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Abstract

Slicing tree has been an effective tool for VLSI floorplan de-
sign. Floorplanners using slicing tree representation take
full advantage of shape and orientation flexibility of circuit
modules to find highly compact slicing floorplans. However,
slicing floorplans are commonly believed to suffer from poor
utilization of space when all modules are hard. For this rea-
son, a large body of literature has recently been devoted to
various new representations of non-slicing floorplans to im-
prove space utilization. In this paper, we prove that by using
slicing tree representation and compaction, all maximally
compact placements of modules can be generated. In con-
clusion, slicing tree is a complete floorplan representation
for all non-slicing floorplans as well.

1 Introduction

Floorplanning has become one of the most challenging tasks
facing VLSI circuit designers as deep sub-micron fabrication
technology is close to making billion-transistor chips a real-
ity. As a result of the enormous sizes of the new circuits, it is
practically impossible for even the most experienced circuit
designers to optimally arrange all the components on a VLSI
chip manually without resorting to design automation tools.
Furthermore, with rapidly narrowing interconnects and esca-
lating interconnect-delay/gate-delay ratio in circuits, floor-
planning is also becoming a crucial phase in timing consid-
erations. Therefore, a good floorplanning strategy is highly
desirable in the early stage of the physical design process.

Floorplans can be classified into two categories: slicing
and non-slicing. Slicing floorplans, generally represented
by slicing trees or Polish expressions, are obtained by re-
cursively bisecting the chip areas horizontally or vertically
with a slicing line. There have been several efficient algo-
rithms [4, 10, 13, 17, 18] for finding optimal slicing floor-
plans. These algorithms are very efficient because the slic-
ing structure limits the size of the solution space and because
they exploit shape and orientation flexibility of the mod-
ules. Slicing tree representation has been shown to be a good
choice for handling various placement constraints as well
[17]. Furthermore, it has been mathematically proven that
slicing floorplans are capable of producing compact place-
ment for modules with shape flexibility [16].

However, it is still commonly believed that even an opti-
mal slicing floorplan suffers from poor utilization of space.
For this reason, many efforts have been devoted to creating
representations of non-slicing floorplans [1, 2, 3, 5, 6, 7, 8, 9,
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11, 12, 14, 15]. Although they are efficient for handling hard
modules, many of these representations are unable to take
advantage of shape and orientation flexibility of soft mod-
ules. As a result, they either use very complicated special-
ized procedures or require computation-intensive techniques
for sizing soft modules.

In this paper we prove that slicing tree is a complete rep-
resentation of general floorplans. We show that augmented
with a simple compaction procedure, slicing tree representa-
tion can generate all maximally compact placements of mod-
ules. In conclusion, slicing tree is a complete representation
of both slicing and non-slicing floorplans.

The remainder of the paper is organized as follows: In
Section 2, we discuss the general floorplan design problem.
In Section 3, we review the slicing tree representation of slic-
ing floorplans. In Section 4, we prove that slicing tree, when
augmented with a simple compaction procedure, is a com-
plete representation of floorplans. In Section 5, we provide
some concluding remarks.

2 Floorplan Design Problem

A moduleMi is a rectangle with fixed areaAi, heighthi,
and widthwi. The aspect ratiori of moduleMi is defined to
behi=wi: A hard module is a circuit component with fixed
height and width. A soft module has flexibility in its shape:
the aspect ratio of a soft module is required to be in a range
[rmin; rmax]. A module has free orientation if rotation of the
module is allowed. A module with fixed orientation cannot
be rotated freely.

A placement of the modules fixes the locations of the
modules in the floorplan. A feasible placement is one in
which no modules overlap each other and all soft modules
are consistent with their aspect ratio constraints. The area
A of a placement is defined to be the area of the smallest
enclosing rectangle. The total wiring cost isW . The main
objective of floorplan design is to find a feasible placement
of a set of modules that minimizes the cost functionA+�W .

If most modules in the set are soft modules, slicing floor-
planners using slicing tree representation (Section 3) exploit
the shape and orientation flexibility to find highly compact
slicing floorplans. In Section 4, we show that augmented
with compaction, slicing tree representation is also able to
represent all non-slicing placements of modules.

