
Exploiting Data Forwarding to Reduce

the Power Budget of VLIW Embedded Processors

M. Sami
x

D. Sciuto
x

C. Silvano
x

V. Zaccaria
x

R. Zafalon
y

xPolitecnico di Milano
Dip. di Elettronica e Informazione

Milano, ITALY 20133
fsami,sciuto,silvano,zaccariag@elet.polimi.it

ySTMicroelectronics
Advanced System Technology

Agrate Brianza (Milan), ITALY 20041
roberto.zafalon@st.com

Abstract

In this paper, a low-power approach to the design
of embedded VLIW processor architectures is proposed.
To solve the most part of data hazards in the pipeline,
processors use forwarding (or bypassing) hardware to
provide the required operands from the inter-stage pipeline
registers directly to the inputs of the function units. The
operands are then stored in the Register File during the
write-back pipeline stage. In this paper, we propose a power
optimization technique based on the exploitation of the
forwarding paths in the processor to avoid the power cost
of writing/reading short-lived variables to/from the Register
File. In application-speci�c embedded systems, experimental
evidence has shown that a signi�cant number of variables
are short-lived, that is their liveness (from �rst de�nition to
last use) spans only few instructions. Values of short-lived
variables can be accessed directly through the forwarding
registers, avoiding write-back. An application example of
our solution to a VLIW embedded core, when accessing the
Register File, has shown a power saving up to 35% with
respect to the unoptimized approach on the given set of
target benchmarks. The performance overhead is equal to
one-gate delay to be added on the processor critical-path.

Keywords: Low-Power, Pipeline Processors, VLIW
Embedded Architectures, Forwarding.

1 Introduction

The embedded processor market is growing rapidly and the
complexity of embedded applications is growing even faster.
Recently, VLIW architectures have been proposed as an in-
teresting alternative to more conventional CPUs, to balance
performance with hardware complexity and scalability. The
performance/complexity tradeo� is made possible by a so-
phisticated ILP (Instruction Level Parallelism) compiler in-
frastructure that aims at scheduling high performance par-
allel code at compile time rather than at run time. As in
all modern CPUs, including VLIW architectures, pipelin-
ing is extensively adopted. Although granting good CPI,
pipelining introduces data hazards.

In most cases, the problem of data hazards can be
solved by the introduction of the hardware technique called
forwarding (also called bypassing and sometimes short-
circuiting) [1]. The forwarding technique uses the inter-
stage pipeline registers to pass the results of previous in-
structions directly back to the function units that require
them. A result can be forwarded from the output of a func-

tion unit to the inputs of the following one, as well as looping
from the output to the inputs of the same unit.

To implement the bypassing mechanism, the necessary
forwarding paths and the related control must be included
in the processor design. In general, this technique requires
a forwarding path from any pipeline register to the inputs
of any function unit, such as in the DLX architecture [1].
Data bypassed to function units in early pipeline stages are
then stored in the Register File (RF) during the last pipeline
stage (i.e. write-back stage) for further use. Processors us-
ing the forwarding technique give higher performance due
to the reduction of stall cycles introduced by data hazards.

Main issues involved in the forwarding mechanism for
VLIW processors have been investigated in literature [2], [3],
[4]. The authors of [2] analyze the performance advantages
of various bypassing schemes, in terms of their e�ectiveness
in solving data hazards in both four-stage and �ve-stage
pipelines. The concept of taking advantage of register val-
ues that are bypassed during pipeline stages has been com-
bined with the introduction of a small register cache in [4] to
improve performance. In this architecture, called 'Register
Scoreboard and Cache', pipeline operands are supplied by
either the register cache or by the bypass network.

The concept of avoiding dead value information in the
RF has been explored in [5]. Register values are consid-
ered dead, when they will not be read before being overwrit-
ten. The advantages of this approach have been evaluated
in terms of RF size reduction and elimination of unneces-
sary save/restore instructions from the execution stream at
procedure calls and across context switches.

