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Abstract

This paper presents an efficient time-domain simulation
approach for telecommunication frontends at architectural
level. It is based upon the use of complex damped exponen-
tial modeling functions. These allow to construct accurate
signal models for digitally modulated telecom signals, re-
quiring only few modeling functions. Since these models
are valid over a long range of time, they allow for a large
timestep, which greatly speeds up time-domain simulation
of the telecom frontends. Details of a simulation approach
based upon this signal model are discussed. The approach
is verified by experimental results.

1. Introduction

During the last decade, the telecommunication market
is experiencing a tremendous growth. This includes both
a growth in the number of consumers as in the number of
applications. DECT, GSM, Bluetooth, ADSL and VDSL
are just a few examples of evolving technologies that try
to cope with the increasing demand for higher data rates.
This makes it a very attractive and very competitive mar-
ket, which requires short time to market in introducing new
products. In order to deal with these requirements, design-
ers are in need of efficient tools for evaluation (simulation)
of their telecommunication systems at all levels of abstrac-
tion. This paper describes a technique that is particularly
well suited for simulation at architectural level of the fron-
tend part of these telecom systems.

Looking at the simulation algorithms that are currently
available [2], it is seen that their performance strongly de-
pends upon the problem at hand. For example, harmonic
balance outperformes a SPICE-like approach when deal-
ing with RF circuits and a periodic input, while SPICE-like
techniques are better when dealing with strongly nonlin-
ear baseband applications, even when the input signals are
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Figure 1. Global structure of a simulation al-
gorithm.

periodic. The reasons for this are inherent to the choices
made when constructing the simulation algorithm. In order
to identify the underlying mechanisms, we need to look at
the overall structure of these algorithms. This structure is
outlined in Fig. 1, which basically shows a template for the
solution of a set of differential algebraic equations (DAE’s)

F
(

dx
dt

, x, xin , t

)
= 0 (1)

valid over the range
[
t0, t f

]
. Herex(t) andxin(t) are re-

spectively the unknown signals and the input signals. The
figure clearly illustrates how the global algorithm can be



decomposed into several subalgorithms. Different simula-
tion algorithms provide different implementations for one
or more of these subalgorithms. These choices determine
the overall algorithmic performance.

An important step in the design of a simulation algorithm
lies in the selection of the interval partitioning and signal
modeling strategies and the interaction between them. Here,
the first subalgorithm partitions the overall simulation inter-
val [t0, t f ] into a number of subintervals [tk, tk+1] within
which a solution is easier to compute. The basic idea is
that the signal variations become easier to model, and hence
easier to compute, when the time interval is small and vice
versa. The second subalgorithm selects a set of differen-
tiable basis functions9i j (t) for j = 1, . . . , Ji such that the
signalsxi (t) can be modeled as

xi (t) =
Ji∑

j=1

Xij 9i j (t) (2)

within the subinterval
[
tk, tk+1

]
and this with sufficient ac-

curacy. This signal modeling step turns equation (1), which
is essentially a problem in an infinite number of variables,
into the computation of the finite number of unknownsXij .
From a computational point of view, this results in a com-
plexity given by

C[t0,t f ] = NT × C [tk ,tk+1] (3)

whereNT is the number of subintervals andC[tk ,tk+1] is the
average computational complexity involved in computing a
solution over one of the subintervals. The latter complex-
ity strongly depends upon the choice of the signal models.
This choice determines the total numberJ = ∑N

i=1 Ji of
unknown variablesXij that need to be computed for each
subinterval

[
tk, tk+1

]
, and hence the size of the resulting

systems of nonlinear and linear equations. Here,N is the
total number of unknown signalsxi (t). In order to keepJ
as low as possible,it is important to select basis functions
which correspond as closely as possible to the characteris-
tics of the signals. These models may differ from signal to
signal.

