by using the approximation
max�(ξ1;ξ2) � max(ξ1;ξ2) and shows therefore a reduced

decoding performance. On the other hand, this algorithm
can be implemented with less area and power consumption,
if fixed throughput is assumed. A second example for a
performance trade-off is the mapping of the algorithm onto
a fixed-point number representation, as required for VLSI
implementations. Usually, this quantization has an impact
on communications performance, but we have shown in [7]
that for Turbo-decoding the degradation can be kept within
very tight limits. Another important implication of fixed-
point number representation is the necessity to avoid over-
flow, which can be achieved by renormalization. If properly
designed, periodic normalization does not alter communi-
cations performance, but it can have a significant positive
impact on VLSI performance [12]. The present paper, in-
stead, avoids overflow by using saturation arithmetic and by
calculating the branch metrics in a way that branch metrics
that represent a good match between the anticipated and the
received symbol are near zero.

Some architectural transformations, however, increase
the VLSI performance of a MAP decoder without or with
little effect on the communications performance. The main
contribution of this paper is a synthesis-based exploration
of such architectural transformations for high-speed MAP
decoder architectures on different levels of abstraction that
enable a reduction in power consumption. Because these
transformations have no or only negligible effects on the
communications performance, this paper does not show
BER curves.

High-speed MAP decoder implementations demand ex-
tensive parallelism to match the architectural with the sys-
tem throughput. Fortunately, a MAP decoder has inherent
parallelism on different abstraction levels: operator level,
state level, recursion level and trellis level [2]. This par-
allelism can be efficiently implemented in an actual archi-
tecture by spatial parallelism and/or pipelining, which then
enable high-speed architectures.

Power consumption in high-speed MAP implementa-
tions is dominated by the dynamic power consumption. The
optimizations presented in this paper consider all factors of
dynamic power consumption on various abstraction levels:

� reduction ofVDD, which is possible because of effi-
cient parallelism techniques that allow to increase the
parallelism to compensate the decreased circuit speed
(section 4.1);

� a data-flow transformation that reduces the memory
and thus the physical capacitance as well as the switch-
ing activity (section 4.2);

� efficient FIFO implementations, which reduce the
switching activity and physical capacitance (sec-
tion 4.3).

Note that these techniques have no effect on the communi-
cations performance.

Bit-width minimization obviously also reduces power
consumption. An efficient quantization scheme is presented
in [7] and is therefore not further discussed. Saving power
by exploiting data correlation is not applicable here, be-
cause the input data of a channel decoder is (ideally) ran-
domly distributed.

4.1. Parallelism

In this paper, emphasis is put on the highest abstrac-
tion level, because the introduction of parallelism on trellis
level is more efficient than the introduction of parallelism
on lower levels of abstraction [4].

A trellis is a common representation of a convolutional
code. It is the unrolled state-chart of the encoder where
nodes with identical labels are merged. On trellis level, the
data-block (frame) can be tiled into a number of windows.
Each window can be processed independently from the oth-
ers, which provides a high degree of parallelism. This tech-
nique breaks the well known add-compare-select bottleneck
on a higher level of abstraction and enables high-speed ar-
chitectures as well as voltage scaling. It is referred to as
overlapping sliding windowsor parallel MAPand was first
presented in [5]. We defineW as the window width in trellis
steps.

A data-dependency graph visualizes the data flow be-
tween arithmetic units. The data-dependency graph of a
parallel MAP architecture introduced in [4] is shown in Fig-
ure 1 for three neighbored windows of widthW = 6. We
term this type of architecture aD architecture because of
the diamond shape at the lower part of each window’s data-
dependency graph.