3 Slicing Tree Representation of Slicing Floorplans

A slicing floorplanis a rectangular area that is sliced recur-
sively by a horizontal or vertical slicing line into a set of
rectangular regions, calledrooms, to accommodate a set of



circuit modulesM . Slicing floorplans (Fig. 1) are gener-
ally represented by slicing trees (or equivalently, by Polish
expressions.)
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Figure 1: Slicing floorplan, slicing tree, and Polish expres-
sion.

The leaf nodes in a slicing tree represent the modules.
Each internal node of a slicing tree is labeled by operator�
or operator +, corresponding to a vertical or horizontal slic-
ing line, respectively. Every subtree rooted at an internal
node represents a supermodule consisting of one or more
component modules and/or supermodules. In a slicing floor-
plan, each supermodule has a rectangular shape. The Polish
expression for a slicing floorplan is obtained by traversing
the slicing tree in postorder.
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Figure 2: Slicing floorplans and placements corresponding
to the same slicing tree in Fig. 1. Floorplans in (a), (b), (c),
and (d) are equivalent floorplans represented by the same
slicing tree. The slicing lines in floorplan (d) cannot be
moved horizontally to the left or vertically downward. Ad-
ditionally, the modules in (d) are all placed in the lower left
corner in their individual rooms. The placement in (d) is de-
fined to be the slicing placement for the slicing tree in Fig. 1.

We note that a slicing tree is merely a hierarchical de-
scription of the bisections of rectangular areas in the floor-

plan - no dimensional or positional information of the mod-
ules is specified. One of the objective of floorplan design is
to minimize the area of the bounding rectangle. As a result,
for a slicing treeT , slicing floorplanners produce a slicing
floorplan with the smallest bounding rectangle. Sometimes
there exists a small amount of dead space even in the small-
est bounding rectangle. In this case, the slicing lines are free
to move in the floorplan, without increasing the area of the
bounding rectangle, as long as the rooms stay large enough
to accommodate the modules. Therefore, a slicing tree rep-
resents a set of equivalent slicing floorplans with the same
dimensions (Fig. 2). For example, floorplan 2(a), 2(b), and
2(c) have exactly the same dimensions; however, the loca-
tions of slicing lines are different. For our discussion, we
assume that in the corresponding slicing floorplan for a slic-
ing tree T, no horizontal slicing lines can be moved to the
left and no vertical slicing lines can be moved downward.
For each slicing tree, there is exactly one such correspond-
ing slicing floorplan (Fig. 2(d)). The modules can be placed
anywhere in their rooms. We define theslicing placementPs
of a slicing treeT to be the placement where each module is
placed in the lower left corner of its room in the correspond-
ing slicing floorplan forT . In Fig. 2, placement 2(d) is the
slicing placement for the slicing tree in Fig. 1.

When most modules are soft, slicing floorplanners have
been mathematically proven to be very efficient for generat-
ing highly compact placements [16]. Experiments show that
slicing tree representation is able to produce close-to-zero
dead space for soft modules. However, when all modules
are hard, it is believed that even an optimal slicing floor-
plan suffers from poor utilization of space because slicing
trees cannot represent non-slicing floorplans. We will show
in next section that by performing simple compaction, slic-
ing tree representation can generate all maximally compact
placements of modules.

4 Slicing Tree Is a Complete Representation of Non-Slicing

Floorplans
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Figure 3: A maximally compact placement ofM =
f1; 2; 3; 4; 5; 6; 7g.

We define amaximally compact placement(Fig. 3) of a
set of modules to be a placement in which no module can
move horizontally to its left or vertically downward without
moving any other modules (This is equivalently defined as
an admissible packing in [2].) Notice that the slicing place-
mentPs of a slicing treeT is not necessarily a maximally
compact placement since if slicing lines are removed, mod-
ules in slicing placementPs are then free to move left or
downward (Fig. 4). We prove in this section that slicing tree



representations, augmented with a simple compaction pro-
cedure, generate all maximally compact placements of mod-
ules.