As the interaction between the first two steps in Fig.1
is concerned, there are two limiting strategies that can be
pursued in order to meet the required accuracy: fix the
complexity (theJi ) per subinterval and adapt the size of
the subintervals

[
tk , tk+1

]
(the timestep), or fix the size of

the subintervals and increase the number of modeling func-
tions. SPICE for example applies the first strategy, while
harmonic balance applies the second one. It is however also
possible to choose a strategy in between these two extremes.
This implies a trade-off between the number of subintervals
and the computational complexity per subinterval. Besides
the selection of the basis functions9i j (t), this trade-off is

an important parameter that can be used in the performance
optimization of simulation algorithms. The optimum strat-
egy will however often depend upon the system character-
istics (like the degree of nonlinearity, etc.).

Traditional SPICE-like solvers [11] typically select a
2nd-order polynomial model and decrease the size of the
subintervals (timestep) in order to ensure the accuracy of
the signal model. This is often combined with adaptive step-
size control. In [13], a polynomial-based approach is pre-
sented, that allows you to make a trade-off between timestep
and polynomial order. When dealing with telecom systems
and their associated IF and RF modulated signals, these ap-
proaches however lead to a huge numberNT of subintervals
(small timestep), resulting in long simulation times. The ba-
sic reason for this is that the polynomial basis is not suited
for modeling high-frequency modulated signals. Harmonic
balance [3] and its variants [5] remedy this by using the
harmonic basis

{
e j i2π f0t

}
instead. This allows an efficient

modeling of high-frequency, periodic signals. The number
of harmonics is chosen in a way to make the signal model
valid over the entire simulation interval [0, T ], with T the
period of the input signals. This makesNT = 1. These
methods however only allow to find the steady-state solu-
tion of nonlinear circuits with periodic inputs. No transients
can be taken into account and it is not possible to model the
digitally modulated signals that serve as the actual inputs
to telecommunication systems. The circuit envelope simu-
lation technique [6] solves this problem in a way that can
be seen as combining the polynomial and the harmonic ba-
sis. It is often combined with some kind of adaptive step-
size control. The algorithm however uses a global signal
model, meaning that the basis functions are the same for
all signals in the frontend. This implies that the simula-
tor cannot take advantage of the sometimes widely differ-
ent signal characteristics at different nodes in the frontend,
something which is typical in telecom applications (high-
frequency input, low-frequency output, or vice versa). This
global model leads to an unnecessary increase in the num-
ber of basis functions per subinterval

[
tk, tk+1

]
and hence in

the number of unknowns, complicating the solution

This paper presents a simulation approach for weakly
nonlinear telecom frontends at architectural level which
tries to incorporate the advantages of the previous methods
while avoiding the drawbacks. It makes use of a complex
damped exponential signal model, which allows for effi-
cient modeling of high-frequency modulated signals. Com-
pared to harmonic balance, the introduction of the damp-
ing factor makes it possible to perform simulations in the
time-domain and this for non-periodic input signals. The
simulation algorithm is based on a runtime Volterra series
expansion. It selects the necessary basis functions at run-
time, avoiding the global signal model used in the circuit
envelope method. The simulation stepsize can be used as a
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parameter to optimize the simulation performance. The al-
gorithm also allows to compute wanted and unwanted sig-
nals seperately. This, together with the natural relationship
between the exponential signal model and frequency con-
tent, greatly facilitates analysis of the results afterwards. It
should provide designers with the information they need to
make decisions at the architectural level.

The paper is organized as follows. Section 2 introduces
the complex damped signal model. It is shown to be very ef-
ficient in modeling the high frequency digitally modulated
signals involved in telecom frontends. In section 3, a time-
domain simulation algorithm based upon this signal model
is discussed. The algorithm is absolutely stable by con-
struction and avoids the necessity of a global signal model.
Experimental results are presented in section 4 and conclu-
sions are drawn in section 5.