Throughout the remainder of this paper, a code con-
straint length ofK = 3 is assumed where applicable, by way
of example only. AK = 3, or 4-state, code is expected to
deliver a passable trade-off between communications and
VLSI performance. All mentioned principles, however, can
be similarly applied to a code with any number of states;
the data-flow transformation, in particular, is expected to
benefit also larger number of states: although the arithmetic
units become more complex, the number of trellis states to
be saved increases likewise. For reference, the trellis of a
constraint lengthK = 3 code is shown on the top of Fig-
ure 1. The trellis steps are numbered from left to right; in
the data-dependency graph, time proceeds from top to bot-
tom. The data-dependency edges each correspond to several
values. For example, 2K�1 values correspond to eachδ and
ε edge of the data-dependency graph, and a respective num-
ber of values corresponds to eachµ edge. We distinguish
arithmetic units for forward acquisition (explained below),
backward acquisition, forward recursion, backward recur-

Λk−M

k−M k+M−1µ

kµ

k+1µ

k−1µ

k−2µ

µ

N0 k+Mk+1kk−M k−1

δ k+M−1δ

k−M−1

k+1

ε k

δ

Λ

k+1Λ

kΛ

k

ε k+1

k+2

δ k−1

ε k+M

k−2δ

k−M+1ε k+M−1δ

k−1εk−M+1ε

δ k+M

δ k−M

ε

k−2

εk−M

Λ

k−1

k−1ε

k

Λ

k+1δ

kδε

ε

δ

δ

δε

δ

ε

ε

δ

δ

ε

ε

ε

δ

δ

δ ε

ε

ε

δ

δ

δ ε

ε

ε

δ

δ

δ ε

ε

ε

δ

δ

δ

ε

ε

µ k µ k µ k kµµ k

kΛ

kµ

Λk

intermediate
resultsresults
intermediate

bw rec with LLRfw rec with LLRbackward recursionforward recursionbackward acquisitionforward acquisition

δ

k

k

δ

kδ

kε

k+1ε

k+1

ε k+1

ε εδ

k+1ε

δ ε

k+1δ

kδ

Figure 1. Detailed data-dependency graph of the D architecture (3W = N, e. g.)

ε

ε

ε

ε

δ

δ

δ

δ

ε

ε

δ

δ

δ

δ

δ

δ

δ

δ

ε

ε

ε

ε

ε

ε

(a)

ε

ε

ε

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

ε

ε

ε

ε

ε

ε

ε

ε

δε

(b)

Figure 2. Fully pipelined D and X architectures (for M = 6;η = 2)

sion, forward recursion with soft-output calculation, and
backward recursion with soft-output calculation.

The algorithm works as follows: Within a window, for-
ward and backward recursion start simultaneously at dif-
ferent trellis steps,k�M and k+M. The path metrics
δk�M andεk+M are unknown and therefore set to an arbi-
trary value. According to theory [4], the path metrics will
converge during the firstM recursions toward reliable val-
ues. This phase is called the acquisition phase andM is
called the acquisition depth. At the end of the acquisition
phase, the path metrics have become reliable and the val-
ues can be stored. After anotherM steps, both recursions
have reached the end of the window and are continued in
the next one:εk�M andδk+M are fed into the left and right
neighboring window, respectively;δk�M andεk+M are ob-
tained from these windows, and recursions continue with
concurrent calculation of the outputsΛk.

As said above, all windows of a frame are processed in
parallel. Thus no timing problems arise at the path metric
exchange between adjacent windows. Except proper ini-
tialization of the path metrics, no special arrangements are
necessary at either end of a frame.

Until now, the length of the recursion paths producing
reliable values (which equals the window-widthW) has
been assumed to be twice the acquisition depthM, that is
W = 2M. In general, we writeW = ηM. For η < 2, the
acquisition paths cross the window borders and have to be
started in the neighboring windows [13]. The acquisition
depthM is determined by system constraints, for example
M = 10–20 for a constraint lengthK = 3 code. The archi-
tect therefore controlsη only. For a fixed window-width,η
is inverse proportional toM, whereas for a fixed acquisition
depth, the window-width is proportional toη.

On recursion level, we assume that the branch metrics
have been precomputed. Forward or backward recursion
and soft-output calculation are executed in parallel where
appropriate.

On state level and on operator level, full parallelism is
used. For maximum throughput, the recursions and the soft-
output calculation have to be fully unrolled and pipelined,
that is a pipeline register is put between successive forward
and backward recursion steps. The life-time of the values
then directly corresponds to the number of pipeline stages.
The data dependencies are mapped on FIFO memories, so
memory usage is linearly dependent on the life-time. Thus,
the architecture, from the first acquisition to the last result,
has a latency ofl = (η+1)M�1 and up to(η+1)M win-
dows are processed simultaneously in the pipeline.