Low-power dissipation is an increasingly relevant require-
ment for embedded processors [6], [7]. Low-power design
techniques are widely adopted during microprocessor design
to meet the stringent power constraints, while preventing
from any performance degradation. For high-performance
processors, low-power solutions target the reduction of the
e�ective switched capacitance CEFF of the processor nets.
The CEFF parameter of a net is de�ned as the product of
the load capacitance CL and the switching activity � of the
node. In digital CMOS processors, signi�cant power savings
can be achieved by the minimization of the transition activ-
ity of high-capacitance buses, such as data-path buses and
I/O buses. Another substantial portion of the power budget
in modern processors is due to multi-port RF accesses and
other on-chip cache accesses [8].

The main goal of the present paper is to de�ne an
optimization technique that exploits data forwarding for
short-lived variables to save power in VLIW pipelined
architectures. Our basic idea consists of reducing the RF
activity by avoiding long-term power-expensive writing of

short-lived variables by exploiting inter-stage registers and
forwarding paths. Short-lived variables are simply stored
by the producer instruction in the inter-stage registers
and fed to the consumer instruction by exploiting the
forwarding paths. No write-back to the RF is performed
by the producer instruction, and no read from the RF

is a�ected by the consumer instruction. As an applica-
tion example, let us consider the following fragment of code:

In: $r2 : : :;

In+1: : : :;

In+2: : : : $r2;

In+3: $r2 : : :;

In this example, the write-back of $r2 in In can be
avoided and the successive use in In+2 can be performed
directly from the forwarding network since the $r2 liveness
is equal to two instructions.

The decision to enable the RF write-back phase is antici-
pated at compile time by the compiler static scheduler. This
approach requires a small modi�cation to the control logic
of the processor, i.e. additional decoding logic and one-gate
delay to control the write enable signal of the RF . To apply
this optimization to a generic register R, the compiler must
compute the liveness length L of the n-th assignment to R,
de�ned as the distance between its n-th assignment and its
last use. This information allows the compiler to decide if
it must be stored in the RF for further use or if its use is
in fact limited within few clock cycles. In the latter case,
the register is short-lived, and its value can be passed as an
operand to next instructions by using the forwarding paths,
thus avoiding to write it back to the RF .

The proposed architecture becomes particularly attrac-
tive in some classes of embedded applications, where the
register liveness analysis (see Subsection 4.1) has shown that
more than half of the total register de�nitions is limited to
the next two instructions.

The most relevant features addressed in the present pa-
per are:

� the proposal of a power-oriented architectural exten-
sion to the processor forwarding network to avoid the
writing and successive reading to/from theRF of short-
lived variables;

� the analysis of the impact of the proposed low-power
architectural solution for VLIW processors on the ISA
and the compiler;

� the analysis of the exception handling;

� the introduction of a linear RF power model;

� the set up of an experimental methodology to eval-
uate the power savings of the proposed low-power
architectural extension compared to real-world appli-
cations running on an industrial VLIW embedded
processor jointly developed by Hewlett Packard and
STMicroelectronics[10].

The paper is organized as follows. The proposed low-
power forwarding architecture for VLIW processors is pre-
sented in Section 2. Section 3 discusses the problem of ex-
ceptions handling. Section 4 shows the results of the analysis
of the register liveness on a set of embedded DSP algorithms
and the power savings achievable on an industrial VLIW
processor. Concluding remarks and future directions of our
work are �nally reported in Section 5.

2 Low-Power Forwarding Architecture

Starting from the basic DLX architecture [1], we consider
a generic 4-way VLIW processor architecture with 5-stage
pipeline provided with forwarding logic. The pipeline stages
are:

� IF: Instruction Fetch from I-cache.

� ID: Instruction Decode and operands read from RF .

� EX: Instruction Execution in one-cycle latency ALUs.

� MEM: Load/Store memory accesses.

� WB: Write-Back of operands in the RF .

Three forwarding paths (EX-EX, MEM-EX and MEM-
ID) provide direct connections between pairs of stages (see
Figure 1) through the EX/MEM and MEM/WB inter-stage
registers. Given the above forwarding network, let us con-
sider a sequence W = w1:::wk:::wn of very long instruction
words. A generic instruction wk can read its operands from
the following instructions:

� wk�1 through the EX/EX forwarding path (used when
wk is in the EX stage).

� wk�2 through the MEM/EX forwarding path (used
when wk is in the EX stage).

