
Combinational Equivalence Checking using Boolean Satisfiability and
Binary Decision Diagrams

Sherief Reda Ashraf Salem
 Computer & Systems Eng. Dept. Mentor Graphics Egypt

 Ain Shams University Cairo, Egypt
 Cairo, Egypt

Abstract
Most recent combinational equivalence checking
techniques are based on exploiting circuit similarity. In
this paper, we focus on circuits with no internal
equivalent nodes or after internal equivalent nodes have
been identified and merged. We present a new technique
integrating Boolean Satisfiability and Binary Decision
Diagrams. The proposed approach is capable of solving
verification instances that neither of both techniques was
capable to solve. The efficiency of the proposed approach
is shown through its application on hard to prove
industrial circuits and the ISCAS’85 benchmark circuits.

1 Introduction

With the widespread use of synthesis and optimization
tools, the Combinational Equivalence Checking problem
(CEC) is considered to be important from both practical
and theoretical point of views. Though the problem is NP-
complete, most of verification instances can be solved in
reasonable space and time resources.
 Most recent CEC techniques focus on identifying
internal equivalent nodes in order to simplify the miter1

circuit [1], [2], [3], [4], [5]. Even though these approaches
have shown to be quite successful, they often fail due to
the following reasons: First, the two circuits under
verification might have no structural similarity, i.e.
verifying a Wallace multiplier against a functionally
equivalent Booth multiplier. Second, due to memory or
time restrictions the algorithm fails to identify all the
internal equivalent signals. In case of failure, it is
suggested that the problem should be forwarded to other
BDD or ATPG engines to solve [5]. Another recent
approach is Boolean Satisfiability (SAT). SAT has been
successfully used as an efficient complete method for

1 Given the two circuits under verification, the miter circuit is
constructed by joining the two circuits primary inputs, and feeding their
primary output into a 2-input XOR gate.

solving ATPG and equivalence checking problems [6],
[7]. However, the problem is that it sometimes requires
tremendous amount of time and backtracks to prove the
circuit.
 In this paper, we present a new combinational
equivalence checking method. The technique addresses
circuits with no internal equivalences or after the internal
equivalences had been identified and merged. In our
approach, the miter circuit is partitioned and the SAT
formula is built for a partition of the circuit and BDDs are
built for each cutpoint. Using BDDs, we make sure that
any satisfying assignment for the SAT formula is also
satisfying for the whole circuit. In addition, through
simulation and functional learning [8] we are able to
extract implications among the cutpoints and add these
implications to the SAT formula; thus, reducing the time
and backtracks needed to solve the problem. The novelty
of the new technique is based on the new integration
method for SAT and BDDs, and the use of functional
learning to reduce the decision tree of the SAT branch &
bound procedure. We show the efficiency of our approach
by verifying the ISCAS’85 benchmark circuits and a
number of hard to prove industrial circuits.
 The organization of the paper is as follows: in section 2
a quick review of the previous related work in the
literature is presented. Section 3 presents our methodology
for the integration of Binary Decision Diagrams and
Boolean Satisfiability. Experimental results of the
algorithm are presented in section 4, and finally section 5
presents the concluding remarks.

2 Previous Work

CEC techniques can generally be classified into three
categories: functional, ATPG and incremental approaches.
Functional approaches are based on constructing the
Binary Decision Diagrams (BDDs) [9] of the two circuits
under verification. The circuits are equivalent if and only
if their corresponding BDDs are isomorphic. Since the
BDD size is sensitive to its variable ordering; several
methods were proposed to represent minimum size BDDs