2. The complex damped exponential basis and
its signal modeling capabilities

One of the important properties of telecommunication
signals is the fact that they often contain greatly different
time constants, especially when dealing with RF applica-
tions. A set of basis functions that has the natural ability to
deal with this property is the complex damped exponential
basis. In its most general form, a signalx(t) is modeled as

x (t) =
∑

k

Aktnk ezk t (4)

with nk ∈ N and zk = pk + jωk ∈ C. This signal
model shows great resemblances with the harmonic basis{
e jn2π f0t

}
. The latter is actually a subset of the former.

There are however some important differences. By adding
the damping factorpk , it becomespossible to model real-
life telecom signalslike OFDM, GMSK, etc. The harmonic
basis on the other hand only allows periodic input signals.
It also becomespossible to perform simulations in the time-
domain and to take transients into account.In what follows,
we’ll mostly limit ourselves to the subset of (4) for which
nk = 0.

In order to get an idea of the modeling efficiency of the
exponential basis with respect to telecommunication sig-
nals, we first compare it with the results obtained using a
polynomial basis. For testing purposes, we use a GMSK
modulated bitstream. Similar results can be obtained for
other kinds of modulation strategies. Such a signal can be
written as

s(t) = Re
[
e j2π f0t × (cos(8(t)) + j sin(8(t)))

]

= Re
[
e j (2π f0t+8(t))

]

where cos(8(t)) and sin(8(t)) are the in-phase and
quadrature signal components respectively. The GMSK

20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

f
0
/f

T

N
T
/T

RMS Error = −40dB

20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

f
0
/f

T

N
T
/T

RMS Error = −60dB

Polynomial order:
o 3rd order
* 2nd order

Polynomial order:
o 3rd order
* 2nd order 

Figure 2. Number of subintervals necessary
for a polynomial fit of a modulated GMSK sig-
nal.

symbol rate equalsfT = 1/T . For both signal modeling
approaches (exponential and polynomial),JG M S K and NT

were computed for varying values of the carrier frequency
f0. All polynomial fits are performed using a least-squares
approach, while the exponential fitting was done using the
HTLS algorithm described in [9]. The exponential fit re-
quired JG M S K = 4, NT /T = 1 and this for an RMS er-
ror equalling -40dB andJG M S K = 6, NT /T = 1 for an
error of -60dB. The error was computed as the difference
between the input samples and the resulting fit.All of these
numbers are independent of the modulation frequencyf0.
Fig.2 shows the resulting (normalized) number of subinter-
vals NT /T for the corresponding polynomial fits using 2nd
and 3rd-order polynomial models. As is to be expected,
NT increases (decreased timestep) about linearly with the
frequencyf0. The complexity of the corresponding simula-
tion algorithm will hence also grow linearly withf0. Since
the exponential basis does not suffer from this drawback, it
clearly provides a much more efficient signal model than
polynomials, especially whenf0/ fT gets large (which is
typically the case).

A second experiment demonstrates that also when us-
ing exponentials, there is a trade off possible between the
length of the timestep (length of the modeling subinterval[
tk, tk+1

]
) and the complexity of the signal model within[

tk, tk+1
]
, as was discussed in section 1. Using the same

GMSK signal (with f0 = 10 · fT ), Fig.3 plots the num-
ber of needed modeling exponentials versus the normalized
timestep1t/T . This is done for two different values of the
accuracy of the resulting fit. Again, these numbers are in-
dependent of the carrier frequencyf0. This figure clearly
illustrates how it is possible to increase the timestep (de-
crease the numberNT of subintervals) by increasing the
number of basis functions (modeling complexity). Which
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Figure 3. Number of modeling exponentials
versus the length of the modeling interval.

choice of1t is optimal depends upon the system degree of
nonlinearity as will be described in section 4.