� wk�3 through the MEM/ID forwarding path (used
when wk is in the ID stage).

� wk�n where n > 3 through the RF .

As stated in the introduction, the proposed approach in-
hibits the write and subsequent reads of operands in the
RF whenever written values can be retrieved from the for-
warding network due to their short liveness (see Subsection
4.1 for the de�nition of register liveness). We assume that
an instruction wd assigns a register R whose liveness is less
than or equal to three and that wk uses R during this live
interval. For processors with more than �ve pipeline stages,
we can have more than three forwarding paths, so we can ex-
tend the application of our low-power approach to variables
whose liveness length is higher than three.

Our basic idea consists of reducing power consumption
by:

� disabling the write of R in the WB stage of wd;

� inhibiting wk from asserting the read address of the RF
to read R (retrieved from the bypass network).

The proposed low-power processor architecture supports
both features. A simpli�ed architecture can also be envi-
sioned, which supports just the write (or read) inhibition to
minimize the required hardware overhead.

In a VLIW architecture, all scheduling decisions concern-
ing data, resource and control dependencies are solved at
compile time during static instruction scheduling [9]. Thus
the decision whether the destination (source) register must
be write (read) inhibited or not, has to be demanded to the
compiler, limiting the hardware overhead.

The proposed power optimization requires a dedicated
logic in the ID stage to decide whether or not the
source/destination registers must be read accessed in the
RF . The instruction format must be extended to include
dedicated Read/Write Inhibit bits to enable RF accesses.

ALU1
REGISTER

FILE

D
E

C
O

D
E

LSUI$

....

Bypass
select

....

IF ID EX MEM WB

IF/ID ID/EX EX/MEM MEM/WB

MEM/EX path

EX/EX path
Write inhibit signal

Write
Inhibit
bits

Bundle

MEM/ID path

Write Back path

....
Bypass
select

Bypass select signals

Figure 1: The proposed low-power 5-stage pipelined VLIW forwarding architecture.

The Write Inhibit bit of the instruction format is decoded
to deassert the Write Enable signal (see Fig. 1) in the RF
write port. The Read Inhibit bit is used to maintain un-
changed the values on the input read addresses of the RF .
This action reduces the switching activity of the read ports
in the RF . Globally, the hardware overhead is equal to one-
gate delay added on the processor critical path.

To encode the Read (Write) Inhibit bit, we propose two
di�erent approaches:

1. To add speci�c operation bits in the encoding of the
long instruction format. This solution is suitable dur-
ing ISA de�nition, at the expense of an increase of the
instruction encoding length. For each operation in the
bundle we add 1 bit for each source (destination) reg-
ister to indicate whether it is a read (write) inhibited
register or not. For example, a bundle composed of 4
ternary operations (1 destination and 2 sources) would
require 12 additional bits.

2. To exploit unused instruction encoding bits. This solu-
tion is suitable when the ISA has been already de�ned;
it saves instruction length, but it restricts the applica-
tion of the proposed approach only to the subset of ISA
operations with unused bits in the instruction format.
In general, unused operation bits are very few. If we
assume one unused bit per operation, we can suppose
to use it to avoid only useless writes.

In both cases, while we minimize the RF switching activ-
ity, we slightly increase switching activity of the memories
used to store instructions.

3 Exception Handling

In this section, we analyze the problem of exception handling
in the proposed low-power VLIW forwarding architecture.
For our analysis, we assume the state of the processor can
be:

1. A permanent architectural state stored in the RF .

2. A volatile architectural state stored in the registers be-
tween the pipeline stages from which the forwarding
network retrieves source operands.

The volatile architectural state is handled as a FIFO
memory, whose depth is equal to the number of stages dur-
ing which the result of an operation can be stored in the
pipeline (in the proposed 5-stage pipeline architecture the
depth is equal to 3).

In general, a pipelined processor assures that, when an
element exits the volatile state, it is automatically written-
back in the RF . On the contrary, in our low-power opti-
mization, when an element exits the volatile state and it is
no longer used, it can be discarded avoiding the write back
in the RF . This behavior can create some problems when an
exception occurs. In this section, we analyze how exceptions
can be managed to maintain data consistency.