for the circuit domain [10], [11]; however, there are
classes of the circuits that do not have good variable
ordering [9].
 Automatic Test Patten Generation (ATPG) [12]
techniques represent another alternative for solving the
CEC problem. ATPG approaches prove the equivalence of
the two circuits under verification by proving that the
stuck-at-0 is a redundant fault for the their miter output.
Recently, Boolean Satisfiability (SAT) has enjoyed a
widespread as an efficient ATPG technique [6], [7]. SAT
based methods construct the Conjunctive Normal Form
formula of the miter circuit and find a satisfying
assignment for it using the branch & bound procedure.
 Incremental approaches are based on reducing the miter
circuit through the identification of Internal Equivalent
Pairs (IEP) of the circuit nodes. Berman and Trevillyan
[1] were the first to propose such approach; however, their
method suffered from the problem of false negatives.
Reddy et al. [4] suggested using recursive learning to
identify IEP and used ATPG techniques to eliminate false
negatives. Brand [2] suggested using ATPG techniques
for identifying IEPs under the observability don’t care set
and substituting one node by the other in the miter circuit
and thus simplifying it. To eliminate false negatives,
Matsunga [3] suggested composing the cutpoints by their
incoming functions using BDDs. Kuehlmann and Krohm
[5] used a BDD hash table to identify equivalent nodes
and suggested building multiple BDDs originating from
different cutsets for the same node to decrease the
likelihood of false negatives. They also suggested the use
of different verification engines as filters where the circuit
passes from one filter to the other until it is solved.
Functional learning was proposed by [8] in order to
extract internal equivalences and implications among the
internal circuit nodes.
 Recently, a number of SAT+BDD approaches were
proposed to solve the problem. Gupta and Ashar [13]
integrated SAT and BDDs by partitioning the miter
circuit. A single BDD is used to capture the partition of
the circuit near the miter output and SAT clauses to
capture the rest of the circuit. They proposed the early
bounding method to avoid enumerating the solutions at
the cutset nodes between the two partitions. Also, SAT
and BDDs were integrated in the work of [14]. Their
approach is based on identifying IEP using a BDD
composition engine to eliminate the false negative

problem. However, in order to overcome of a real
negative; they suggested representing the circuit by a root
BDD in terms of variables representing the primary inputs
and cutpoints variables, and BDDs representing the
characteristic function of each cutpoint. They proposed
using a randomized local search SAT algorithm to find a
satisfying assignment that is consistent for all the BDDs.

3 Integrating SAT and BDDs

Our strategy for solving the verification problem starts by
partitioning the miter circuit into two partitions where the
two partitions share the cutset nodes. We refer to the
partition near the miter output as Co and other partition by
CI as illustrated in Figure 1. The SAT formula is built for
the Co partition and the BDD of every cutset node is built.
It should be noted that the partition CI acts as a filter that
allows the occurring of only certain patterns at the cutset
[15]. Let us refer to the set of these patterns by the symbol
π. Also, let us refer to the set of satisfying assignments to
the SAT formula of partition Co by η. Clearly, to find a
pattern at the primary inputs that satisfies the miter output,
the resultant set of the intersection of π and η should not
be NULL; i.e., η ∩ π ≠ ∅.
 A naive approach to find such a satisfying pattern for
the miter output is to explicitly enumerate every satisfying
pattern for the SAT formula and to check its consistency
along the cutset. To check consistency, the corresponding
on-set or off-set of the cutset nodes BDDs should be
intersected. If the result of the intersection is a non-NULL
BDD, this means that there exists a pattern or more at the
primary inputs that would satisfy the miter output. Such
patterns could be enumerated by tracing the paths of the
resultant BDD to the leaf node 1. Clearly, enumerating
the satisfying patterns of the SAT formula and checking
their consistency is prohibitively expensive. Instead of
testing the consistency of all satisfying patterns of the
SAT formula, the following technique can greatly reduce
the time needed to find a satisfying assignment.
 Let us assume that the BDD β is initialized to the
identity BDD 1, and that every cutset node ni has the
corresponding BDD βni. Our method is based on the
observation that whenever one of the cutset nodes is
assigned in the SAT branch & bound procedure, its BDD
should be intersected with β, then β is assigned the new
resultant BDD. Thus, if at any time β reduces to NULL,
we immediately conclude a contradiction and
consequently backtrack. Let us consider an example.

Example 1 Suppose that the cutset node n3 is assigned
the value FALSE. Immediately, we re-calculate β as
follows: β = β ∩ ¬β n3. Clearly, β represents the resultant
intersection BDD of the assigned cutset nodes so far.

Miter
output

SATPrimary
Inputs

BDDs for the
cutset nodes

Figure 1: Miter Circuit partitioning

CI

Co

 Figure 2 shows the modified branch & bound procedure.
Since a contradiction could be detected as early as
possible, the proposed approach saves the time wasted in
the fruitless enumerating of satisfying assignments of the
SAT formula.
 The proposed approach could be further enhanced by
noticing an important observation: When a NULL BDD
occurs, it is not known which assignments caused the
conflict. Let us consider the following example.