As a final note, it is worth mentioning that one could
argue that the exponential method uses bothAk and zk in
(4) to obtain a good fit, effectively doubling the number
of unknowns that have to be computed. The exponentszk

can however be determined on beforehand, based upon the
knowledge of the input signals and their harmonics. An-
other approach would be to determine them using the re-
sults of some short trial simulations. Doing so allows us
to incorporate the input signal characteristics into the sim-
ulation algorithm. Stated in another way, the basis func-
tionsezk t are chosen, before starting the actual simulation,
because they are suited for modeling the signals that arise
when a given set of input signals is applied. This is similar
to harmonic balance where the functionse j2π t/T are cho-
sen because they are very well suited to modelT -periodic
functions.

3. A simulation algorithm based upon the com-
plex damped exponential basis

Having demonstrated the efficiency of the complex
damped exponential basis in modeling telecom signals, we
now briefly outline a simulation approach for weakly non-
linear telecom systems using this basis. The algorithm is
absolutely stable by construction and avoids the necessity
of a global signal model. The restriction of weak nonlinear-
ity can be justified by the fact that telecommunication fron-
tends are essentially designed to behave linearly (in its most
general, time-varying, sense). The nonlinear behavior is ac-
tually parasitic and hence suppressed as much as possible.
This makes telecom frontends weakly nonlinear in nature.
In what follows, we also assume that the telecom system
can be modeled as an interconnection of linear blocks and

+
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Figure 4. Runtime Volterra series expansion
procedure for calculating the distortion com-
ponents

static (memoryless) nonlinearities. This also poses no great
restrictions, especially when dealing with high level mod-
els.

Linear signal propagation is straightforward. For a
given state space representationA, B, C, D of a linear time-
invariant system, an initial conditionx0 and an input signal
ezt , the output can be written as (assuming the signal polez
to be different from the system poles, being the eigenvalues
of the matrixA)

x(t) = eAt
(
x0 − (zI − A)−1 B

)

+ (zI − A)−1 Bezt dτ (5)

yout(t) = CT x(t) + Dezt (6)

which can easily be rewritten as a sum of complex damped
exponentials by making use of the eigenvalue decomposi-
tion of the system matrixA. The resulting propagation
through the linear blocks is hence both fast and accurate.
At this point, it can be noted that, because of the choice of
the basis functions, the algorithm will be absolutely stable.

In order to deal with the nonlinear behavior, we use a
runtime Volterra based expansion procedure as outlined in
Fig.4. This procedure is analogous to the ones used in sym-
bolic analysis techniques [12]. The signal components are
computed in increasing order of nonlinearity. In a first step,
the wanted signal components are propagated through the
linear blocks. Next, these signals are propagated through
the static nonlinearities of the different blocks and the 2nd-
order components (products of 2 1st-order components) are
computed at the outputs of the nonlinearities. These 2nd-
order components are then propagated through the linear
blocks resulting in the 2nd-order nonlinear components of
the output signals. This procedure continues with the 3rd-
order nonlinearities, etc. until the desired degree of nonlin-
earity has been reached. Here it should be reminded that we
assumed the frontend model to be an interconnection of lin-
ear blocks and static nonlinearities. It is also clear that this
procedure will only work for weak degrees of nonlinearity.

This procedure has the advantage of computing the ba-
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sis functions for the signal models at runtime, avoiding the
necessity of a global signal model. Also, because of the
natural relationship between the exponential basis functions
and frequency contents, it is easy to neglect (at runtime) fre-
quency components which are not of interest, saving CPU
time. This relationship also greatly facilitates the analysis
afterwards. Finally, the Volterra series expansion has the
advantage that it allows to compute wanted and unwanted
components seperately, something that is impossible when
using for example SPICE-like methods. This property also
proves useful for designers in analyzing the simulation re-
sults.

One possible pitfall when using this approach, is an ex-
plosion of the necessary number of basis functionsJ . Given
the number of exponentialsJin necessary to model the input
signals and the system degree of nonlinearitynl, an upper
bound for the total number of exponentials is given by

J ≤ (Jin + nl)!

