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Abstract
We describe a reordering procedure that changes the order of test
vectors in a test sequence for a synchronous sequential circuit
without reducing the fault coverage. We use this procedure to
investigate the effects of reordering on the ability to compact the
test sequence. Reordering is shown to have two effects on com-
paction. (1) The reordering process itself allows us to reduce the
test sequence length. (2) Reordering can improve the effective-
ness of an existing static compaction procedure. Reordering also
provides an insight into the detection by test generation pro-
cedures of faults that are detected by relatively long subse-
quences.

1. Introduction
Static test compaction procedures for synchronous sequential cir-
cuits reduce the test sequence length without reducing the fault
coverage. Reducing the test length is important for reducing the
memory requirements and the test application time. Static com-
paction procedures proposed recently [1]-[9] are based on the
omission of test vectors from the test sequence. By definition, a
static compaction procedure does not generate new test vectors.
Thus, if T = (t 0,t 1, . . . ,tL −1) is the original sequence and
Tc = (tc0

,tc1
, . . . ,tcLc−1

) is the compacted sequence, then for every
tcj

in Tc there is a vector tk in T such that tcj
= tk . Consequently,

it is possible to write the compacted sequence as
Tc = (ti0

,ti1
, . . . ,tiLc−1

), where ij is an index of a vector in T, for
0 ≤ j ≤ Lc−1. Most of the static compaction procedures also keep
the test vectors in their original order in T. Thus, in the com-
pacted sequence Tc = (ti0

,ti1
, . . . ,tiLc−1

), we have 0 ≤ i 0 < i 1 <
. . . < iLc−1 < L. The only exceptions are [6]-[8], where subse-
quences of the form Pj = (tj0

,tj1
, . . . ,tjKj−1

), with 0 ≤ j 0 <
j 1 < . . . < jKj−1 < L, may appear in reverse order.

In this work, we investigate the effects of allowing more
drastic changes in the order of test vectors on the ability to com-
pact a test sequence. Reordering is shown to have two effects on
compaction.
(1) The reordering process itself allows us to reduce the test
sequence length. Suppose that the length of the original
sequence T is L. This implies that the last fault is detected by T
at time unit L −1. After reordering, we obtain a new test
sequence Tr also of length L. However, it is possible that all the
faults are detected by Tr at or before a time unit u max < L −1. If
this happens, then it is possible to reduce the length of Tr to
Lr = u max+1 < L.
hhhhhhhhhhhhhhhhhhhhh
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(2) Reordering of a test sequence can improve the effectiveness
of an existing static compaction procedure [1]-[9]. Reordering
can be applied before and/or after an existing compaction pro-
cedure is applied. We experiment with different orders of apply-
ing static compaction and reordering to demonstrate the effects
of reordering on the final level of compaction.

For the purpose of our study, we describe a procedure that
accepts a test sequence T, and reorders the vectors in T so as to
maintain the fault coverage. The proposed reordering procedure
first partitions T into a limited number, N, of equal or almost-
equal length subsequences P = {P 1, . . . ,PN}. The partition is
arbitrary in the sense that it does not take into account time units
where faults are detected, and it does not try to maximize the
numbers of faults detected by each subsequence alone. The pro-
cedure then combines some of the subsequences in P if it
appears that this will be necessary in order to maintain the fault
coverage of the original sequence. As a result of this step, we
obtain a set of subsequences P = {P 1, . . . ,PM}. In most cases,
M is very close to N. The procedure then permutes the subse-
quences and concatenates them so as to satisfy two conditions.
(1) All the faults detected by the original test sequence are also
detected by the permuted sequence. (2) The last fault is detected
by the permuted test sequence as early as possible. This helps
reduce the length of the reordered sequence.

By applying the reordering procedure to test sequences
generated by several test generation procedures, we identify the
following characteristics. Most of the faults are detected by
subsequences that are short compared to the complete test
sequence. Few faults require longer subsequences in order to be
detected. In these cases, there are many different ways to reorder
the subsequences so as to detect the faults.

The paper is organized as follows. In Section 2 we
describe the sequence reordering procedure. In Section 3 we
provide experimental results of reordering, and of reordering
together with compaction. Section 4 concludes the paper.

