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Abstract
A deterministic software-based self-testing methodology
for processor cores is introduced that efficiently tests the
processor datapath modules without any modification of
the processor structure. It provides a guaranteed high
fault coverage without repetitive fault simulation
experiments which is necessary in pseudorandom
software-based processor self-testing approaches. Test
generation and output analysis are performed by utilizing
the processor functional modules like accumulators
(arithmetic part of ALU) and shifters (if they exist)
through processor instructions. No extra hardware is
required and there is no performance degradation.

1. INTRODUCTION

Complex and highly functional Systems-on-Chip (SOCs)
have become a reality due to recent advances of deep sub-
micron technology. SOC designs are based on embedded
cores: reusable complex functional blocks also called
virtual components or intellectual property (IP) blocks.
The majority of SOC designs are built around embedded
RISC processor cores or digital signal processor cores that
provide the SOC with significant processing capabilities.
In addition, special purpose cores, for functions such as
graphics, audio/video, are embedded processors, using
microcode implemented in predefined macros (ROM,
PLA) or using code stored in embedded RAM blocks.
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Figure 1: Embedded Processor Datapath

A typical structure of an embedded processor datapath is
shown in Figure 1. Arithmetic and logic operations in the
datapath are implemented by functional modules like
multipliers, adders/subtracters, Arithmetic Logic Units
(ALUs) and shifters. Register files store the results of the
operations while steering logic and control logic determine
the flow of data inside the datapath [1].

In an SOC design, a large number of complex arithmetic
and logic functional modules are deeply embedded in
datapaths of embedded processor cores which are further
embedded in the overall SOC. Due to this design style,
embedded processor cores have significant testability
problems. Built-In Self-Test (BIST) [2] has been shown to
be an excellent solution to these problems not only for
embedded processor cores but also for the other important
class of embedded cores i.e. memories.

The main advantage of self-testing methodologies is that
they provide actual at-speed testing of the chip which is a
very difficult target to achieve with external tester
technology due to the rapidly increasing gap between
operating frequencies of SOC designs and external tester
frequencies. Additionally, the use of self-test
methodologies drives down the overall test cost of the
SOC while it also provides better IP protection than
classical scan-based external testing techniques.

Self-test methodologies for embedded processor cores
have the advantage that they can be based on the
processor’s instruction set and thus require no hardware
and/or performance overhead in the design. This is due to
the fact that both test generation and response compaction
is performed by processor instructions without the need to
add extra self-test hardware. Such self-testing approaches
have been recently proposed in the literature [3]-[9].

The processor self-testing approaches of [3]-[9] rely on
the use of pseudorandom instruction sequences [3], [4],
pseudorandom operations and operands [5], [6], while
scan chains can be used for the application of test patterns
[7], [8]. In [9] the concept of self-test signatures is
introduced when LFSR-like pseudorandom test generation
is performed by software programs.

The efficiency of the pseudorandom software-based self-
testing approaches presented in the literature, depends
both on the internal structure of the functional modules of
the processor and the width of the processor word. For
example a 16-bit and a 32-bit ALU require different seeds
and polynomials to achieve high fault coverage in an
LFSR-based self-test methodology. When, in this case, the
pseudorandom patterns are generated by software a
different routine must be written in each case and
extensive fault simulation experiments must be performed
to measure the seed/polynomial pair efficiency.



Additionally, pseudorandom self-testing requires the
application of large number of tests to the processor core.
In the case that LFSR operation is emulated by a software
routine [9], the generation of a new pseudorandom test
pattern requires not only one instruction but at least a
bitwise XOR and a shift operation. Thus, a pseudorandom
software-based self-test approach requires a large number
of clock cycles for the execution of the self-test routines.

The alternative to pseudorandom self-testing is usually the
insertion of scan chains for the application of a test set
generated by an Automatic Test Pattern Generator
(ATPG). In the case of embedded processors this
alternative is not usually applied due to the fact that scan
insertion significantly impacts the processor performance.

