
An Efficient Learning Procedure for Multiple Implication Checks

Yakov Novikov, Academy of Sciences (Belarus),
email: NOV@newman.bas-net.by

Evgueni Goldberg,Cadence Berkeley Labs (USA)
email: egold@cadence.com

Abstract
In the paper, we consider the problem of checking

whether cubes from a set S are implicants of a DNF
formula D, at the same time minimizing the overall time
taken by the checks. An obvious but inefficient way of
solving the problem is to perform all the checks
independently. In the paper, we consider a different
approach. The key idea is that when checking whether a
cube C from S is an implicant of D we can deduce (learn)
implicants of D that are not implicants of C. These cubes
can be used in the following checks for search pruning.
Experiments on random DNF formulas, DIMACS
benchmarks and DNF formulas describing circuits show
that the proposed learning procedure reduces the overall
time taken by checks by up to two orders of magnitude.

 1. Introduction

In the paper, we consider the problem of performing
multiple implication checks. Given, a disjunctive normal
form (DNF) D and a cube C, an implication check is to
answer the question if C implies D. By multiple
implication checks we mean that, such checks are done for
all the cubes from a set S i.e. for each cube Ci ∈ S it is
checked whether Ci implies D. DNF D is further referred
to as the basic one. Besides just checking if cubes from S
are implicants our objective is also to minimize the overall
time taken by all the checks.

This problem arises in synthesis [1], verification [2] of
combinational circuits (e.g. false negative identification)
where one often needs to check whether a vector A of
assignments to intermediate variables is consistent. The
vector specifies a cube C in the Boolean space of circuit
variables. To see if A is consistent one needs to check if C
is an implicant of a DNF D specifying the set of consistent
assignments to circuit variables.

A common way of checking whether a cube C is an
implicant of a DNF D is as follows. First, we form the
cofactor DC of D with respect to cube C and then check if
DC is a tautology [1]. (A DNF D is a tautology if it is equal
to 1 for any value assignment to the variables of D.) In
other words, we check if D turns into a tautology after
making the assignments setting the literals of C to 1. (For

example, if C is equal to ��� then these assignments are
a=1,b=0,c=1). Each tautology check is a co-NP complete
problem [4]. If all the checks are performed separately,
then the more cubes are in set S the harder the problem of
multiple implication checks becomes.

In general, one can make use of previous implication
checks by adding to basic DNF D every cube Ci ∈ S that
has been proven to be an implicant of D. There are two
problems in such an approach. Firstly, this kind of learning
doesn’t work if there are no implicants in S. Secondly,
even if a cube Ci ∈ S is an implicant, learning just this
fact is a small share of information one can actually get
during implication check.

The point is that if one uses conflict analysis [11] then
when checking if Ci is an implicant it is possible to deduce
implicants of D that are not implicants of Ci. (For
tautology checking, conflict is the situation when under a
set of assignments A a cube C of the original DNF D
cannot be set to 0, so the current DNF is a tautology.)
Conflict analysis is based on the observation that some
assignments on a path P leading to a conflict are
redundant. This means that one will get the same conflict
for all the paths that can be obtained from P by flipping
redundant assignments. This fact can be stored in a
database as the cube specified by an irredundant subset of
the set of assignments on path P. GRASP [9] is an
example of an algorithm storing a database of conflicts to
prune search tree.

Similar conflict analysis can be used for implication
checks. Suppose that C=abc is a cube to be checked if it is
an implicant of D. If we construct DC for tautology
checking, we lose information about the original formula
D. It means that for any conflict encountered during
tautology check of DC we consider assignments
a=1,b=1,c=1 to be irredundant. In our approach we rather
consider implication check as examining a branch (starting
with assignments a=1,b=1,c=1) of the search tree
constructed when tautology checking formula D (not DC).
This allows one to check in each encountered conflict
whether assignments a=1,b=1,c=1 are irredundant. As the
result we can obtain implicants of D that are not
implicants of C. In other words we can deduce implicants
whose influence on other implication checks goes
"beyond" cube C itself. To limit the number of cubes to be

stored, in the current version of our algorithm only cubes
whose number of literals is below a threshold are stored.