In our architecture, an exception can occur during the
ID, EX, or MEM stages, and can be serviced in the WB

stage.
According to the exception taxonomy in [3], we assume

that the processor adopts the precise mode exception han-
dling mechanism. Under this assumption, exceptions can be
exact or inexact. An exact exception, caused by an instruc-
tion w, forces the visibility of the architectural state changes
to all instructions issued after w. Furthermore, all state
changes of instructions issued before w are visible to the
exception handler. When an inexact exception occurs, the
instructions in the pipeline are executed until completion,
without seeing the e�ects of the exception, that is served
after. In this case, instructions issued immediately after the
excepting instruction do not see architectural state changes
due to the exception handler.

Let us analyze the behavior of the proposed solution in
the two cases of exact and inexact exception handling. As-
sume exceptions are handled in exact mode. When the ex-
cepting instruction reaches the WB stage, instructions in
the pipeline are ushed and re-executed. Let us consider
the example shown in Table 1, where at cycle x an instruc-
tion wk reads its values from a write inhibited wk�2 instruc-
tion through the forwarding network. Meanwhile, let us as-
sume that instruction wk�1 generates an exception during
the MEM stage. The results of wk�2 would have been lost,
but we need these values to be used during the re-execution
of wk. Since neither the forwarding network nor the RF con-
tain the results of wk�2, the architectural state seen during
the re-execution of wk (at cycle x+ nn) will be incorrect.

To guarantee that instructions in the pipeline are re-
executed in the correct processor state, write inhibited val-
ues must be written in the RF anytime an exception signal

is generated in the ID, EX or MEM stages.
In the previous example (where wk�1 generates an ex-

ception in the MEM stage), the proposed solution forces
the write-back of the results of wk�1and wk�2 in the RF ,
therefore during the re-execution of wk at cycle x+ nn the
operands are read from the RF .

Let us now assume that exceptions are handled in inex-
act mode. In this case, to guarantee a semantically correct
execution, all instructions in the pipeline must be forced to
write-back the results in the RF .

The proposed low-power architecture shown in Figure 1
supports both exception handling mechanisms:

� When the exceptions are exactly handled, the sup-
ported register liveness is less than or equal to 2 clock
cycles (through the EX/EX and the MEM/EX paths);

� When exceptions are inexactly handled, the exploit-
ing register liveness can be extended to 3 clock cycles
(through the EX/EX, MEM/EX and MEM/ID paths).

Let us briey consider the case of interrupts and cache
misses. Due to the asynchronous nature of interrupts, they
can be treated as inexact exceptions by forcing each long
instruction in the pipeline to write back the results before
interrupt handling. Instruction cache misses produce bub-
bles owing through the pipeline, therefore whenever a miss
signal is raised by the cache control logic, we force the write
back of the results of the instructions in the pipeline.

Pipeline Stage

Cycle EX MEM WB

x wk wk�1 wk�2

(Exc. Signaled)

x+1 wk wk�1

(Exc. Served)

x+2 Deleted Deleted Deleted

....

.... Exc. Handler Exc. Handler Exc. Handler

....

x+nn w
k

Exc. Handler Exc. Handler

Table 1: An example of exception handling.

4 An Application Example

To provide experimental evidence to our approach, we con-
sidered the Lx family of embedded VLIW cores, jointly
developed by Hewlett-Packard Laboratories and STMicro-
electonics [10]. Lx is a multi-clustered VLIW architecture,
where each Lx cluster is a 4-issue 6-stage pipelined VLIW
core composed of four 32-bit integer ALUs, two 16x32 mul-
tipliers and one load/store unit. The six pipeline stages are:
Instruction Fetch (IF), Instruction Decode (ID), Register
Read (RR), Execution 1 (EX1), Execution 2 (EX2), Write-
Back (WB). The forwarding paths are EX1-EX1 and EX2-
EX1. The EX2-RR path is the normal write-back path.
Globally three paths can be exploited as in the DLX ar-
chitecture. The Lx ISA is a RISC integer instruction set
that supports speculative execution and prefetching. The
RF provides 64 32-bit general purpose registers and 8 1-bit
branch registers. A commercial software toolchain supports
the development of embedded software for the Lx architec-
ture and provides a sophisticated compiler, based on the
Trace Scheduling [11]: an instruction scheduling method
consisting of high-level optimizations and aggressive code
motions best exploiting the ILP.