In this paper we present a methodology for developing
deterministic as opposed to pseudorandom software-based
self-test routines for embedded processor cores. The self-
test routines for the processor functional modules are
based on deterministic test sets we developed in our
previous papers, as well as, in newly developed test sets.
In the case of multiplier-accumulator testing, processor
datapath functional modules like multipliers, adders, and
subtracters are efficiently tested by small deterministic test
sets based on repetitive-patterns shown in our previous
papers [10]-[13]. In this paper we present self-test routines
that generates these test-sets by utilizing existing adders
(or subtracters) instead of fixed-length (8-bit) binary
counters, proposed so far. We have proven in the past both
theoretically and experimentally that the efficiency of
these test sets does not depend either on the internal
architecture of the functional module or the width of the
datapath word. For example, the same test set of repetitive
test patterns can be used to achieve very high fault
coverage for any size of a standard array multiplier [10],
Booth encoded [11] or tree multiplier [12].  In the case of
both ALU and shifter testing, we present self-test routines
that generate new small deterministic test sets by utilizing
existing ALU and shifter performing simple arithmetic,
logic, or rotate operations.

According to our methodology, compact self-test routines
(small code size and smaller number of clock cycles for
routine execution compared to pseurorandom-based self-
testing) are derived for the processor functional modules.
Additionally, the efficiency of the proposed deterministic
self-testing routines does not need to be re-evaluated each
time the datapath width or the architecture of a functional
module of the processor changes. This flexibility of the
proposed methodology is particularly useful in our days
since soft (HDL) versions of embedded processors are
widely used after proper modifications.

The processor instructions utilized in the proposed self-
testing routines are simple, classical instructions of
register and immediate addressing types supported by any

Instruction Set Architecture of the embedded processor
cores like move, add/subtract, logical functions (AND, OR,
XOR, XNOR), multiply, compare, branch/jump with/without
conditions and with/without link.

In the case of simpler accumulator-based processor
architecture without a large set of general purpose
registers, the routines can be tailored to apply the same set
of deterministic test patterns to the processor functional
modules. Furthermore, in the case of a processor
architecture (or DSP) with more than one functional
modules of the same type (multiplier, adder, ALU, shifter)
the self-test routines can be easily tailored so that they
provide very high for coverage of all modules of the same
type. Therefore, the proposed self-test routines can be
easily executed by any processor architecture, utilizing the
respective instructions of its instruction set.

2. DETERMINISTIC PROCESSOR SELF-TESTING

In this section we present our deterministic software-based
self-testing methodology. For each individual of the
processor datapath’s functional modules or for pairs of
modules we, first, adopt a deterministic test strategy such
that no modifications of the datapath structure are
required, and then, we show the relevant assembly code
for an example processor core. The assembly code we use
in our presentation is based on [1] but similar code can be
written in any different type of embedded processor since
the set of instructions we use is met in any instruction set
architecture of contemporary processors.

2.1 Multiplier-Accumulator Testing

When a multiplier exists in the processor’s datapath,
which is the case in most recent RISC-based embedded
processors, the pair of the multiplier and accumulator
functional modules is tested together. If accumulation is
performed by the addition/subtraction operation of an
ALU then the arithmetic part of the ALU is tested with the
multiplier while the logic part of it is tested with a separate
self-testing routine as we will show in the next subsection.

We adopt the determinist test strategy described in [10],
[11], [12], for multiplier-accumulator pairs. As it was
proven theoreticaly and experimentaly in these papers
very high fault coverage is achieved for a N×M multiplier
when its operands X and Y receive a set of 4-bit repetitive
test patterns of the form:

X=XN-1 …  X1 X0=(c7 c6 c5 c4) (c7 c6 c5 c4) …  (c7 c6 c5 c4)
Y=YM-1 …  Y1 Y0=(c3 c2 c1 c0) (c3 c2 c1 c0) …  (c3 c2 c1 c0)

When operand sizes N and M are not multiples of 4, the
applied test patterns are truncated. The total number of test
patterns applied to the multiplier-accumulator pair are 256
(=28, all combinations of the 8 bits c7 c6 …  c1 c0), or in
some cases a subset of them. The achieved fault coverage
for any operand size N, M and any multiplier architecture



(carry-save array, carry-propagate array, Wallace-tree,
Booth encoded) is higher than 99% [10], [11], [12].