Figure 4: Slicing placement is not necessarily a maximally
compact placement.

Thex-compaction is a procedure that slides modules in a
placement horizontally toward the left boundary of the floor-
plan. They-compaction slides modules in a placement ver-
tically toward the lower boundary of the floorplan. The it-
erativexy-compaction is a sequence of successivex- and
y-compactions (Fig. 5). The iterativeyx-compaction is a
sequence of successivey- andx-compactions. Compaction
is especially helpful for placements in slicing floorplans. In
Fig. 5, the dead space was reduced from over 20% to a highly
compact placement by simple compaction procedure. Note
that the placement produced by the compaction is a non-
slicing placement.
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Figure 5: A maximally compact placement is obtained by
performing an iterativexy-compaction on a placement in
slicing floorplan.

Given any placement of modules, we can construct ahor-
izontal adjacency graphG = (V;E) as follows. The set of
verticesV corresponds to the set of modules. There is an
edge(u; v) in E if and only if the left boundary ofv is im-
mediately adjacent to (i.e. touching) the right boundary of
u. Thevertical adjacency graphcan be similarly defined in
terms of the abuttment of the top/bottom boundaries of the
modules. It is easy to see thatG is a directed acyclic graph.
Fig. 6 shows the horizontal adjacency graphs of two differ-
ent placements where the placement in (a) is not maximally
compact but the one in (b) is.

A vertex u in G is said to be a left-boundary vertex if
u is a module placed on the left boundary of the placement
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Figure 6: Placements and their corresponding horizontal ad-
jacency graphs.

area. For example, vertices 1, 3, and 4 in Fig. 6(a) and ver-
tices 1 and 6 in Fig. 6(b) are left-boundary vertices. It is
easy to see that all left-boundary vertices have in-degree 0.
The converse may not be true in general (e.g., vertex 2 in
Fig. 6(a)), but it is true for maximally compact placements
(see Fig. 6(b)). Another important observation is that for
a maximally compact placement, all vertices inG are con-
nected to the set of left-boundary vertices. We summarize
our observations in the following Lemma 1.

Lemma 1 Let G be the horizontal adjacency graph of a
maximally compact placement. LetB be the set of left-
boundary vertices. We have (1)G is a directed acyclic graph,
(2) B is exactly the set of vertices with in-degree 0, and (3)
each vertexv in G is reachable from at least one vertexu in
B (i.e., there exists a path fromu to v).

We prove next that we can obtain all maximally compact
placements of modules by performing compaction on slicing
floorplans.

Theorem 1 Given any maximally compact placementP , there
exists a slicing treeT such that performing compaction on
the slicing placementPs of T generatesP .

Proof:
LetG be the horizontal adjacency graph ofP . LetB =

fb1; b2; � � � ; bmg be the set of left-boundary vertices. Ac-
cording to Lemma 1, every vertex inG is reachable from at
least one vertex inB. It follows that we can find a spanning
forestQ = fT1; T2; � � � ; Tmg of G whereTi is a tree rooted
at left-boundary vertexbi, i = 1; 2; � � � ;m. (Recall that a
spanning forest of a graph is a collection of disjoint trees
which are subgraphs of the given graph and that every ver-
tex is in one of the trees.) For example, the graph in Fig. 7(b)
is a spanning forest (consisting of three trees) of the horizon-
tal adjacency graph in Fig. 7(a) with left-boundary vertices
A, D, andG as the roots of the trees.