4.1 Register Liveness Analysis

To evaluate the impact of the proposed low-power optimiza-
tion on the Lx architecture, we set up an experimental en-
vironment to analyze the liveness length of registers in a
set of embedded, real-world DSP algorithms written in C
for which the Lx-architecture is targeted. Our main goal
is to measure the dynamic percentage of register de�nitions
in the application code that can be directly read from the
forwarding network, without being written in the RF .

Although the register liveness analysis could be per-
formed statically by the compiler, we decided to perform
a dynamic analysis, consisting on the inspection of an exe-
cution trace of the program, because it provides us accurate
run-time pro�ling information on how many register accesses
can be inhibited.

Each benchmark program has been compiled with the
Lx Compiled Simulator, that is part of the Lx toolchain.
The Lx compiled simulator accepts a generic C program
and elaborates it in two steps:

1. Translation of the program C source into its Lx assem-
bler equivalent;

2. Conversion of the generated Lx assembler program into
a new C source that simulates the program on the Lx
architecture (Compiled Simulator source). The Com-
piled Simulator source simulates the Lx architecture by
updating a simulated state of the machine each time an
assembly statement is executed. Besides it also collects
pro�ling information to supply a hint on the perfor-
mance of the program.

In our analysis, the Compiled Simulator source has been
instrumented by in house automatic tools (written in perl),
to trace, each time a very long instruction is executed, the
following �gures: (i) register de�nitions; (ii) register uses;
(iii) basic block boundaries encountered.

Once the simulator has been compiled and executed, the
generated traces are used to perform the register liveness
analysis. For this purpose, we de�ned the liveness length
L of the n-th assignment to a register R as the distance
(measured as the number of instructions) between the n-th
assignment and its last use:

Ln(R) = Un(R)�Dn(R)

where Dn(R) is the trace index of the instruction that
performed the n-th assignment to R and Un(R) is the in-
dex of the last instruction that used the n-th assignment to
R before the rede�ntion of R during the (n + 1)-th assign-
ment Dn+1(R). To simplify our analysis, we have computed
Ln(R) with the following restrictions:

� Un and Dn are in the same basic block;

� Dn+1 and Dn are in the same basic block.

These rules force us to consider only liveness ranges that
do not cross basic block boundaries. However, this assump-
tion does not represent a major concern, since most mod-
ern VLIW compilers maximize the size of basic blocks, thus
generating a relevant number of intra-basic block liveness
ranges.

To clarify the concept with an example, let us analyze a
portion of a 4-way VLIW assembly trace executing a DCT.
The analyzed code is composed of four long instructions
(namely 27268, 27269, 27270, and 27271):

27268 shr $r16 = $r16, 8

sub $r18 = $r18, $r7

add $r17 = $r17, $r19

sub $r19 = $r19, $r15 ;

27269 shr $r18 = $r18, 8

shr $r17 = $r17, 8

shr $r19 = $r19, 8

mul $r20 = $r20, 181 ;

27270 sub $r10 = $r10, $r8

mul $r11 = $r11, 3784

sub $r5 = $r12, $r9 ;

27271 sub $r10 = $r10, $r3

add $r20 = $r20, 128

brf $r26, label 232 ;

where each long instruction is identi�ed by an index of
execution, a set of one to four operations and are termi-
nated by a semicolon. In this example, we can observe a
basic block terminating boundary at instruction 27271 (the
conditional branch operation). Let us consider the liveness
of the assignment of $r18 in 27268 (Dn). This de�nition is
used for the last time in 27269, since there is another de�-
nition of $r18 in the same cycle (i.e., Dn+1). Ln of $r18 is
thus equal to one clock cycle. Note that we cannot compute
Ln+1 of $r18 because there are neither last uses Un+1 or
rede�nitions Dn+2 in the same basic block.