In general, memory demand and latency are smaller for
smallη. On the other hand, the number of arithmetic units
increases by loweringη [13]. It is therefore necessary to
find a trade-off for minimum area and power consumption
by optimizing the window-widthW.

The presented fully pipelined architecture can process
one block of input data every cycle, because the number of
windows is adapted to the block size. This technique yields
a very high throughput that is probably too high for many
applications. To reduce the throughput, we can either lower
VDD or share arithmetic units, that isθ > 1 consecutive re-
cursion steps are carried out on the same hardware [13].
Sharing reduces pipeline lengths and increases the data init
interval byθ. For example, the number of arithmetic units
is halved forθ = 2, but they have to be enhanced by multi-
plexers. Shared architectures behave like architectures with
a narrower window-widthηM

θ . Thus, memory is also re-
duced.

4.2. Data-flow transformation

As mentioned in section 4.1, memory usage in heavily
pipelined MAP decoder architectures is proportional to the
life-time of a value, which is in our figures visualized as the
length of the corresponding data-dependency edge. In the
data-dependency graph of theD architecture in Figure 1,
the longestδ andε paths are those of the first few values
generated after finishing acquisition, with indices aroundk.
Removing these edges will have great effect on memory.

Figure 2 (a) features a fully pipelinedD architecture
with M = 6 andη = 2. Soft-output calculation has been
merged with recursion for clarity, indicated by darker shad-
ing. Small horizontal and diagonal bars denote pipeline reg-
isters arranged between the arithmetic units, and along the
data-dependency edges to realize FIFO functionality. Note
that if the recursions are continued at the bottom of Fig-
ure 2 (a), the produced values can be directly used for soft-
output calculation. As a result, the recursions creating the
upper borders of the rhombus shape do not need to produce
reliableδ andε values. They can be used for acquisition.
This leads to the novelX architecture, shown in Figure 2 (b),
which was introduced in [13]. TheX refers to the X-shaped
structure at the bottom.

We have proven in [13] that the new architecture yields
significant improvements in memory size. We can show
that X-shaped data-flow graphs are also advantageous for
heavily (largeθ) and even fully shared architectures.

4.3. FIFO implementation

It was mentioned above that considerable savings in area
and power consumption can be achieved by using architec-
tures based onX data-flow graphs. These reductions are
due to shorter FIFO memories. Additional savings are pos-
sible by optimum FIFO realization. Thus, we consider also
gated-clocks and ring-buffers. Clock-gating is power effi-
cient only for θ > 1. A ring-buffer improves power con-
sumption for allθ in comparison to register chains, at the

eni

4321
+1

432

o

CLK

(ringbuf)
FIFO

1

N

E
N

EN

Figure 3. Architecture of ring-buffer FIFO re-
alization

cost of increased area. Ring-buffer FIFO realization moves
an address pointer instead of the data and therefore pre-
vents unnecessary toggling. Our ring-buffer implementa-
tion, which is shown in Figure 3, uses internal clock-gating
in addition. These techniques can drastically reduce the
switching activity. Further power reduction is possible by
using optimized cells.

5. Results

The high-speed VLSI MAP decoder architecture has
been implemented as a parameterizable and fully synthesiz-
able VHDL model. A script generator allows efficient auto-
mated synthesis, and area and power characterization. With
this method, we have been able to perform a very efficient
design-space exploration. We have used a 0:2µm state-of-
the-art Artisan standard cell library withVDD = 2:5 V nom-
inal voltage and the Synopsys tool suite for synthesis and
characterization. Worst case parameters were assumed dur-
ing synthesis (supply voltageVDD = 2:25 V, junction tem-
peratureTj = 110oC, process derating factor of 1:37). Place
& route were not explicitly carried out, except for some con-
figurations; we expect no significant area and delay penalty
by place & route, since the architecture is dominated by
local interconnect. Clock tree and I/O contributions have
been excluded, since they contribute only to a constant off-
set for different architectures. During power characteriza-
tion, white noise has been assumed at the inputs, which is a
reasonable assumption for a channel decoder.