2. Sequence reordering
In this section we describe the sequence reordering procedure.
The partitioning phase of the procedure is described in Subsec-
tion 2.1. The subsequence ordering and concatenation phase is
described in Subsection 2.2.

2.1 Sequence partitioning
We start with an example to demonstrate the partitioning pro-
cedure. We consider ISCAS-89 benchmark circuit s 27 under
the test sequence shown in Table 1. This test sequence detects
every one of the single stuck-at faults in the circuit. We define
F det = { f 0, f 1, . . . , f 31}, which is the set of faults detected by T.



Table 1: Example sequence

u 0 1 2 3 4 5 6 7 8 9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
T (u) 0111 1001 0111 1001 0100 1011 1001 0000 0000 1011cc

c

We start by partitioning the sequence into N = 5 subse-
quences of equal length. We describe a subsequence Pi by its
first time unit us,i and its last time unit ue,i . Both time units are
with respect to T. We have Pi = T [us,i ,ue,i], which is the subse-
quence of T between time units us,i and ue,i . For s 27, we
obtain the subsequences P 0 = T [0,1] = (0111,1001), P 1 =
T [2,3] = (0111,1001), P 2 = T [4,5] = (0100,1011), P 3 =
T [6,7] = (1001,0000) and P 4 = T [8,9] = (0000,1011).

We fault simulate every subsequence Pi starting from the
all-unspecified state. Simulation is done with fault dropping, and
proceeds as follows. Initially, we set F = F det = {f 0, f 1, . . . ,
f 31}. Simulating F under P 0, we find that P 0 detects the set of
faults F 0 = {f 1, f 2, f 6, f 8, f 11, f 17, f 23, f 29, f 31}. We drop
these faults from F. Next, we simulate F under P 1 starting
from the all-unspecified state, and find that P 1 does not detect
any additional faults. We have F 1 = φ. Simulating F under P 2,
we find that P 2 detects the set of faults F 2 = {f 5, f 9, f 15, f 16,
f 20, f 22, f 24, f 30}. We drop these faults from F as well. For
P 3 and P 4 we obtain F 3 = φ and F 4 = φ. We are left with a
set of undetected faults F = {f 0, f 3, f 4, f 7, f 10, f 12, f 13, f 14,
f 18, f 19, f 21, f 25, f 26, f 27, f 28}.

The remaining, undetected faults included in F require
longer subsequences to be used in order to detect them. Clearly,
if we combine all the subsequences in P into a single sequence
P 0P 1

. . . PN −1, we will obtain the sequence T that detects all
the faults in F. However, some of the faults can be detected if
we combine fewer subsequences. We are interested in faults that
can be detected by combining pairs of subsequences, since such
faults can be found at a relatively low computational cost. If a
fault in F can only be detected if we combine two consecutive
subsequences Pi and Pi +1, we will replace Pi and Pi +1 in P by
the combined subsequence PiPi +1. In this way, we will identify
"necessary" combinations before attempting to reorder the subse-
quences in the following subsection. With fewer subsequences to
consider, the complexity of the reordering procedure will be
reduced.

Before demonstrating the combination of subsequences
using the example above, we define several terms more formally.
Two subsequences Pi = T [us,i ,ue,i] and Pj = T [us, j ,ue, j] are
said to be consecutive if us, j = ue,i+1. We keep P ordered such
that Pi and Pi +1 are consecutive subsequences for 0 ≤ i ≤ N −2.
The subsequence PiPj is obtained by concatenating Pi and Pj .
When simulating PiPj , we start from the all-unspecified state,
and use the final state obtained under Pi as the initial state for
simulation under Pj .

We identify necessary combinations of subsequences in
the example of s 27 by performing the following computation.
We consider every pair of subsequences Pi ,Pj ∈ P. We simu-
late the faults in F under the combined subsequence PiPj , and
record the set of detected faults Fij . The faults in Fij are not
removed from F. We find that of all the pairs of subsequences
considered, faults f 3 and f 28 are detected only by the pair
P 2P 3. Consequently, we replace P 2 and P 3 with P 2P 3. We
then renumber the subsequences in P to obtain P =
{P 0=T [0,1], P 1=T [2,3], P 2=T [4,7], P 3=T [8,9]}.