Jin !nl!
≈ J nl

in

nl!
(7)

This shows that asnl increases, the number of basis func-
tions tends to explode exponentially. This can however be
controlled in several ways. First, it is possible to decrease
Jin by increasing the number of subintervalsNT as illus-
trated in Fig.3. Other strategies involve a simplification
of the input and output of the nonlinear blocks by pruning
the exponentials with neglegible power or by using a sam-
ple and refit procedure. In the latter case, large sampling
rates are avoided by applying the procedure to each fre-
quency band separately. Separating the signals according to
their frequency content is a trivial operation, as was already
mentioned before. These simplifications introduce some er-
rors, which however, if small enough, are neglegible effects
since the nonlinearities themselves are small compared to
the wanted signal components.

Finally, we mention the techniques that are used to
switch between a sampled data and exponential represen-
tation. This conversion is useful when modeling the input
signals, when reducing the number of exponentials through
sample and refit or when dealing with hard nonlinearities
(which are often easier to deal with in the sampled-data
representation). The current implementation of this conver-
sion is based upon the Hankel Total Least Squares (HTLS)
exponential fitting algorithms presented in [9]. This algo-
rithm allows to compute the minimum number of exponen-
tials necessary to model the input data for a given accuracy.
No discretization of the frequency axis is necessary as is
the case with the Gabor transform. This makes it very well
suited to deal with signals for which the ratio of the time
constants is non-rational. These Hankel data matrix based
algorithms also slightly outperform linear prediction (LP)
fitting procedures as far as accuracy is concerned [1].

GMSK
generator

0

LNA

90
Oscillator

Opamp

bit sequence
input MIXER

output

Figure 5. Schematic of the DCS1800 receiver

4. Experimental results

In order to demonstrate the efficiency of our approach,
we present the results from the analysis of a low-IF
DCS1800 receiver [7] using the simulation approach dis-
cussed above. All of the algorithms are implemented in
MatlabTM. The results were obtained on a Sun ULTRA30.
Both CPU times and flop counts are presented.

The DCS1800 receiver is schematically depicted in
Fig.5. The RF input is a GMSK signal according to the
GSM specifications, with a symbol lengthT = 3.7µs
at a carrier frequency somewhere aroundfc = 1.8 GHz.
The low-noise amplifier (LNA) is a 12th-order small-signal
model extracted from a SPICE netlist. For the mixer
opamps, a two-stage macromodel was constructed from
the circuit schematic where each stage is modeled using a
transconductance plus a resistive and capacitive load. The
transconductances are nonlinear such that the mixer has an
IIP3 of 14dBm. The oscillator is taken to be an ideal cosine.
Note that Fig.5 only shows the in-phase mixer.

In a first step, an exponential model for the input signal
is computed. This is done by fitting the signal’s complex
baseband equivalente j8(t) = cos(8(t))+ j sin(8(t)), the
result of which is shown in Fig.6. Next, this is upconverted
to fc = 1.8 GHz. It takes about 0.1 seconds of CPU time
and 1 Mflops (per GMSK symbol) to compute them. Two
different models were constructed: one that is accurate up
to -40dB and one up to -60 dB. As was already illustrated
in figure 3, the higher accuracy is at the cost of a more com-
plex model (more exponentials). Since these models need
to be computed only once (they can be reused for different
simulations), the corresponding CPU times and flop counts
are not taken into account in subsequent simulation times.