In our experiments for the justification of the proposed
self-test methodology, we consider unsigned long
multiplication, where the result is stored in two registers
of the register file. In the case that the deterministic self-
testing methodology is applied to fixed-width processor
datapaths (for example in an embedded DSP) solutions
like the ones presented in [6] or [13] can be used.

According to the proposed self-test methodology for the
multiplier-accumulator pair, Test Pattern Generation is
performed by the existing processor ALU which operates
in the addition mode as an accumulator (or of course by a
separate accumulator if such exists) by using two registers
R1 and R2 of the register file. The two multiplier operands
X and Y are stored in registers R1 and R2, respectively
during the execution of the self-testing routine. The
deterministic test set of 256 test vectors [10], [11], [12] is
generated by a software self-test routine as follows:

• R1 and R2 are initialized to zero.
• R1 receives 16 test vectors consisting of 4-bit

repetitive patterns from 0000 to 1111. This is done by
the addition R1=R1+R8, where R8 contains the
constant value of 4-bit repetitive pattern 0001.

• For every different test vector of R1, the R2 register
also receives the same 16 different test vectors
consisting of 4-bit repetitive patterns from 0000 to
1111. This is also done by the addition R2=R2+R8.

The result of the multiplication R1×R2 is stored in two
registers R3 and R4 of the register file where R4 holds the
most significant word of the product and R3 holds the
least significant word of the product (R4:R3 = R1 × R2).

Output data evaluation (compaction) is performed by the
ALU operating in addition mode as accumulator utilizing
two registers R5, R6. Register R6 contains the final
signature after the execution of the self-test routine. The
details of the response compaction using an accumulator is
well known that affect the compaction quality (low
aliasing). In our experiments the following sequence of
additions are performed for output data compaction with
negligible aliasing problems [6].

• Initially, R6 is set to zero.
• For every test vector of R1, R2, three additions are

performed:
R5 = R4 + R3 (the 2 words of the product are added)
R6 = R6 + R5 (add the previous signature)
R6 = R6 + 0 + carry (add the carry generated)

After performing these three additions for all 256 test
vectors the adder of the ALU (arithmetic part of the ALU)
is completely tested. This has been extensively verified for
various adder architectures in the accumulator.

The self-test code (for a 32-bit embedded processor [1])
that generates at the inputs of the multiplier and the
accumulator the deterministic test set of 256 test vectors is
the following (constants are shown in hexadecimal):

      MOV R1, 00000000 ; R1 = 0
      MOV R2, 00000000 ; R2 = 0
      MOV R6, 00000000 ; R6 = 0
      MOV R7, signature  ; declare signature
      MOV R8, 11111111 ; 4-bit incr. by 1
loop: UMUL R4,R3,R2,R1 ; multiply
      ADD R5,R4,R3 ; add product words
      ADD R6,R6,R5 ; compaction with 1’s
      ADC R6,R6,0 ; complement addition
      ADD R2,R2,R8 ; increment R2
      CMP R2, 11111110 ; R2 final value ?
      BNE loop ; branch, if not
      MOV R2, 00000000 ; R2 = 0
      ADD R1,R1,R8 ; increment R1
      CMP R1, 11111110 ; R1 final value ?
      BNE loop ; branch, if not
      CMP R6,R7 ; check signature
      BNE test_fail_routine
      JMP test_pass_routine

The fault-free signature is calculated in advance by a
simple logic simulation of the self-test code (the final
signature is the result of the accumulation of the 256
multiplication results). Also, there are two routines that
terminate the multiplier-accumulator test process. The first
routine runs when a fault has been detected
(test_fail_routine) while the latter runs when no fault has
been detected (test_pass_routine). The implementation
of these routines directly depends on how the embedded
processor core is used in the SOC and which is the general
test strategy, which is applied in the SOC as a whole.

The derived code achieves after compaction, the results
shown in the following Table for various architectures.

WORD LENGTH ARCHITECTURE FAULT COVERAGE

32 bits CSA – RCA 99.5%
32 bits CSA – CLA 99.3%
32 bits BWM – RCA 99.3%
32 bits BWM – CLA 99.2%

where CSA=carry save array multiplier, BWM=Booth
encoded tree (Wallace) multiplier, RCA=ripple-carry
adder and CLA=carry lookahead adder.