The new subsequence P 2 = T [4,7] detects f 3, f 7 and
f 28. These faults will continue to be detected regardless of the

manipulations we perform on P, and we remove them from F.
We repeat the computation above for the new set of

subsequences P, using the new set F. Fault simulating all the
subsequence pairs, we find that of all the pairs of subsequences
considered, fault f 21 is detected only by the pair P 2P 3. We
therefore replace P 2 and P 3 with P 2P 3. We then renumber the
subsequences in P to obtain P = {P 0=T [0,1], P 1=T [2,3],
P 2=T [4,9]}. We drop from F the faults f 4, f 10, f 12, f 21 and
f 27 detected by the new subsequence P 2. We are left with
F = {f 0, f 13, f 14, f 18, f 19, f 25, f 26}.

Considering all the pairs over P again, no additional
subsequences are combined. The final set of subsequences in this
example is P = {P 0=T [0,1], P 1=T [2,3], P 2=T [4,9]}, that
leaves undetected the set of faults F = {f 0, f 13, f 14, f 18, f 19,
f 25, f 26}.

In general, the initial partition of a test sequence T of
length L into N subsequences may have to use subsequences of
non-equal lengths if L is not divisible by N. In such a case, we
use subsequences of almost-equal lengths. We obtain the subse-
quence lengths as follows. We define Ls = L/N. If we use N
subsequences of length Ls , we will include in the subsequences
NLs vectors of T, and L−NLs vectors will remain. Conse-
quently, the first L−NLs subsequences we define are of length
Ls+1, and the remaining subsequences are of length Ls .

The partitioning procedure is given next.
Procedure 1: Partitioning a given sequence
(1) Let the given test sequence be T. Simulate T and find the

set of detected faults, F det .
(2) Partition T into N subsequences of approximately equal

lengths, P = {P 0,P 1, . . . ,PN −1}. Set F = F det .
(3) For every Pi ∈ P:

Find the set of faults Fi ⊆ F that are detected by
Pi assuming that Pi is applied starting from the
all-unspecified state. Drop the faults in Fi from F.

(4) For every pair of subsequences Pi ,Pj ∈ P, find the set
of faults Fij ⊆ F that are detected by PiPj assuming that
it is applied starting from the all-unspecified state.

(5) Unmark all the subsequences in P. For every pair of con-
secutive subsequences Pi ,Pi +1 ∈ P, if there exists a
fault in F that is detected only by PiPi +1, mark Pi .

(6) For every set of consecutive subsequences
Pi ,Pi +1, . . . ,Pj such that Pi ,Pi +1, . . . ,Pj −1 were
marked in Step 5, replace Pi ,Pi +1, . . . ,Pj by the subse-
quence PiPi +1

. . . Pj . Renumber the subsequences in P
such that consecutive subsequences have consecutive
indices.

(7) If any subsequences were combined, go to Step 3.
Note that when we simulate the subsequences in Step 3,

we start from the current set of undetected faults F. Conse-
quently, a fault detected by any subsequence in P at any iteration
of Procedure 1 is not simulated again under any subsequence. It
is possible to further reduce the simulation effort of Procedure 1
by avoiding resimulation of any subsequence or pair of subse-
quences in P if they do not change.

2.2 Subsequence ordering
In the previous subsection, we partitioned a test sequence T into
subsequences P = {P 0,P 1, . . . ,PN −1}. We then combined
some of the subsequences to obtain the final set of subsequences
P = {P 0,P 1, . . . ,PM −1}. Of the set of target faults F det , the
subsequences in P left undetected the set of faults F. In this



subsection, we construct a new test sequence from the subse-
quences in P in order to detect the faults remaining in F. Our
goal is to construct the shortest possible sequence.

We consider limited values of N, and therefore limited
values of M. With small values of M, it is possible to consider
all M ! permutations of the subsequences in P to define new test
sequences. For a given permutation <Pi 0

,Pi 1
, . . . ,PiM −1

>, we
define a new test sequence Ti = Pi 0

Pi 1

. . . PiM −1
. We then

simulate the faults in F under Ti (several techniques are used to
minimize the simulation effort). If all the faults are detected, Ti
can replace T as a test sequence that detects all the faults in F det .