To perform the register liveness analysis, we selected
a set of DSP algorithms (written in C) that represent a
signi�cant set of target applications for the embedded Lx-
architecture:

� A FIR routine (32-tap, 16-bit);

� An unoptimized DCT and IDCT transform applied to
a 64 half-word block and extracted from an MPEG2
software;

� An optimized version of the DCT derived from [12];

� An optimized version of the IDCT derived from [13];

� A wavelet transform derived from [13].

To improve performance, the optimized versions of the
DCT/IDCT algorithms are characterized by a lower number
of memory accesses and a higher register re-use with respect
to the other benchmarks.

The distribution of register liveness for the analyzed al-
gorithms are reported in Table 2 (the corresponding cumula-
tive distibution is graphically summarized in Figure 2). For
each benchmark, the columns of Table 2 represent the per-
centage of registers whose liveness is equal to a given length
L - in the range from 1 to 8 clock cycles (instructions).

Register Liveness Length

Algorithm 1 2 3 4 5 6 7 8

FIR 0% 13% 10% 10% 0% 0% 0% 0%

DCT/IDCT 28% 12% 8% 3% 2% 1% 1% 0%

DCT (opt.) 32% 14% 11% 6% 2% 1% 0% 0%

IDCT (opt.) 42% 12% 6% 5% 2% 1% 1% 1%

Wavelet 7% 17% 1% 0% 2% 0% 0% 0%

Table 2: Percentage of registers whose liveness is equal to a
given length L in the range from 1 to 8 clock cycles.

Even with our simplifying assumptions, we can observe
that, for optimized algorithms, there is more than half of the
total register de�nitions with liveness length within 2 clock
cycles (46% and 54% for DCT and IDCT respectively). On

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8

L

P

FIR DCT/IDCT (unopt.) DCT (opt.) IDCT (opt.) Wavelet

Figure 2: Cumulative distribution of registers liveness for
the selected benchmark set.

average, in 35:4% of instances the distance from register
de�nition to last use is less or equal to 2 clock cycles, while
in 42:6% the distance is less or equal to 3 clock cycles.

In our analysis, we do not take into account the case in
which a register is never read between two successive de�ni-
tions. In fact, register overwriting can occur, for example,
across basic blocks or during context switches, but it cannot
be statically generated by an optimizing compiler within a
basic block. Therefore, this type of register overwriting is
out of the scope of our approach, since we are focusing on op-
timization applicable within a basic block during the VLIW
static compilation phase.

4.2 Power Analysis

To provide evidence of the advantages of our low-power ap-
proach, we designed and simulated an in-house RF featur-
ing 8 read-ports and 4 write-ports. The RF is functionally
equivalent to the Lx RF , but reduced in terms of size.

The general problem of evaluating the power consump-
tion of RF s has recently been a�orded in [8]. The paper
compares various RF design techniques in terms of energy
consumption, as a function of architectural parameters such
as the number of registers and the number of ports. In our
work, we propose a simple parametric power model suitable
for our RF architecture. In our model, the RF power be-
havior is linear with respect to the number of simultaneous
read and write accesses:

PRF = BaseCost+ nwP1w + nrP1r

where BaseCost is a constant power value due to the
activity of the clock signal, nw is the average number of
simultaneous write accesses to the RF (from 1 to 4), P1w is
the average power cost of one write access, nr is the average
number of simultaneous read accesses to the RF (from 1 to
8), P1r is the average power cost of one read access.

From simulations of the given RF implementation dur-
ing di�erent and simultaneous RF accesses, we derived the
averaged and normalized power results shown in Figure 3.
From these measures, showing a plain linear behavior, we
extracted the values of the parameters for our RF power
model.

The power analysis of the proposed forwarding optimiza-
tion has been derived by combining the power �gures of our

0

1

2

3

4

5

6

0R 1R 2R 3R 4R 5R 6R 7R 8R 1W
8R

2W
8R

3W
8R

4W
8R

Register File Accesses

P
ow

er
 (n

or
m

al
iz

ed
 to

 B
as

eC
os

t)

Figure 3: Average power consumption of RF read/write
accesses (Values are normalized to BaseCost).

0%

5%

10%

15%

20%

25%

30%

35%

40%

F
IR

D
C

T
/ID

C
T

D
C

T
 (
o

p
t.)

ID
C

T
 (
o

p
t.)