In the case of the Booth encoded Wallace multiplier R1
receives test vectors consisting of 5-bit repetitive patterns
and R2 receives test vectors consisting of 3-bit repetitive
patterns which provides the best fault coverage [12]

The self-test code has the following advantages:

• It does not depend on the functional implementation of
the multiplier and the adder (see Table above).

• It does not depend on the processor word width. We
present 32-bit experiments since this is the typical
word length today.



• It is well suited to any processor core without requiring
any modification of its datapath structure.

2.2 ALU Testing

As we mentioned earlier, the arithmetic part of the
processor’s ALU is tested with the multiplier which is the
most usual situation in embedded processor cores.

In this subsection we deal with the testability of the logic
part of the ALU taking into account two different ALU
designs which are usually met in embedded processors.

According to the first approach of the ALU design, the
logic unit that implements the logical operations is
designed separately from the adder of the ALU. The
outputs of both modules are connected to the ALU output
through a two-way multiplexer and selection between
arithmetic and logical operations is achieved by the
multiplexer select signal M [14]. In this case we can use
any adder in the ALU without restrictions. Also, we can
design a logic unit that implements the necessary logic
operations. In this paper we consider the logic unit that
implements all 16 two-operand logical operations [14].
Four function select signals S3, S2, S1, S0 specify one out
of the 16 operations. The adder of the ALU as well as the
with the one part of the multiplexer of the ALU is tested
during multiplier-accumulator testing, as we mentioned
earlier. The remaining part of the ALU, the logic unit with
the other part of the multiplexer is tested during ALU
testing presented in the self-test code of this subsection.

According to the second ALU design, the module that
implements the logical operations is designed in
conjunction with a carry lookahead adder (74x181) [14].
In this case all possible 16 logical operations are
implemented, as well as, 16 complex arithmetic
operations. The part of the ALU that implements the
addition i.e. carry lookahead generator and the sum logic
are tested during multiplier-accumulator testing. The
remaining part of the ALU, that is, modules M1, M2 that
implements the logic operations are tested during ALU
testing.

We adopt a deterministic test strategy that tests the "logic"
part of the ALU by performing the logical operations:
AND, OR, EX-OR, EX-NOR and NOT. This test strategy is
general enough and it can be applied to various ALU
designs including the two ALU designs mentioned above.
In case that the logic unit design is simpler the logical
operations EX-NOR and NOT may not be necessary.

Test pattern generation is performed by putting the four
possible combinations of values all 0's and all 1's in two
registers R1 and R2 of the register file. Also, in register
R3 we put the EX-OR of the values of R1 and R2.
Operands X and Y of the ALU are stored in registers R1
and R2, respectively. This way, a deterministic test set is
generated as follows:

• R1 and R2 receive all four possible input combinations
of all 0's and all 1's.

• R3 is the EX-OR of R1 and R2.
• For every value of R1 and R2, the following logical

operations are performed:
(a) R4 = R1 AND R2 (b) R5 = R1 OR R2 (c) R6 = R5
XOR R4 (d) R7 = R1 XOR R2 (e) R8 = R1 XNOR R2
(may not be necessary) (f) R9 = NOT R3 (may not be
necessary)
and the following comparisons are performed:
(a) R3 with R6 (b) R7 with R3 (c) R8 with R9 which
detect a possible fault.

The code (for a 32-bit embedded processor) that generates
the test vectors at the inputs of the ALU  follows:

          MOV R1, 00000000 ; R1 = 0
          MOV R2, 00000000 ; R2 = 0
          MOV R3, 00000000 ; R3 = 0
          BL subrout ; branch and link
          MOV R1, FFFFFFFF ; R1 = all 1's
          MOV R2, FFFFFFFF ; R2 = all 1's
          BL subrout ; branch and link
          MOV R1, 00000000 ; R1 = 0
          MOV R3, FFFFFFFF ; R3 = all 1's
          BL subrout ; branch and link
          MOV R1, FFFFFFFF ; R1 = all 1's
          MOV R2, 00000000 ; R2 = 0
          BL subrout ; branch and link
          JMP test_pass_routine
subrout:  AND R4,R2,R1 ; AND
          OR R5,R2,R1 ; OR
          XOR R6,R5,R4 ; EX-OR
          CMP R6,R3 ; R3 = R6 ?
          BNE test_fail_routine
          XOR R7,R1,R2 ; EX-OR
          CMP R7,R3 ; R3 = R7 ?
          BNE test_fail_routine
          XNOR R8,R1,R2 ; EX-NOR
          NOT R9,R3 ; NOT
          CMP R9,R8 ; R9 = R8 ?
          BNE test_fail_routine
          RET ; PC = link register

The self-test code of this section along with the self-test
code for the multiplier-accumulator pair achieves, the
results shown in the following Table for various
architectures of the processor ALU.