Example 2 Suppose that we have a cutset of five nodes
{n2, n5, n3, n7, n9} and that the following implications exist
between the cutset nodes, n9 implies n2 (n9 → n2) and ¬n9

→ ¬n5. Assume that during branch & bound the following
cutset nodes have been assigned in the following order n2

= FALSE, n5 = TRUE, n3 = TRUE, n7 = TRUE. So far, β is
not NULL. However, with the assignment of a new cutset
node n9 = TRUE, β reduces to NULL. With the earlier
proposed approach, we do not know what caused the
conflict with the last assignment. Clearly, a mindless
branch & bound will keep backtracking on n9 then n7 and
n3, until it recognizes that n5 is the source of this problem.

 From the previous example, we conclude that a better
approach is to analyze the implications among the cutset
nodes before the branch & bound procedure starts and add
these implications to the SAT formula. More specifically,
after the BDDs of the cutset nodes are built, we can use
them to deduce such implications (functional learning

[8]). For example, if ¬βn9 +β n2 = 1, the implication n9 →
n2 is deduced and it is added to the SAT formula. Thus, an
implication extraction phase precedes the branch & bound
procedure to deduce all implications among cutset nodes.
Since there are four kinds of implications to consider
between every pair of cutset nodes, this phase might take
some time. In order to reduce the time needed, random bit
parallel simulation is used to deduce some of the
allowable logic values at the cutset. Analyzing the
simulation results has two consequences: First, we can
quickly abandon pairs where no implication can be
deduced from simulation results. Second, for the rest of
the pairs, we can determine what kind of implication
might exist. Some optimizations could be made in this
phase. For example, if we learned that n3 → n4 and that n2

→ n3. There is no need to perform the calculation ¬βn2 +β
n4. We can immediately conclude by transitivity that n2 →
n4.

 Figure 3 represents an overall view of the proposed
approach. At the start, we try to build the BDD of the
miter output by advancing through the cutset levels in a
breadth first manner from the primary inputs to the miter
output. If at anytime we reach the miter output at level imax

without exceeding a certain BDD size limit, the circuit is
proved. However, suppose that at level i +1 the BDD
exceeded the size LIMIT, so cut i is retained and the SAT
formula is built for the rest of the circuit. Random bit
parallel simulation is used to detect possible implications
among the cutset nodes. Using BDDs, the extract
implications phase verifies the implications among cutset
nodes and adds the implications to the SAT formula. After
extraction of the implications, the integrated branch &
bound procedure is invoked to prove the circuit. The
choice of the size LIMIT is important because it affects the
performance of the implication extraction phase and the
branch & bound. Our choice criteria is purely functional
and by performing experiments on various circuits, we
have found that imposing a LIMIT of about 15k nodes on
the total number of nodes in the unique table of the BDD
manager produces good results.

// Top level view of the proposed approach
do
 build BDDs in breadth first for level i nodes;
 i = i + 1;
while (i <= imax && total_bdd_node_size < LIMIT)
if i = imax then circuit proved using BDDs.
else
 - Build SAT formula for the rest of circuit.
 - Use random bit parallel simulation to build list of

candidate implications along the cutset nodes.
 - Verify the extracted implications from the previous

step using the BDDs of the cutset nodes.
- Add calculated implications to the SAT formula.
- Start integrated branch and bound procedure.

Figure 3: A top level view of the proposed approach

bound (sat_formula ϕ, literal v, BDD β)
begin
 if v ∈ S then
 begin
 if (v == TRUE) then β = β ∩ BDD(v);
 else β = β ∩ ¬BDD(v);
 if (β == zero_bdd) then return FALSE;
 end
 result = assign v in ϕ;
 if (result == FALSE) then return FALSE;
 result = process all implications of v;
 return result;
end

branch(sat_formula ϕ, BDD β)
begin
 choose literal v to split on;
 if v = NULL then return true;
 β_backup = β;
 if bound(ϕ, v, β) then
 if branch(ϕ, β) then return true;
 undo v assignment;
 β = β_backup;
 if assign(ϕ, ¬v, β) then
 if branch(ϕ, β) then return true;
 return false;
end