In replacing T by another sequence Ti that detects the
same set of faults F det , we would like to obtain a sequence
which is as short as possible. Since Ti is obtained from a permu-
tation of all the subsequences in P, and P is obtained by parti-
tioning T, the length of Ti is equal to the length of T, L. A
reduction in the length of Ti can be obtained if Ti detects all the
faults in F det before time unit L −1. To find the last time unit
where any fault in F det is detected by Ti , we resimulate Ti start-
ing from the complete set of target faults F det . We record the
time unit where every fault is detected, and reduce the length of
Ti from L to Li such that all the faults in F det are detected at
time unit Li−1 of Ti or earlier (again, certain short-cuts are pos-
sible in this simulation process). Of all the sequences Ti
obtained in this way, we select the shortest one.

Before we describe techniques aimed at speeding up the
simulation process used to select Ti , we demonstrate the basic
process by considering the example of s 27. For s 27, we
obtained P = {P 0=T [0,1], P 1=T [2,3], P 2=T [4,9]} and
F = {f 0, f 13, f 14, f 18, f 19, f 25, f 26}. We have six permutation
of the subsequences in P. We find that T 0 = P 0P 1P 2, T 1 =
P 0P 2P 1, T 2 = P 1P 0P 2, and T 3 = P 1P 2P 0 detect all the
faults in F. Resimulating these sequences starting from the set
F det , we find that T 0 detects all the faults by time unit 9, T 1
detects all the faults by time unit 7, T 2 detects all the faults by
time unit 9, and T 3 detects all the faults by time unit 7. We
select T 1 as the final sequence that will replace T, and set its
length to eight. This is a reduction of two vectors compared to T.

To avoid simulating M ! sequences under all the faults in
F and then simulate the sequences that detect all the faults in F
under all the faults in F det , we use the following techniques.
When we simulate Ti under F to determine whether Ti detects
all the faults remaining in F, we record the last time unit û max
where any fault in F is detected by Ti . If a fault f ∈ F remains
undetected by Ti , we stop the simulation of Ti immediately, and
define L̂i = −1. In this way, we avoid unnecessary simulation of
Ti . Otherwise (if Ti detects all the faults in F), we define
L̂i = û max+1. Once the simulation using F is completed, we
need to resimulate the sequences Ti that detect all the faults in F
(the sequences with L̂i ≥ 0). We simulate the sequences by
order of increasing value of L̂i . In this way, we use L̂i as an indi-
cation of the length Li that will be obtained if all the faults in
F det are simulated under Ti . During the simulation of the
sequences Ti with L̂i ≥ 0, we record the best length L min
obtained for any sequence simulated so far. Initially,
L min = L +1. If a sequence Ti detects a fault at time unit
L min−1 or higher, simulation of Ti stops, since Ti will not result
in a test length lower than L min. When simulation of Ti ter-
minates, if Li < L min, we set L min = Li . In this way, a sequence
Tj that will not be shorter than the shortest sequence obtained so
far does not have to be simulated in full. Once all the sequences

are simulated, we select the sequence Ti with the lowest value of
Li . We truncate Ti to include only the first Li time units, which
are sufficient to detect all the faults in F det .

The overall procedure is given next.
Procedure 2: Reordering the subsequences
(1) Let P = {P 0,P 1, . . . ,PM −1} be the set of subsequences

of T, let F be the set of faults that remain undetected by
the subsequences in P, and let F det be the set of faults
detected by T.

(2) For every permutation <Pi 0
,Pi 1

, . . . ,PiM −1
> of P:

(a) Define a test sequence Ti = Pi 0
Pi 1

. . . PiM −1
.

(b) Simulate the faults in F under Ti . If all the faults
in F are detected, set L̂i equal to û max+1, where
û max is the last time unit where any fault in F is
detected by Ti . Otherwise, set L̂i = −1.