Treating implication check as examination of a branch
of the search tree constructed when tautology checking D
looks like a minor technical issue. However, it means an
important paradigm shift. Instead of asking the same
question about different objects (is this cofactor of D a
tautology?) we ask different questions about the same
object, which is the basic DNF D (is this cube an implicant
of D?). This allows one to become increasingly
knowledgeable about this object. It should be noted that
the fact, that adding implicants to basic DNF D makes it
easier to perform next implication checks, is obvious. The
point however is that we get implicants of D without any
extra effort just as a by-product of implication checks.

In [5],[10] a similar problem has been addressed.
Rephrased in tautology checking language it can be
formulated as the problem of multiple tautology checks
performed on a set of DNFs sharing many cubes. In [10] a
technique of storing "pervasive" cubes was proposed. The
difference between our approach and this technique is
explained in detail in section 5.

Our experiments on random and circuit DNFs show
that the proposed learning procedure reduces the overall
time taken by the checks by up to 2 orders of magnitude.

 2. Unit cube rule and BCP

Suppose that we perform a tautology check on DNF D
and the latter contains a unit cube i.e. a cube containing
one literal, say cube C=a. Then we can immediately
conclude that no solution exists with a=1 (by solution we
mean an assignment proving that D is a non-tautology i.e.
an assignment under which D=0). So from the unit cube C
we can deduce that the value taken by variable a in any
solution (if D is a non-tautology) is equal to 0. This way of
deducing values is called the unit cube rule. Now we can
simplify D by making assignment a=0 and discarding all
cubes having literal a and removing literal a from all
cubes that have it.

After applying the unit cube rule once, new unit cubes
may appear in the current DNF so the rule can be applied
again. The procedure of iterative application of the unit
cube rule is called Boolean Constraint Propagation (BCP).
BCP stops when

• there are no unit cubes in the current DNF;

• a solution is found;

• a conflict is encountered.
When performing a tautology check on a DNF D, conflict
means the situation when all literals are removed from a
cube C of D under current assignment (we will say that a
conflict on cube C is encountered). So no solution can be
obtained by branching on unassigned yet variables.

 3. Conflict analysis

Conflict analysis is based on the following observation.
Let A be a set of assignments that after performing BCP
lead to a conflict on a cube C. It means that under
assignment A followed by BCP all literals of C are
removed and it can’t be set to 0. It may happen that even
after removing some subset A’ of assignments from A, the
rest of assignments lead to the same conflict on C [11]. So
assignments A’ are redundant with respect to the conflict.
This observation allows one to prune some paths different
from the current one. Suppose for example, that having
made assignments A={ a=1,b=0, v=1,m=1,s=0,d=1} we get

a conflict. This means that cube ������	

= specified by

assignments A is an implicant of the original DNF. Storing
the cube doesn’t make sense because the algorithm will
never explore a path containing all the assignments from
A. Suppose, however, that conflict analysis shows that
assignments a=1,s=0 are redundant. Then we can claim

that cube ����
��
=
�

 strictly containing C is an implicant
of D too. Storing cube C* does make sense. Suppose that
a=1 and s=0 are first assignments to variables a and s i.e.
assignments a=0 and s=1 are yet to be examined. Then
storing C* will help to prune branches corresponding to
the sets of assignments obtained from A by flipping values
of variable a and/or variable s.

It is convenient to use a special term for a set of
assignments leading to a conflict. We will call it conflict
recipe. As it was mentioned above, conflict recipes can be
redundant, which means that the same conflict can be

described by different recipes. Cube �������
=
�

 specifies
an irredundant recipe { b=0,v=1,m=1,d=1} of the same
conflict as recipe A above. Moreover, the same conflict
can have different irredundant recipes. Recipes differ in
their quality and a number of techniques have been
proposed for recipe optimization. In [7] a procedure for
reducing recipe size by replacing conscious (i.e. decision)
assignments of the recipe with deduced ones is introduced.
In [9] a technique for splitting a recipe into two shorter
ones is suggested. These techniques are used in our
experiments described in section 6.

 4. Problem formulation and algorithm
description

The problem of multiple implication checks is
formulated as follows. Given a DNF formula D (called
basic DNF) and a set of cubes S={ C1,…,Cn} , check for
every cube Ci ,i=1,..,n if it is an implicant of D minimizing
the overall time taken by all n checks. Ci is an implicant of
D if for any assignment for which Ci is equal to 1, D is
equal to 1 as well.