Figure 2: The modified branch & bound
procedure

4 Experimental Results

Our verification framework is implemented in C, using
TEGUS [7] as a SAT solver, and the Colorado University
CUDD BDD package [17] using a Sun Ultra 10 with 256
MB memory. In order to examine the efficiency of the
proposed approach, we used it to verify the ISCAS-85
benchmark circuits against their both non-redundant
versions and against their optimized versions by SIS
script.rugged [18]. We also tested our methodology by
proving a number of large industrial circuits. In our
experiments, we have used the Iterated Global
Implications (IGI) engine proposed in [7] as a
preprocessing step before the start of our proposed
approach. The IGI engine proved helpful in proving
circuit outputs that are easily solvable by SAT.
 Table 1 illustrates the verification time needed to verify
the ISCAS-85 circuits against their non-redundant
versions and their optimized versions by SIS
script.rugged. Column 1 shows the miter circuit name.
Column 2 shows the number of mitered outputs in the
miter circuit. Column 3 shows the number of outputs
proved by the IGI engine. Column 4 shows the number of
outputs proved by the BDD engine, that is the BDD
construction method managed to reach the miter output
without exceeding the maximum BDD size limit. Column
5 illustrates the number of outputs solved by using the
integrated proposed method. Column 6 shows the number
of unsolved outputs. Column 7 shows the total verification
time needed. Column 8 to 12 of the table have the same
descriptions as those from 3 to 7 but this time for
verification of the circuit against its optimized version by
script.rugged.
 From the table of results, one verification instance
concerns us and needs further illumination. Without
identification of internal equivalences, the verification of
the c6288 (a 16x16 bit multiplier) against its optimized
version is a hard verification problem because neither
SAT nor BDD techniques are capable of proving further
than the 10th output. To the best of our knowledge, we are
the first to prove the whole c6288 against its optimized
version without relying on the identification of the internal

correspondences.
 In a second series of experiments, we consider large
industrial circuits. These circuits were presented to
Mentor Graphics from different customers. A modified
version of these circuits with several thousand inputs and
outputs, and up to nearly 100,000 gates represent an ideal
benchmark for our approach for three reasons: First, we
were given the miter version of the circuits under
verification. Second, a substantial proportion of the
circuits internal equivalent pairs had already been
identified and merged. Third, in each circuit there are
many outputs where BDDs and SAT fail to prove. Thus,
these circuits represent an ideal case study for our
approach. Table 2 illustrates the time needed to prove
these circuits. Column 1 shows the miter circuit name.
Columns 2, 3 and 4 give the number of primary inputs,
primary outputs, and gates respectively. Column 5 gives
the number of outputs solved by the IGI SAT engine.
Column 6 gives the number of outputs solved by the BDD
engine before the size limit is reached. Column 7 gives the
number of outputs solved by the proposed integrated SAT
BDD engine. Column 8 gives the number of unsolved
outputs. Column 9 gives the total time needed to prove the
circuit. From the table of results, we conclude that the
proposed approach managed to prove the hardest outputs
in the industrial circuits since neither SAT nor BDDs were
capable of solving them. It is also important to note that
even if the BDD or SAT engine were given tremendous
amount of memory and time, they are still incapable of
solving most of the outputs proved by our approach.

5 Conclusion

In this paper, we presented a new approach for the
combinational equivalence checking problem. While most
of the existing techniques in the literature rely on proving
the equivalence of circuits using internal equivalences, the
presented technique address circuits with no internal
equivalences or circuits where internal equivalences have
been identified and the merged. The contribution of the
paper is in the new integration method for SAT and
BDDs, and the use of functional learning to reduce the

Verification against Non Redundant version Verification against Optimized versionMiter
Circuit1