(3) Let <T 1,T 2, . . . ,TK> be the sequences obtained in
Step 2, for which L̂i ≥ 0, ordered by increasing value of
L̂i . Set L min = L +1.

(4) For i = 1,2, . . . ,K:
Simulate the faults in F det under Ti . If any fault
is detected at time unit L min−1 or higher, stop the
simulation of Li and set Li = L. Otherwise, let
u max be the highest time unit where any fault in
F det is detected by Ti . Set Li = u max+1. If
Li < L min, set L min = Li .

(5) Of all the sequences considered in Step 4, select Ti that
has the lowest value of Li . The final test sequence is Ti ,
truncated to have a length of Li .

3. Experimental results
We considered the following circuits and test sequences. (1)
ISCAS-89 benchmark circuits under test sequences produced by
the test generation procedure STRATEGATE [10], and (2)
ITC-99 benchmark circuits under test sequences produced by the
test generation procedure PROPTEST [11].

In Procedure 1, we initially partitioned every sequence
into N subsequences, for N = 7,8,9,10. The reasons for select-
ing these values of N are as follows. (1) When we experimented
with lower values of N, we found that higher values produce
sequences that detect all the faults at lower time units, i.e., higher
values of N result in shorter sequences. (2) Values of N larger
than 10 imply that M will be higher. We did not apply Procedure
2 for values of N that resulted in M > 7 subsequences. The rea-
son for stopping at M = 7 is that M = 7 implies 5040 permuta-
tions that need to be considered by Procedure 2, and we wanted
to avoid larger numbers of permutations.

The cases where both Procedure 1 and 2 were applied are
reported in Tables 2 and 3. After the circuit name, we show the
value of N (the initial number of subsequences), and the value of
M (the number of subsequences after Procedure 1 combines
some subsequences). Under column detected, we show the
number of faults detected by the original test sequence, the
number of faults detected by all the subsequences generated by
Procedure 1, and the number of faults detected by the test
sequence selected in the last step of Procedure 2. In all cases, the
selected test sequence detects all the faults detected by the origi-
nal test sequence. Under column cand seq we show the number
of sequences considered in Step 3 of Procedure 2, and detect all
the faults in F. One of these sequences, that detects all the faults
within the shortest length, is selected as the final sequence pro-



duced by Procedure 2. Under column length, we show the
length of the original test sequence before applying the proposed
procedure, and the length of the best test sequence obtained after
applying Procedure 2. Under column n.time we show the nor-
malized run time of the proposed procedure without the time to
simulate all the candidate sequences under F det in Step 4 of Pro-
cedure 2, and the total normalized run time. The run time is nor-
malized by dividing it by the time it takes to fault simulate the
original test sequence. The following points can be seen from
Tables 2 and 3.

Table 2: Results of reordering, ISCAS-89, STRATEGATE

detected cand length n.time
circuit N M orig part best seq orig best F =φ totaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s298 7 7 265 253 265 224 194 122 260.25 262.17iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s344 7 7 329 328 329 3600 86 56 117.37 507.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s382 7 7 364 361 364 1535 1486 649 199.45 243.88iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s400 7 7 380 378 380 1030 2424 987 174.76 221.23iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s526 7 7 454 452 454 706 2642 1654 95.34 109.14
s526 8 4 454 454 454 24 2642 2086 2.16 6.46
s526 9 7 454 452 454 696 2642 1780 98.42 127.52iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s641 7 7 404 376 404 183 166 149 243.01 272.95iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s820 7 4 814 798 814 6 590 570 7.65 9.56
s820 8 7 814 762 814 6 590 577 86.97 88.01
s820 9 4 814 803 814 4 590 578 10.20 11.86iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s1196 7 7 1239 1237 1239 2880 574 567 49.68 880.23iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s1423 7 7 1414 1408 1414 4320 3943 2470 116.56 290.28iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s1488 7 7 1444 1376 1444 36 593 559 126.36 130.14
s1488 8 3 1444 1443 1444 4 593 574 7.85 9.42
s1488 9 6 1444 1436 1444 234 593 560 20.81 65.07iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s5378 7 7 3639 3639 3639 5040 11481 7338 4.96 71.14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s35932 7 6 35100 34974 35100 124 257 195 4.00 8.22c
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Table 3: Results of reordering, ITC-99, PROPTEST