We now describe how to obtain a slicing tree fromQ.
We may assume thatb1; b2; � � � ; bm are in the order of in-
creasingy positions. We createm � 1 horizontal slicing
lines dividing the floorplan intom panels for the trees rooted
at b1; b2; � � � ; bm. For each tree, the transformations shown
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Figure 7: Generating a slicing placement from a spanning
forest in the horizontal adjacency graph. A maximally com-
pact placement and its horizontal adjacency graph is shown
in (a). One spanning forest in the horizontal adjacency graph
is shown in (b). For the spanning forest in (b) we can gen-
erate a slicing treeT (c) and its corresponding slicing place-
mentPs (e) such that performing compaction onPs gener-
ates the original maximally compact placement.

in Fig. 8 are applied recursively to the sub-trees to further
expand the slicing structure of the floorplan. For example,
in Fig. 7(d) two slicing lines divide the floorplan into three
horizontal panels for the three trees in Fig. 7(b). Then the
transformation procedures in Fig. 8 are applied recursively
to generate the slicing floorplan in Fig. 7(d). From the slicing
floorplan, we can generate the slicing placementPs (Fig. 7(e))
corresponding to the slicing tree. (Remember in a slicing
placement, the slicing lines cannot move left or downward.
Furthermore, the modules are placed in the lower left cor-
ner of their individual rooms.) It can be shown that the
x-positions of the modules in the slicing placement are the
same as their originalx-positions in the maximally compact
placementP . Therefore, a simpley-compaction transforms
Ps intoP .

Given a maximally compact placement, the formal pro-
cedure for generating a slicing treeT is shown in Fig. 9.

(a)
Z Z

T1’

Tm’

T2’

Z

Z

Tm’

T2’

T1’

(c)

T’
Z

Z T’(b)

Figure 8: Generating slicing floorplans from trees in span-
ning forests.

Input : A maximally compact placementP
Output : A slicing treeT (in Polish expression)

Generate a horizontal adjacency graphG for P .
Find a spanning forest inG: fT1; T2; � � � ; Tng. (T 0

i
s are

in the order of increasingy-positions of root modules.)
return g(T1) g(T2) � � � g(Tn) +1 +2 : : :+(n�1)

g(treeT ) f
u = root ofT
if u has no children

returnu
if u has one childv

Tv = subtree rooted atv
returnu (g(Tv )) �

if u hasm childrenv1; v2; � � � vm;m � 2

Tvi = subtree rooted atvi
returnu g(Tv1 ) g(Tv2 ) � � � g(Tvm ) +1 +2 : : :+(m�1) �

g

Figure 9: Generating a slicing treeT from a spanning forest
in the horizontal adjacency graph of a maximally compact
placementP .

The slicing tree is represented by its equivalent Polish ex-
pression. The procedure described in Fig. 9 is based on a
breadth-first marking procedure. We start this procedure on
each of the trees in the spanning forest, in the order of in-
creasingy-positions of the modules at the roots of the trees.
We traverse each tree in a breadth-first fashion, generating
the Polish expression for one level of the tree at a time. This
is a very efficient procedure with linear complexity. For the
spanning forest in Fig. 7(b), the procedure generates the slic-
ing treeT in Fig. 7(c). Fig. 7(e) is the slicing placement ofT
in Fig. 7(c). We then perform a simpley-compaction on the
slicing placement in Fig. 7(e) to generate the original maxi-
mally compact placementP in Fig. 7(a).

Another example of slicing tree generation is shown in
Fig. 10. In this example, the vertical adjacency graph and
its spanning forest are used to generate the slicing tree. In
this case, thex-compaction is used to transform the slicing
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Figure 10: Using vertical adjacency graph (a) to generate
a slicing treeT (b), the slicing floorplan (c), and its corre-
sponding slicing placementPs (d).

floorplan into the original non-slicing placement.2
It follows from Theorem 1 that slicing tree is a complete

representation of floorplans in the sense that by using slicing
tree representation and compaction, all maximally compact
placements can be generated.

5 Concluding Remarks

A Slicing Floorplanner

Generate Slicing Floorplan

Evaluate Slicing Floorplan

A Non−Slicing Floorplanner

Generate Slicing Floorplan

Perform Compaction

Evaluate Non−slicing Floorplan

Figure 11: Slicing and non-slicing floorplanners.