W
a

ve
le

t

Benchmark

P
o

w
e

r
S

a
v

in
g

s
 P

e
rc

e
n

ta
g

e

2 cycles

3 cycles

Figure 4: Power saving percentage of our optimization ap-
proach applied to registers liveness less than or equal to 2
(and 3) clock cycles.

RF model and the savings in the average number of RF ac-
cesses per cycle obtained by pro�ling each benchmark pro-
gram through the instrumented Lx Compiled Simulator.

Figure 4 reports the power saving by applying the pro-
posed low-power solutions to registers whose liveness length
is less than or equal to 2 (3) clock cycles. In the case of 2
clock cycles, the average power saving for the given set of
benchmarks is 18%, while the saving can reach up 32%. In
the case of 3 clock cycles, the average power saving for the
given set of benchmark is 22%, while the saving can reach
up 35%.

As expected, higher power savings have been obtained
by simulating the optimized versions of the DCT and the
IDCT algorithms. In fact, the kernel of these algorithms
is composed of instructions that tend to reuse, as much as
possible, available registers in the short-term. This leads
to very short register liveness that can be exploited by our
approach.

5 Conclusions

In this paper, an architectural solution to reduce the power
consumption in VLIW pipelined embedded processors has
been proposed. The proposed technique exploits the for-
warding network to save transition activity in accessing the
RF . The paper discusses how the low-power solution can
be implemented at compile time. An industrial application
example demonstrates the e�ectiveness of the proposed tech-
nique from the power standpoint at a cost of relatively few
architectural modi�cations to the processor forwarding net-
work. We are currently working on a larger set of benchmark
programs to provide a more extended experimental evidence
of the advantages of our approach.

References

[1] J. Hennessy and D. A. Patterson, \Computer Architecture: A
Quantitative Approach," Morgan Kaufmann Publishers, San
Mateo, CA, Second Edition, 1996.

[2] A. Abnous and N. Bagherzadeh, \Pipelining and Bypassing in
a VLIW Processor," IEEE Trans. on Parallel and Distributed
Systems, Vol. 5, No. 6, June 1994, pp. 658-663.

[3] H. Corporaal, \Microprocessor Architectures: from VLIW to
TTA," John Wiley and Sons, England, 1997.

[4] R. Yung and N. C. Wilhelm, \Caching Processor General Reg-
isters," ICCD '95. Proceedings of IEEE International Confer-
ence on Computer Design, 1995, pp. 307-312.

[5] M. M. Martin, A. Roth, C. N. Fischer, \Exploiting Dead
Value Information," MICRO-30, Proceedings of 30th Annual
IEEE/ACM International Symposium on Microarchitecture,
1997, pp. 125-135.

[6] A. Chandrakasan and R. Brodersen, \Minimizing Power Con-
sumption in Digital CMOS Circuits," Proc. of IEEE, 83(4),
pp. 498-523, 1995.

[7] K. Roy, S. C. Prasad \Low-Power CMOS VLSI Circuit De-
sign," John Wiley and Sons, Inc., Wiley-Interscience, 2000.

[8] V. Zyuban and P. Kogge, \The Energy Complexity of Register
Files," ISLPED98, Proceedings of International Symposium
on Low-Power Electronic Design, Monterey, CA-USA, 1998,
pp. 305-310.

[9] A. V. Aho, R. Sethi, J. D. Ullman, \Compilers: Principles,
Techniques, and Tools," Addison-Wesley, 1986.

[10] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F.
Homehood, \Lx: A Technology Platform for Customizable
VLIW Embedded Processing," ISCA00, Proceedings of Inter-
national Symposium on Computer Architecture, Vancouver,
BC, Canada, 2000, pp. 203-213.

[11] J. Fisher, \Trace Scheduling: A Technique for Global Mi-
crocode Compaction" IEEE Trans. on Computers, C-30(7):478-
490. 1981.

[12] W. H. Chen, C. H. Smith and S. C. Fralick "A Fast Computa-
tional Algorithm For The Discrete Cosine Transform" IEEE
Trans. Commun. vol. COM-25, pp. 1004-1009, Sept 1977.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery
"Numerical Recipes in C : The Art of Scienti�c Computing "
Cambridge Univ Press. Jan 1993.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