#
Outputs2

by IGI
SAT3

by
BDDs4

by
SAT+BDD

5

Unsolved
outputs6

Total Time
(seconds) 7

by IGI
SAT8

by BDDs9 # by SAT
+BDD10

Unsolved
outputs11

Total Time
(seconds) 12

C0432 7 7 0 0 0 0.65 0 7 0 0 1.47

C0499 32 32 0 0 0 1.77 0 32 0 0 3.6

C0880 26 26 0 0 0 0.19 15 11 0 0 2.72

C1355 32 32 0 0 0 3.16 0 32 0 0 6.95

C1908 25 25 0 0 0 4.27 0 25 0 0 10.2

C3540 22 11 11 0 0 87.2 3 19 0 0 72.9

C5315 123 117 5 0 0 22.4 61 62 0 0 8.67

C6288 32 32 0 0 0 61.2 4 6 22 0 2582

C7552 108 107 1 0 0 16.7 82 26 0 0 31.8

Table 1: Results on ISCAS’85 benchmark circuits

search tree of the SAT branch & bound procedure. The
efficiency of the checker has been shown through its
application on the ISCAS’85 benchmark circuits and hard
to prove industrial circuits.

References

[1] C. Leonard Berman, Louise H. Trevillyan. “Functional
Comparison of Logic Circuits for VLSI Circuits,” In
Proceedings of International Conference on Computer-aided
Design, Nov. 1989.
[2] D. Brand, “Verification of Large Synthesized Designs,” In
Proceedings of International Conference on Computer-aided
Design, 1993.
[3] Y. Matsunaga, “An Efficient Equivalence Checker for
Combinational Circuits,” 33rd IEEE/ACM Design Automation
Conference, 1996.
[4] S. M. Reddy, W. Kunz, D. K. Pradhan, “Novel Verification
Framework combining Structural and OBDD Methods in a
Synthesis Environment,” 32nd ACM/IEEE Design Automation
Conference, June 1995.
[5] A. Kuehlmann and F. Krohm, “Equivalence Checking Using
Cuts an Heaps,” In Proc. of 34th ACM/IEEE Design Automation
Conference, 1997.
[6] T. Larrabee, “Test Pattern generation Using Boolean
Satisfiability,” IEEE Trans. on Computer Aided Design, Vol. 11,
No. 1, January 1992.
[7] P. Stephan, Robert K. Brayton and Alberto L. Sangiovanni-
Vincentelli, “Combinational Test generation Using Boolean
Satisfiability,” IEEE Trans. Computer Aided-Design of
Integrated Circuits and Systems, Vol. 15, No. 9, September
1996.
[8] J. Jain, R. Mukherjee, M. Fujita, “Advanced Verification
techniques based on learning,” 32nd ACM/IEEE Design
Automation Conference, June 1995.
[9] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. on Computers, Vol. C-35,
No. 8, August 1986.
[10] S. Malik, A. Wang, R. Brayton, A. Sangiovanni-Vincentelli,
“Logic verification using Binary Decision Diagrams in a Logic
Synthesis Environment,” Int. Conf. On Computer Aided
Design, 1988.
[11] R. Rudell, “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams,” In Proc. of Int. Conf. On Computer Aided
Design, 1993.
[12] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, 1990.
[13] A. Gupta and P. Ashar, “Integrating Boolean Satisfiability
Checker and BDDs for Combinational equivalence Checking,”
In Proc. Intl. Conf. On VLSI Design, Chennai, India 1998.

[14] J. Burch, V. Singhal. “Tight Integration of Combinational
Verification Methods,” International Conference on Computer
Aided Design, 1998.
[15] E. Cenry and C. Mauras, “Tautology Checking using cross-
controllability and cross-observability relations,” In Proc. of
IEEE International Conference on Computer Aided Design,
1990.
[16] M. Schulz, E. Trischler and T. Sarfert, “SOCRATES: A
Highly Efficient Automatic Test pattern Generation System,”
IEEE Trans. on Computer Aided Design, Vol. 7, No. 1, January
1988.
[17] F. Somenzi, CUDD: Colorado University Decision Diagram
Package. ftp://vlsi.colorado.edu/pub.
[18] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. Sangiovanni-Vincentelli. “Sequential circuit
design synthesis and optimization,” In Proc. Int. Conf. on
Computer Design, 1992.

Circuit
name1

PI2 # PO3 # Gates4 # by IGI
SAT5

by BDDs6 # by SAT +
BDDs7

Unsolved8 Total Time9

(seconds)

miter01 2381 29 45214 0 2 27 0 2398

miter02 866 925 26215 508 192 225 0 35941

miter03 444 403 12057 129 238 36 0 5818
miter04 4231 2553 93199 1254 67 1232 0 78838

Table 2: Industrial circuits results

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