Our algorithm performs implication checks one by one,

with no particular order. For the sake of simplicity, let us
assume that cubes are checked according to their numbers
i.e. C1 is the first to check and Cn is the last. (Though one
has every reason to believe that the order in which cubes
of S are processed may dramatically affect algorithm
performance, finding a good ordering is not the focus of
the paper). Let Ci be the next cube to check. The key idea
of our algorithm is to store (i.e. to add to D) implicants of
D obtained when performing implication check on Ci. The
reason for keeping such implicants is that conflict analysis
allows one to deduce implicants of D which are not
implicants of Ci. These implicants may be useful for next
implication checks. To limit the number of implicants of D
we keep only the ones whose number of literals is less
than a threshold are stored.

Let us first describe the difference between our and
traditional approaches. Assume for the sake of clarity that
Ci = abc is the next cube to check. A common way of
performing implication check on Ci is to compute the
cofactor ��� of basic DNF D by making assignments

a=1,b=1,c=1 and then perform a tautology check on ��� .

The drawback of such approach is that we assume that all
three assignments above "contribute" to any conflict
encountered when performing tautology check on �� .

So all implicants of !"# that are deduced are implicants

of Ci (because we have to add all three literals a,b,c to any
implicant deduced when performing tautology check on

$%&).

The key point of our approach is that instead of
checking if '() is a tautology we examine the branch

a=1,b=1,c=1 of the tree constructed when checking if
basic DNF D is a tautology. If no solution is found in this
branch, then Ci is an implicant of D, otherwise it is not.
This may look like a minor trick but in fact, it means an
important paradigm shift. In a traditional approach we ask
the same question (is this DNF a tautology?) about
different objects, which are cofactors DC1

,…, DCn
. In our

approach we ask different questions (is this cube an
implicant of the basic DNF D?) about the same object,
which is the basic DNF. Accumulating implicants of D,
the algorithm becomes more and more "knowledgeable"
about the object it deals with.

Let us consider in more detail how an implication
check is performed. Let Ci be the cube to perform
implication check on. First, the assignments setting all
literals of Ci to 1 are made in D (we will refer to them as
initial assignments). If, for example, Ci=abc then the set of
initial assignments is a=1,b=1,c=1. This means that all

cubes having at least one of the literals *+,.-- are
discarded and literals a,b,c are removed from all the cubes
having them. If necessary, BCP is applied. After making

the initial assignments the following three situations are
possible.

1) A conflict if found. It means that the cube specified
by the initial assignments (in our example it is cube abc) is
an implicant of D.

2) A solution is found i.e. D is set to 0. Then Ci is not
an implicant of D.

3) If neither of the cases above occurs then the
algorithm starts branching trying to find an assignment
setting all the cubes of D to 0. If a conflict is encountered,
a recipe of the conflict is constructed and added to D.
Nonchronological backtracking is performed [9]. If a
solution is found, which proves that Ci is not an implicant
of D, the implication check stops. If algorithm backtracks
to one of the initial assignments, which means that Ci is an
implicant of D, the implication check stops.

When an implication check of cube Ci is completed, all
found implicants added to D during of Ci checking and
containing more literals then the threshold value are
deleted from D. So D accumulates only short implicants
which have more chances to be useful in the implication
checks to follow.

Let us illustrate the method by the following example.

Let /012 02 13
∨∨= be the DNF specifying the set of

cubes to check if they are implicants of a basic DNF45456 575689:7;
∨∨∨∨= . Let cube ab be the first to

be checked. After making the initial assignments a=1 and

b=1 we get DNF <=<=> =?=>? ∨∨∨∨ . It contains

single unit cube c from which we deduce c=0. By making

the assignment we reduce the DNF to @A@AB AAB ∨∨∨ .

Since BCP stops here, we need to choose a variable to
branch on. Suppose that we branch on variable g and
branch g=0 is examined first. Substituting g for 0 we get

DNF CDCDD
∨∨ . From the unit cube we deduce h=0.

After assigning h=0 we get DNF EE ∨ . Now deducing

either assignment f=0 or f=1 leads to a conflict on cubeFG
 or cube HI of the basic DNF D.