Next, the input signal is propagated through the receiver,
while varying the stepsize1t of the simulation subintervals.
This means that the exponential signal models at each node
must be valid over a range1t. This is done for both the
mixer opamp nonlinearities turned on and off and for both
levels of accuracy of the input signal models. When com-
puting the nonlinear system behavior, the high-frequency
components (at 3.6 GHz) are neglected, since their power
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Figure 8. CPU times and flop counts per sym-
bol period T versus the stepsize 1t when the
mixer opamp behaves strictly linear.
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Figure 9. CPU-times and flopcounts per sym-
bol period T versus the stepsize 1t when the
mixer opamp contains nonlinear behavior.

is neglegible. In order to avoid explosion of the number
of exponentials, signals are simplified using a sample and
refit procedure. Fig.7 shows the input phase and the out-
put phase, as extracted from the outputs of the in-phase and
quadrature mixers. The resulting CPU-times and flopcounts
per symbol periodT are shown in the figures 8 and 9. These
figures illustrate how the overall simulation time can be op-
timized by selecting an optimum value for the timestep1t.
They also show this optimum to depend upon the properties
of the system being simulated. For simulation of the ideal
system behavior only, the timestep1t can be taken very
large. The resulting decrease in the number of simulation
subintervals is more important than the increased modeling
complexity (number of exponentials) per subinterval. How-
ever, when the mixer opamps behave nonlinearly, the sim-
ulation algorithm generates extra exponentials to model the
nonlinear signal components. For large1t, this increase
in signal modeling complexity becomes dominant and the
overall simulation time starts to increase again. In this case
it is suggested to decrease the timestep compared to the case
where the opamp behaves linearly. The difference in opti-
mal timestep in figure 9 between CPU times and flop counts
is due to the extra overhead in Matlab function calls and
memory management. Note that in both the linear an non-
linear case, the timestep1t is still a multiple of the period
T of the GMSK symbols.

In a second experiment, the exponential approach is
compared to the SPICE-like Matlab integration method
ode15s, which is a variable-order, adaptive stepsize method
suited for solving stiff problems. The comparison was per-
formed by applying a modulated GMSK signal to a opamp-
RC lowpass filter (similar to the mixer in Fig.5, but with
the MOSFETS replaced by their (unmodulated) resistance.

6



f0/ fT CPU gain Flop gain Acc./Dist. (dB)

4 8.0 8.2 -17
8 6.0 6.4 -20
16 11.3 12.4 -22
32 20.7 22.9 -23
64 42.4 44.9 -23
128 73.4 70.0 -25

Table 1. Comparison between classical
polynomial-based integration methods and
an exponential approach.

Opamp nonlinearities are included). The timestep for the
algorithm based upon complex damped exponentials was
chosen to beT , the length of one GMSK symbol. This
step is independent of the carrier frequencyf0. The exper-
iment is repeated for increasing values of the modulation
frequency f0. Table 1 presents the gain in both CPU time
and flop count, obtained by using the exponential approach.
The last column compares the energy contained in the dif-
ference between both methods and the energy contained in
the signal distortion components (smallest relevant signal
components). It is clearly seen that the performance gain
increases about linearly with the carrier frequency. This is
because of the increasing timestep needed by theode15sin-
tegration method. The behavior of the CPU and flop gains
for low modulation frequencies are explained by the fact
that in these cases, the time step of theode15sroutine is de-
termined by the impulse response of the amplifier, and not
by the frequency content of the input signal.

5. Conclusions

The importance of telecommunication systems justifies
the design of algorithms that increase simulation speeds by
incorporating the system and signal properties into the algo-
rithm. This paper has presented an approach based upon a
complex damped exponential signal model. This set of ba-
sis functions incorporates the typical properties of digitally
modulated telecom signals, with their many different time
constants, in a natural way. This allows to construct simple
models (few basis functions) that are valid over a long time-
interval. This allows for an increased timestep, speeding up
the simulations. The length of the timestep can be varied
to optimize for speed. This exponential model was com-
bined with a runtime Volterra series expansion based algo-
rithm for simulation of weakly nonlinear telecom systems.
The algorithm is absolutely stable and avoids the necessity
of a global signal model. The algorithm also allows to com-
pute wanted and unwanted signals separately. This, together
with the natural relationship between the exponential sig-

nal model and frequency content, greatly facilitates analy-
sis of the results afterwards by designers. The approach was
verified experimentally with simulations on a DCS1800 re-
ceiver frontend.
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