detected cand length n.time
circuit N M orig part best seq orig best F =φ totaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 7 6 133 99 133 2 66 66 178.55 180.18iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b02 7 7 68 13 68 33 45 39 1784.33 1785.67iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b03 7 7 334 300 334 16 136 136 108.71 110.17
b03 8 7 334 266 334 10 136 136 159.59 160.16
b03 9 7 334 319 334 18 136 130 80.34 83.34iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b04 7 2 1168 1168 1168 2 168 168 2.87 3.96
b04 8 7 1168 1115 1168 5 168 168 92.07 93.40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b06 7 6 186 141 186 4 37 36 64.28 65.28
b06 8 7 186 142 186 33 37 31 456.06 456.83
b06 9 7 186 144 186 12 37 34 435.56 436.67iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b09 7 7 339 265 339 2 279 253 335.38 335.82
b09 8 7 339 261 339 22 279 234 384.21 384.77iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b10 7 4 467 445 467 2 190 190 11.64 12.37
b10 8 6 467 439 467 2 190 190 31.90 32.64
b10 10 6 467 443 467 2 190 187 34.15 34.82iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b11 7 6 997 958 997 2 676 674 10.02 10.82
b11 8 7 997 903 997 2 676 676 60.85 61.90
b11 9 7 997 907 997 6 676 601 71.57 72.35c
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Procedure 2 resulted in a sequence shorter than the origi-
nal sequence in all the cases. Information about the levels of
compaction achieved relative to the restoration-based static com-
paction procedure of [3] is given below. In most cases, the

subsequences produced by Procedure 1 do not detect all the cir-
cuit faults. Thus, there are some faults that require longer subse-
quences in order to be detected. However, it is not necessary to
put the subsequences in their original order for the faults to be
detected, since there are large numbers of different orders that
will detect all the faults. A value of N = 7 is typically sufficient
to achieve high levels of compaction.

Next, we consider the levels of compaction achieved by
the proposed procedure relative to the restoration-based static
compaction procedure from [3]. We performed the following
experiments. Starting from the shortest sequence obtained by
the proposed procedure for every circuit, we applied the
restoration-based static compaction procedure from [3]. This
experiment allows us to check whether the compacted sequences
produced by the proposed procedure provide better starting
points for the compaction procedure of [3] than the original test
sequence. We also performed the reverse experiment, where we
applied the proposed procedure to the test sequences produced
by the compaction procedure of [3]. This experiment allows us
to check the effectiveness of the proposed procedure on
sequences that are already compacted.

The results are reported in Tables 4 and 5. After the cir-
cuit name, we show the original sequence length. We then show
the test length obtained by applying the procedure from [3] to the
original test sequence. Next, we show the test length obtained by
applying the proposed procedure to the original test sequence.
Under column prop +rest, we show the test length obtained by
applying the procedure from [3] to the test sequences generated
by the proposed procedure. Under column rest +prop, we show
the test length obtained by applying the proposed procedure to
the test sequence produced by the procedure from [3]. Under this
column, we show the final test length obtained using
N = 7,8,9,10. We also show the best test length obtained by
applying the procedure from [3] followed by the proposed pro-
cedure in the last column. A dash indicates that Procedure 2 was
not applied because M > 7 was obtained, or because M = 1 was
obtained. In the latter case, Procedure 1 results in the original
test sequence, and no reduction in test length is obtained. We
put an asterisk next to the shortest test length for every circuit. If
applying the proposed procedure together with the procedure of
[3] does not reduce the test length, we do not place an asterisk
under the columns corresponding to prop +rest or rest +prop.
Thus, an asterisk is placed only if the proposed procedure
reduced the test length by at least one vector. In the last row of
every table, we show the sum of all the test lengths in the
corresponding column.