The conflict depends on chosen assignments b=1 and
g=0 (and does not depend on assignment a=1). Indeed,
after making assignments b=1 and g=0 we get DNFJKJKKL:MN

∨∨∨= . After deducing h=0 and applying

BCP we get the same conflict on cube OP or cube QR as

before. So the set of assignments { b=1,g=0} can be
considered as a recipe of the conflict. The recipe specifies

an implicant ST of the basic DNF which is not an

implicant of cube ab for which implication check is
performed. Now we need to backtrack and flip the
assignment to the last chosen variable responsible for the
conflict i.e. variable g. Assignment g=1 leads to the same

DNF UVUVV
∨∨ that was considered in the branch g=0.

After performing BCP we obtain a conflict with recipe
{ a=1,g=1} . Again this recipe specifies an implicant ag of
the basic DNF which is not an implicant of ab.

Now we need to backtrack to variable b which is an
initial variable. This means that implication check is over
and cube ab is an implicant of D.

Suppose the threshold is equal to 2. So the two found

implicants WX , ag can be added to the basic DNF D.

So Y:ZY\[[Z]^]^[^_^[ZY _`
∨∨∨∨∨∨∨= . Now

checking ag, abc becomes trivial because ag is already

contained in D and de contains fgh (that is ijk implies
lm). So after making initial assignments b=1, g=0, f=1

we get a conflict on cube no and immediately conclude

that pqr is an implicant of D.

 5. Our approach versus storing pervasive
cubes

In [5],[10] the problem of multiple tautology checks
performed on a set of "similar" DNFs D1,…,Dn was
addressed. The DNFs are similar in the sense that they
share a substantial set of cubes. In [10] a technique of
storing "pervasive" cubes was introduced. Let D* be the
set of cubes shared by all the DNFs to be tautology
checked. A cube C is pervasive if it is an implicant of
DNF D*. Since D* is contained in every DNF Di then

obviously C is an implicant of Di as well. So storing a
pervasive cube is useful because it is an implicant of all
the DNFs and can be employed in the following tautology
checks.

As it was mentioned in the introduction the problem of
checking if a cube C is an implicant of F reduces to the
tautology check of the cofactor FC . So checking if cubes
from the set S={ C1,…,Cn} are implicants of a DNF D
reduces to multiple tautology checks performed on the set
of cofactors DC 1

,.., DCn . Then the technique of storing

pervasive cubes can be applied to reduce the overall time
of tautology checks. However there are at least three
reasons why our approach is superior when applied to the
problem of multiple implication checks.

1) Our approach is applicable even when the set S of
cubes to perform implication check on is not
known beforehand. In this case the set of cofactors
DC 1

,.., DCn is not known beforehand either and

so the set D* of shared cubes cannot be computed.
2) Even if set S is specified before starting

implication checks it is quite possible that the set
D* of cubes shared by the cofactor DNFs is very
small. (It can be actually empty if in cubes of S
either literal of each variable of DNF D appears at
least once because then for each cube C of D
there is a cofactor DNF from which C is
discarded.)

Table 1. Results on random functions

Basic DNF
D

Set of
cubes S

Thresh.
F=0,1,2

Threshold
F=3

Threshold
F=4

Threshold
F=5

Threshold
F=6

V C L I Tree T Tree %T New Tree %T New Tree %T New Tree %T New

1000 824 183 200 152 93 126 45 31 965 29 24 1514 15 16 1863

2000 1641 183 407 96 75 119 21 23 100 4 14 1 5 11 7

3000 2446 182 610 78 66 71 16 19 11 4 10 2 5 10 10

4000 3249 183 814 43 56 256 17 17 24 4 9 0 6 10 7

1 100 410

5000 4042 182 1012 12 47 148 16 16 14 4 8 2 6 9 7

1000 273 201 192 137 73 88 76 48 807 45 31 1906 34 26 2423

2000 544 201 404 126 67 24 59 44 101 26 24 343 16 19 383

3000 823 205 602 110 64 27 59 43 68 23 22 194 16 17 282

4000 1112 196 796 110 62 33 49 41 92 20 20 157 14 16 212

2 100 410

5000 1404 202 987 91 60 147 39 38 45 18 19 165 14 16 167

1000 449 235 263 175 79 118 57 31 997 37 20 2036 31 20 2830

2000 912 230 524 125 69 161 27 22 317 19 15 267 12 14 311

3000 1358 239 785 125 65 176 25 18 182 19 14 188 11 12 201

4000 1812 228 1055 121 63 90 25 17 154 18 13 167 10 11 90

3 100 410

5000 2252 288 1313 114 62 85 24 16 134 18 13 139 10 11 64

3) Storing only cubes which are implicants of D* is
unnecessarily restrictive. Indeed, suppose that set
S consists just of two cubes C1=abc and C2=xyz.
Then the set D* of cubes shared by the cofactors
DC 1