For a block size of 600 bit, a maximum throughput of
45 Gbit/s is achievable at a clock rate of only 75 MHz. Shar-
ing can scale down the throughput to 300 Mbit/s, which cor-

responds to a Turbo-decoder throughput of some ten Mbit/s.
Bit-width minimization is important for reducing power

consumption. For example, we can show that reducing the
bit-width by just one bit can reduce area and power con-
sumption by up to about 25%. Omitting path metric renor-
malization in favor of normalizing the branch metrics was
in this context superior to modulo arithmetics. In the fol-
lowing the bit-width of the branch metricsµk has been set
to Nµ = 6. The required bit-width of the path metricsδk and
εk was found asN = 7. Two bits were used as fractional
part (decimals).

5.1. Impact of window-width

We prove our earlier presumption that an optimum
η might exist by analyzing architectures with various
window-widthsW = ηM andM = 12. Note that a acqui-
sition depth ofM = 12 is sufficient, upon tolerable loss in
communications performance, for a 4-state code, whereas a
code with a larger number of states would require a longer
acquisition phase. Our results are given in Figure 4 for con-
figurations without sharing. Each graph features curves for
D andX architectures of a Log-MAP and a Max-Log-MAP
decoder for a constraint lengthK = 3 code. The results are
normalized to one input symbol to allow comparison of dif-
ferent window-widths. Optimum area and power consump-
tion can be achieved for window-widths aroundW = 24.
Results for shared architectures are omitted for space limi-
tations. We can show, however, that for shared architectures
the optimumW becomes larger. Nevertheless,W = 24 is
assumed throughout the following discussions.

5.2. Impact of data-flow transformation

Figure 5 clearly shows that theX architecture optimizes
power consumption and area for all configurations. For
W= 24 andθ= 1 (θ= 6) the power consumption of a Max-
Log-MAP decoder is reduced by 19% (7%) and area is re-
duced by 16% (12%). Smaller improvements are obtained
for the Log-MAP decoder because of the higher implemen-
tation complexity of the arithmetic units. There, power con-
sumption is reduced by 14% (5%) and area is reduced by
10% (8%). The improvements are still significant; thus the
X architecture should always replace theD architecture.

5.3. Impact of FIFO implementation

Figure 6 compares the effects of different FIFO imple-
mentations on power consumption and area of a Max-Log-
MAP decoder. The ring-buffer implementation can consid-
erably reduce the power consumption (�26%) for θ = 1,
that is without hardware folding, but it needs more area
(+11%) because of the overhead for pointer management.

15 20 25 30 35 40
20

25

30

35

40

45
Power consumption, θ=1

Width W

P
ow

er
 b

y
w

id
th

 (
m

W
)

15 20 25 30 35 40
1.5

2

2.5

3

3.5
x 10

5 Area, θ=1

Width W

A
re

a
by

 w
id

th
 (

um
2)

D, Log−MAP
D, Max−Log−MAP
X, Log−MAP
X, Max−Log−MAP

Figure 4. Impact of window width, normalized to one input symbol, K = 3

1 2 3 4 5 6
200

400

600

800

1000

1200
Power consumption, register chain

θ

P
ow

er
 (

m
W

)

D, Log−MAP
D, Max−Log−MAP
X, Log−MAP
X, Max−Log−MAP

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

 Area, register chain

θ

A
re

a
(m

m
2)

D, Log−MAP
D, Max−Log−MAP
X, Log−MAP
X, Max−Log−MAP

Figure 5. Impact of data-flow transformation, W = 24, K = 3

1 2 3 4 5 6
200

300

400

500

600

700
Power consumption, Max−Log−MAP, X arch.

θ

P
ow

er
 (

m
W

)

Register chain
Gated clock
Ring buffer

1 2 3 4 5 6
1

2

3

4

5

6

 Area, Max−Log−MAP, X arch.

θ

A
re

a
(m

m
2)

Register chain
Gated clock
Ring buffer

Figure 6. Impact of different FIFO implementations, W = 24, K = 3

1 2 3 4 5 6
100

200

300

400

500

600

700
Power consumption, Max−Log−MAP, X arch.

θ

P
ow

er
 (

m
W

)

1 2 3 4 5 6
1

2

3

4

5

6

 Area, Max−Log−MAP, X arch.