The results of Tables 4 and 5 indicate that the proposed
procedure can enhance the effectiveness of the restoration-based
compaction procedure from [3]. Overall, the best results for
ISCAS-89 benchmark circuits under STRATEGATE sequences
were obtained by first applying the procedure from [3], and then
applying the proposed procedure. The best results for ITC-99
benchmark circuits were obtained by first applying the proposed
procedure, and then applying the procedure from [3] to the shor-
test test sequence obtained. It is interesting to note that for these
circuits and sequences, the proposed procedure is most effective
as a preprocessing procedure, and that compaction starting from
a reordered sequence leads to better levels of compaction than
compaction starting from the original sequence. Again, a value
of N = 7 is typically sufficient to achieve high levels of compac-
tion.



Table 4: With restoration-based compaction [3]
ISCAS-89, STRATEGATE

prop+ rest+prop
circuit orig rest prop rest N=7 N=8 N=9 N=10 bestiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
s298 194 117 122 104 - *102 - - *102
s344 86 57 56 52 53 *43 - - *43
s382 1486 *516 649 588 516 516 - 516 516
s400 2424 611 987 679 *588 611 611 - *588
s526 2642 *1006 1654 1349 - - 1006 - 1006
s641 166 101 149 *86 101 - 98 - 98
s820 590 491 570 490 491 - - *466 *466
s1196 574 238 567 *233 238 - - 238 238
s1423 3943 *1024 2470 1087 - - - - 1024
s1488 593 *455 559 478 455 - - 455 455
s5378 11481 *646 7338 1179 646 646 - 646 646
s35932 257 150 195 *133 150 140 142 - 140iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 24436 5412 15316 6458 - - - - 5322c
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Table 5: With restoration-based compaction [3]
ITC-99, PROPTEST

prop+ rest+prop
circuit orig rest prop rest N=7 N=8 N=9 N=10 bestiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 66 *62 66 62 62 - - - 62
b02 45 45 *39 39 39 - - - 39
b03 136 130 130 *124 130 - - - 130
b04 168 168 168 168 168 168 - - 168
b06 37 35 *31 31 34 35 - 31 31
b09 279 269 234 *209 - 236 239 - 236
b10 190 190 187 *186 190 190 - 187 187
b11 676 675 *601 601 675 - - - 675iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 1597 1574 1456 1420 - - - - 1528cc
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To further validate the effectiveness of the proposed pro-
cedure as a preprocessing procedure for static compaction, we
applied the proposed procedure together with the procedure of
[9]. The procedure of [9], referred to as the sequence counting
based compaction procedure, achieves the best levels of com-
paction of all the available static compaction procedures.
Improvements in test lengths were obtained by using the pro-
posed procedure together with sequence counting based compac-
tion as well. These improvements are demonstrated in Table 6
for ITC-99 benchmark circuits under the test sequences pro-
duced by PROPTEST. It can be seen by comparing Table 6
with Table 5 that the results of the sequence counting procedure
are better than the results of the restoration-based procedure, yet
additional compaction is achieved by the proposed reordering
procedure.

4. Concluding remarks
Test sequence reordering consists of changing the order of test
vectors in a test sequence for a synchronous sequential circuit
without reducing the fault coverage. We investigated the effects
of reordering on the ability to compact the test sequence. Reord-
ering was shown to have two effects on compaction. (1) The
reordering process itself allowed us to reduce the test sequence
length. (2) Reordering was shown to improve the effectiveness
of existing static compaction procedures, especially when
applied as a preprocessing step to compaction. Reordering was
done by arbitrarily partitioning the sequence into equal or almost
equal subsequences, combining some of these subsequences if
necessary to detect certain faults, and then finding a permutation

Table 6: With sequence counting based compaction [9]
ITC-99, PROPTEST

seq. prop+
circuit orig count prop seq.countiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
b01 66 *36 66 36
b02 45 33 39 *32
b03 136 *73 130 86
b04 168 *126 168 126
b06 37 28 31 *23
b09 279 187 234 *175
b10 190 *115 187 115
b11 676 493 601 *402iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
total 1597 1091 1456 995cc
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of the subsequences that allows the original fault coverage to be
maintained. We found that there are several permutations of the
subsequences that result in the same fault coverage as the origi-
nal sequence. Thus, reordering also provided an insight into the
detection by test generation procedures of faults that require rela-
tively long subsequences in order to be detected.
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