, DC2 consists of all the cubes of D that don’t

contain (positive and negative) literals of variables
a,b,c,x,y,z. However it is not hard to show that
using cubes of D containing, say, literal b our

algorithm may obtain a cube C* (having literal b
and not having literals a,c) which is an implicant
of D and is not an implicant of C1. Cube C* may
turn to be useful when checking if C2 is an
implicant of D, for example, in branch b=1 if b is
chosen as a branching variable (and in many other
cases).

 6. Experimental results

In our experiments we used a conflict analysis based
algorithm which employs a number of known techniques
like the one of using deduced assignments in conflict
recipes [7] and the procedure of dominator identification
[9]. However it doesn’t use the concept of decision levels
[9] to make search tree size computation easier. In each
experiment a basic DNF D and a set S of cubes, to be
checked if they are implicants, are given. After processing
a cube Ci ∈ S all the found implicants of D whose size is
less than a threshold value F are added to D. (The size of
a cube is equal to the number of its literals.) If F equals 0
no implicants are added to D which corresponds to
performing implication checks separately. The algorithm
is implemented in Visual C++ 4.0 for Windows 95. The
experiments were run on a computer with AMD-230 CPU
and 32 Mbytes of RAM.

In table 1 results on random DNF formulas are given.
We consider three basic DNFs that are hard non-
tautologies [6],[12]. Each DNF consists of 3-literal cubes
and the number of cubes in it is 4.1 times the number of
variables. For all three DNFs we use the same set S of
5000 cubes to perform implication checks, each cube
having 3 literals. The basic DNFs are selected so as to
cover all three possible cases of splitting S into implicants
and non-implicants: the majority of implicants (first DNF),
the majority of non-implicants (second DNF), equal shares
of implicants and non-implicants (third DNF). In table 1
results after every 1000 implication checks are given.

Columns V and C specify the number of variables and
cubes in the basic DNF. Columns L and I specify the
number of checked cubes and the number of implicants
among them. Column Tree gives the average tree size (the
number of nodes) over every processed set of 1000 cubes.
Column New gives the number of implicants added to D.
Column T specifies the overall time (in seconds) of 1000
implication checks for threshold value F=0 (independent
checks). Column %T specifies the ratio (percent) of the
overall time taken by 1000 checks for a non-zero value of
F and for F=0 .

It is not hard to see that for thresholds F=4,5,6 average
tree size Tree and overall runtime decrease every 1000
cubes as does the number New of added implicants. For

example for the first basic DNF, processing 1000 cubes is
sufficient to reduce the average tree size from 182 nodes
for F=0 to 4 nodes for threshold F=5 for all the next
implication checks. Besides, the process of learning is
nearly complete after processing first 1000 cubes, since
only 5 new implicants are added to the basic DNF.

In table 2 results on some DNFs that are
representatives of DIMACS suite classes [3] are given.
Column Type specifies the DNF type: B denotes the basic
DNF and S means that the cubes of this DNF are checked
if they are implicants of B. Column N gives the total
number of nodes in the search trees built for all the
implication checks performed for cubes of S. Column %N
specifies the ratio of the total number of nodes for a non-
zero value of F and for F=0. Column %T gives the ratio of
the overall time taken by all checks for a non-zero value of
F and for F=0.

It should be mentioned that all the basic DNFs from
table 2 are tautologies, which means that all cubes of S are
implicants of B. One can see from the table that for
example for threshold F=5 the average tree size is just
3.3% of the tree size for F=0 and for threshold F=4 the
average total time of checks is just 2.1% of the time for
F=0.

In table 3 results for DNFs from the DIMACS class
Aim200 are given. Here the basic DNFs are not
tautologies. Class Aim200 consists of 6 subclasses:
Aim200-1-6yes, Aim200-2-0yes, Aim200-3-4yes,
Aim200-6-0yes, Aim200-1-6no, Aim200-2-0no. The first
four subclasses are non-tautologies and DNFs of the
subclasses are used as basic DNFs B. The DNFs of the last
two subclasses that are tautologies are used to represent
sets of cubes S. Each of the six subclasses contains 4
DNFs. So in total we have 16 multiple implication checks
problems for each pair (DNF B from a class of non-
tautologies, DNF S from a class of tautologies). Table 3
gives average results for each set of 16 problems. Column
Ia specifies the average number of implicants of B in set S
for each set of 16 problems. Column NIa specifies the
average number of non-implicants in set S for each set of
16 problems. In contrast to columns with the same name
from previous tables columns N, T, C, %N, %T, New are

averaged over sets of 16 problems.