θ

A
re

a
(m

m
2)

Register chain, std. cells
Gated clock, std. cells
Ring buffer, std. cells
Register chain, opt. cells
Gated clock, opt. cells
Ring buffer, opt. cells

Figure 7. Impact of optimized register cells, W = 24, K = 3

For θ = 1, register chain and gated clock implementation
are the same. The picture is different if the architecture uses
hardware folding. In terms of power consumption, gated
clock implementation becomes clearly superior to register
chains and performs virtually as well as ring-buffers. It is
also the optimum choice with respect to area.

We have developed special semi-static register cells that
are optimized with respect to power consumption. These
cells have been fully characterized and included in the li-
brary. Results are given in Figure 7: 30% less power con-
sumption has been achieved with the optimized cells, for
θ = 2 and using gated clock FIFO implementation. The
area savings are in the order of 10%.

6. Conclusions

We have presented MAP architectures that can decode
at high throughput rates, but are nevertheless optimized for
low power consumption. They are based on standard cells
and run at moderate clock frequencies. The key idea is to
parallelize on all abstraction levels instead of striving for
very high clock frequencies. This enables optimizations
that effectively reduce power consumption and allows also
voltage scaling. Based on our design space exploration,
we have found that a low power high-speed MAP architec-
ture without hardware sharing should use a window width
aroundW= 24 (forK = 3). It should be based onX shaped
data-dependency graphs and implement FIFO memories as
ring-buffers. Architectures with hardware sharing can ben-
efit from larger window widths and should use gated clock
FIFOs. Optimized register standard cells are always very
beneficial.

Future work will be directed at breaking the interleaver
bottleneck for parallel MAP architectures in the context of
Turbo-decoding. Moreover, we will try to quantify the ef-
fects of voltage scaling on the power consumption of high-
speed MAP decoder architectures.

References

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal De-
coding of Linear Codes for Minimizing Symbol Error Rate.
IEEE Tr. on Information Theory, IT-20:284–287, Mar. 1974.

[2] F. Berens, A. Worm, H. Michel, and N. Wehn. Implementa-
tion Aspects of Turbo-Decoders for Future Radio Applica-
tions. InProc. VTC ’99 Fall, pages 2601–2605, Sept. 1999.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shan-
non Limit Error-Correcting Coding and Decoding: Turbo-
Codes. InProc. ICC ’93, pages 1064–1070, Geneva,
Switzerland, May 1993.

[4] H. Dawid. Algorithmen und Schaltungsarchitekturen zur
Maximum a Posteriori Faltungsdecodierung. PhD thesis,
RWTH Aachen, Shaker Verlag, Aachen, Germany, 1996.

[5] H. Dawid, G. Gehnen, and H. Meyr. MAP Channel De-
coding: Algorithm and VLSI Architecture. InVLSI Signal
Processing VI, pages 141–149. IEEE, 1993.

[6] F. Gilbert, A. Worm, and N. Wehn. Low Power Implemen-
tation of a Turbo-Decoder on Programmable Architectures.
In Proc. ASP-DAC ’01, Jan. 2001.

[7] H. Michel and N. Wehn. Turbo-Decoder Quantization for
UMTS. IEEE Communications Letters, 2001. Accepted.

[8] P. Robertson, P. H¨oher, and E. Villebrun. Optimal and
Sub-Optimal Maximum a Posteriori Algorithms Suitable for
Turbo Decoding.ETT, 8(2):119–125, March–April 1997.

[9] C. Schurgers, M. Engels, and F. Catthoor. Energy Efficient
Data Transfer and Storage Organization for a MAP Turbo
Decoder Module. InProc. ISLPED ’99, pages 76–81, Aug.
1999.

[10] F. Viglione et al. A 50 Mbit/s Iterative Turbo-Decoder. In
Proc. DATE ’00, pages 176–180, Mar. 2000.

[11] J. Vogt, K. Koora, A. Finger, and G. Fettweis. Comparison
of Different Turbo Decoder Realizations for IMT-2000. In
Proc. Globecom ’99, pages 2704–2708, Dec. 1999.

[12] A. Worm et al. Advanced Implementation Issues of Turbo-
Decoders. InProc. 2nd International Symposium on Turbo
Codes & Related Topics, pages 351–354, Sept. 2000.

[13] A. Worm, H. Lamm, and N. Wehn. A High-Speed MAP
Architecture with Optimized Memory Size and Power Con-
sumption. InProc. SiPS 2000, pages 265–274, Oct. 2000.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