We have proven that slicing tree is a complete represen-
tation of general floorplans. A simple compaction procedure
extends the ability of slicing floorplanners to include gen-
erating non-slicing placements. As a result, a new set of
non-slicing floorplanners can be based on existing slicing
floorplanners, which are highly efficient for sizing soft mod-
ules and processing floorplanning constraints (Fig. 11). Al-
though theoretically it is sufficient to perform only a single
x- or y-compaction, in practical implementations it may be

preferable to perform iterativexy- or yx-compactions to en-
sure that a maximally compact placement is evaluated during
each iteration. We have shown that slicing tree representa-
tions can be used to generate all maximally compact place-
ments of modules. Therefore, floorplanning based on slicing
tree representation should remain an active area of research.

References

[1] Y.-C. Chang et al., “B*-Trees: A New Representation for Non-
Slicing Floorplans,”Proc. ACM/IEEE Design Automation Confer-
ence, 2000, To Appear.

[2] P. Guo, C.-K. Cheng, and T. Yoshimura, “An O-Tree Representation
of Non-Slicing Floorplan and Its Applications,”Proc. ACM/IEEE
Design Automation Conference, 1999, pp. 268-273.

[3] M. Z. Kang and W. M. Dai, “Arbitrary Rectilinear Block Packing
Based on Sequence Pair,”Proc. Int’l Conf. on Computer-Aided De-
sign, 1998, pp. 259-266.

[4] D. P. Lapotin and S. W. Director, “A New Algorithm for Floorplan
Design,”Proc. Int’l Conf. on Computer-Aided Design, 1985, pp. 143-
145.

[5] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB Placement
with Obstacles Based Sequence pair,”Proc. Int’l Symp. on Physical
Design, 1997, pp. 26-31.

[6] H. Murata, and E. S. Kuh, “Sequence Pair Based Placement Method
for Hard/Soft/Pre-placed Modules,”Proc. Int’l Symp. on Physical
Design, 1998, pp. 167-172.

[7] H. Murata et al., “Rectangle-Packing Based Module Placement,”
Proc. Int’l Conf. on Computer-Aided Design, 1995, pp. 472-479.

[8] S. Nakatake et al., “Module Placement on BSG-Structure and IC
Layout Applications,”Proc. Int’l Conf. on Computer-Aided Design,
1996, pp. 484-491.

[9] S. Nakatake et al., “Module Placement on BSG-Structure with Pre-
Placed Modules and Rectilinear Modules,”Proc. Asia and South Pa-
cific Physical Design Automation Conf., 1998, pp. 571-576.

[10] R. H. J. M. Otten, “Automatic Floorplan Design,”Proc. ACM/IEEE
Design Automation Conference, 1982, pp. 261-267.

[11] Y. Pang, C.-K. Cheng, and T. Yoshimura, “An Enhanced Perturbing
Algorithm for Floorplan Design Using the O-tree Representation,”
Proc. Int’l Symp. on Physical Design, 2000.

[12] T. C. Wang and D. F. Wong, “An Optimal Algorithm for Floorplan
and Area Optimization,”Proc. ACM/IEEE Design Automation Con-
ference, 1990, pp. 180-186.

[13] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,”
Proc. ACM/IEEE Design Automation Conference, 1986, pp. 101-
107.

[14] D. F. Wong and C. L. Liu, “Floorplan Design for Rectangular and
L-shaped Modules,”Proc. Int’l Conf. on Computer-Aided Design,
1987, pp. 520-523.

[15] J. Xu, P. Guo, and C.-K. Cheng, “Rectilinear Block Placement Using
Sequence-Pair,”Proc. Int’l Symp. on Physical Design, 1998, pp. 173-
178.

[16] F. Y. Young, and D. F. Wong, “How Good Are Slicing Floorplans,”
Proc. Int’l Symp. on Physical Design, 1997.

[17] F. Y. Young, and D. F. Wong, “Slicing Floorplans with Pre-Placed
Modules,” Proc. Int’l Conf. on Computer-Aided Design, 1998,
pp. 252-258.

[18] T. Yamanouchi, K. Tamakashi, and T. Kambe, “Hybrid Floorplan-
ning Based on Partial Clustering and Module Restructuring,”Proc.
Int’l Conf. on Computer-Aided Design, 1996, pp. 478-483.


	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index