Table 2. Results on DIMACS representatives of different classes

Name V C Type Threshold
F=0,1

Threshold
F=2

Threshold
F=3

Threshold
F=4

Threshold
F=5

N T %N %T New %N %T New %N %T New %N %T New
Dubois20
Pret60-25

60
60

160
160

B
S

40582 7 8 6.7 15 6.1 6.3 77 3.5 5.1 107 2.2 4.3 155

Pret60-25
Dubois20

60
60

160
160

B
S

65220 10 100 100 0 3.6 4.8 74 1.9 2.2 144 1.9 4.5 185

Pret150-25
Dubois50

150
150

400
400

B
S

1256178 197 100 100 0 0.47 0.56 174 0.43 0.64 376 0.42 0.61 393

Dubois50
Pret150-25

150
150

400
400

B
S

827048 277 3.6 2.5 15 2.4 1.4 129 0.6 0.66 582 0.47 0.7 582

Dubois24
Hole8

72
72

297
192

B
S

125274 23 2.1 1.7 21 3.6 4.0 70 1.7 2.7 105 1.4 2.4 173

Hole8
Dubois24

72
72

192
297

B
S

53409 97 18 13 44 16 9.7 55 16 10 56 15.6 10 61

Average 187327 102 39 37 16 5.4 4.5 83 4 2.1 228 3.3 2.3 258

Table 3. Results on DIMACS class Aim200
1- set of cubes S from subclass Aim200-1-6no; 2- set of cubes S from subclass Aim200-2-0no

Set of
cubes S

Threshold
F=0

Threshold
F=1

Threshold
F=2

Threshold
F=3

Threshold
F=4

Basic DNF
subclass

Ia NIa N T C %N % T New %N % T New %N % T New %N % T New

Aim200-1-6yes 279 40 43234 13 318 43 40 19 6,8 8,7 127 3,6 6,7 199 3,9 7,2 242

Aim200-2-0yes 282 37 61589 26 397 21 17 30 4,7 5,3 136 2,7 4,2 245 2,9 4,6 289

Aim200-3-4yes 278 41 56729 72 678 18 12 35 3,6 2,6 127 2,6 2,0 205 2,8 2,1 254

1

Aim200-6-0yes 279 40 48025 97 1185 11 6,8 9 3,7 2,1 80 3,5 2,2 135 3,6 2,5 194

Aim200-1-6yes 347 51 53196 16 318 39 37 21 7,6 9,1 145 3,6 6,4 243 3,6 7,0 273

Aim200-2-0yes 348 50 77050 33 397 18 16 31 4,3 4,8 148 2,6 4,1 269 2,7 3,5 301

Aim200-3-4yes 350 48 71672 94 678 17 13 31 3,1 2,4 98 2,6 1,9 214 2,8 2,1 271

2

Aim200-6-0yes 349 49 58947 119 1185 17 14 10 3,5 2,0 89 3,4 2,1 132 2,9 2,0 194

Average 314 45 58805 59 645 23 20 23 4,7 4,6 24 3,1 3,7 180 3,2 3,9 252

As one can see from table 3 for threshold F=3 the
average tree size is only 3.1% of the tree size for F=0 and
time is 3.7% and on average 180 implicants are added to
basic DNFs.

In table 4 the results for checking consistency of
assignments to intermediate variables of circuits are given.
Given a circuit N, the basic DNF D here is a DNF
specifying all consistent (observable) assignments to
variables of N. To check if a set of assignments to a few
variables of N is observable one must check if the cube
specified by the assignments is an implicant of D. In each
experiment 5000 cubes of 3-literals were randomly

generated, each cube specifying a combination of
assignments to 3 intermediate variables of N.

Columns V and C specify the number of variables and
cubes in the basic DNF D. Column Tree gives the average
tree size for F=0. The next 3 columns specify results for
the threshold (indicated in column F’) for which the
greatest average tree size reduction is achieved. Column
Tree’ gives the average tree size over the last 1000
implication checks and New’ is the total number of
implicants added to D (after all 5000 checks). It should be
noted that though the average tree size is computed only
for the last 1000 checks, the learning process for threshold

F’ is nearly complete after a fraction of the total 5000
checks which doesn’t exceed a few hundred checks.

The last 3 columns give results for the threshold
(specified in column F") for which the greatest runtime

reduction is achieved. Column %T" specifies the ratio
(percent) of the overall runtime for threshold values F=0
and F". Column New" gives the total number of implicants
added to the basic DNF D.

Table 4. Results for circuit DNFs

Basic DNF D F=0 Best tree minimization
threshold

Best time minimization
threshold

Circuit V C Tree F’ Tree’ New’ F" %T" New"
Cht 155 697 450 2 2.6 20 5 2.6 175
Lal 187 679 119 2 2.8 43 1 2.6 12
b9 296 795 271 3 2.9 159 3 2.9 159
Example2 331 1311 436 2 2.7 190 3 1.1 206
Term 338 1791 702 5 2.9 581 5 0.9 581
Count 145 443 117 4 2.4 104 3 4.0 83
9symml 97 936 39 4 2.4 450 4 9.8 450
i3 279 557 274 2 7 137 2 4.1 137
i4 387 893 1750 2 28 68 2 2.0 61
Sct 115 513 48 4 2.3 90 2 11 24
ttt2 180 1007 278 5 2.6 453 5 2.0 453
Apex7 204 911 911 2 2.6 139 5 0.8 401
Comp 145 453 188 5 2.5 238 5 2.5 238
Cordic 229 601 158 4 2.2 286 5 1.3 220
Average 221 828 410 3.3 4.7 211 3.6 2.7 229

 7. Conclusions

We consider the problem of checking if cubes C1,..,Cn

are implicants of a DNF D and suggest an efficient
procedure of "on-the-fly" learning. We introduce a
technique that allows one during the implication check of
Ci to deduce cubes that are implicants of D but not
implicants of Ci . The technique gives a "cheap" and
effective way of reducing the complexity of subsequent
implication checks.

One of the possible directions for future research is
studying how order in which cubes C1,..,Cn are processed
affects the overall runtime and finding heuristics allowing
one to select best orders.

References

[1] R.K.Brayton et. al. Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers, 1984.

[2] Burch, J.R.; Singhal, V. Tight integration of combinational
verification methods. Computer-Aided Design, 1998.
ICCAD 98. Digest of Technical Papers. , 1998, Page(s):
570 -576

[3] DIMACS Challenge benchmarks in ftp://Dimacs.
Rutgers.EDU/pub/challenge/sat/benchmarks/cnf.UCSC
benchmarks in/pab/challenge /sat /contributed /UCSC.

[4] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, 1979.

[5] J.Kim,J.Whittemore,K.Sakallah. Improving SAT: Stack-
Based Incremental Satisfiability. Notes of the International
Workshop on Logic Synthesis,IWLS-2000.

[6] Mitchel D. et. al. Hard and easy distibutions of SAT
problems. Proceedings of the 10th National Conference on
Artificial Intelligence (AAAI-92), pp.459-465.

[7] Novikov Y. Using intermediate conflict recipes for solving
satisfiability problem. Proceedings of the Third
International Conference on computer-aided design of
discrete devices CADDD’99, Minsk 1999, pp.148-153.

[8] Savoj, H.; Brayton, R.K. Observability relations and
observability don’t cares. Computer- Aided Design, 1991.
ICCAD-91. Digest of Technical Papers., 1991, pp. 518 -
521

[9] Silva J.P.M, Sakallah K.A. GRASP - a new search
algorithm for satisfiability. ICCAD-96.

[10] Silva J.P.M, Sakallah K.A. Robust search algorithms for
test pattern generation. Fault-tolerant computing,FTCS-27.
Digest of papers,1997,pp.152-161.

[11] Stableman R.M., Susan G.J. Forward Reasoning and
Dependency-Directed Backtracking. A system for
Computer-Aided Circuit Analysis. Artificial intelligence,
vol. 9, pp. 135-196, October 1977.

[12] Utkin A.A. Experimental Investigation of Satisfiability
Algorithms. Avtomatika i Vichislitelnaya Technika, No. 6,
pp.66-74, 1990 (in Russian).

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