WORD LENGTH ARCHITECTURE FAULT COVERAGE

16 bits SEP – RCA 100.0%
16 bits SEP – CLA 99.9%
16 bits COM - CLA 99.9%
32 bits SEP – RCA 100.0%
32 bits SEP – CLA 99.9%
32 bits COM - CLA 99.9%

where SEP=separate arithmetic/logical part of the ALU,
COM=combined arithmetic/logical part of the ALU,
RCA=ripple-carry adder and CLA=carry lookahead adder.



No compaction is performed due to the capability of fault
detection with simple comparisons and thus there are no
aliasing problems. In the case that the processor is not
equipped with a multiplier, the arithmetic ALU part can be
tested by itself by a separate self-testing routine similar to
the one presented in the previous subsection for the
multiplier-accumulator pair.

2.3 Shifter Testing
We consider the testability of a barrel shifter that performs
the n-bits right rotate (ROR) operation. Other operations
can be tested similarly. The outputs of the shifter drive
directly the one of the two-operand inputs of the ALU [1].

We adopt a deterministic test strategy that tests the shifter
by performing the ROR operation 2n+3 times starting
from value 1, where n is the word length. We perform the
ROR operation 2n+3 times instead of 2n in order to avoid
aliasing problems. The output of the shifter is connected to
the input of the shifter through register R1 which is used
as data register. For every value of R1 two ROR
operations are carried out: 0 shift positions and 2n-1 shift
positions. Register R2 is used as a counter and contains
the number of ROR operations and thus counts from 0 to
2n+3. Register R3 is used as a control register and
contains the number of shift positions, that is, 0 or 2n-1.

The shifter itself performs test pattern generation and
output data evaluation. The respective code follows:

      MOV R1, 00000001 ; R1 = 1
      MOV R2, 00000000 ; R2 = 0
      MOV R3, 00000000 ; R3 = 0
      MOV R4, signature ; declare signature
loop: MOV R1,R1,ROR R3 ; R1 shifted by R3
      EOR R3,R3,FFFFFFFF ; R3 = NOT R3
      ADD R2,R2,00000001 ; increment R2
      CMP R2,00000043 ; R2 = 2x64 = 67 ?
      BNE loop ; branch, if not
      CMP R1,R4 ; check signature
      BNE test_fail_routine
      JMP test_pass_routine

The self-test code achieves 100% fault coverage for 8-bit,
16-bit and 32-bit barrel shifter widths. Similar code can be
derived for such simpler shifter designs and for more
complex ones.

2.4 Case Study
Apart from experimenting with the various modules
presented in the previous sections, we have evaluated the
effectiveness of the proposed methodology in a classical
embedded controller architecture, Intel 8051.

The flow we followed is based on a synthesizable VHDL
model of the controller. The synthesized circuit includes
one 8x8 carry-save array multiplier and a number of 8-bit
addition and subtraction units which number depends on
the particular application. We performed synthesis using
Synopsys Design Compiler and fault simulation using

Cadence Verifault. A self-test routine consisting of about
190 bytes of code provides a post-compaction fault
coverage of 99.4% for the arithmetic modules of the core
when three add/subtract units are used.

Currently, we are evaluating the efficiency of the proposed
methodology to the other parts of the processor (register
files, control part) and also the application of the
methodology to various processor architectures (RISC-
based, accumulator based, with or without multiplier unit).

3. CONCLUSIONS

The proposed deterministic software-based self-testing
architecture for embedded processor cores compares
favorably with earlier pseudorandom based architectures
since it does not require extensive fault simulations to
estimate its effectiveness and it requires smaller test
application time and power consumption due to its
deterministic nature. It can be applied to any word length
and any internal architecture of the arithmetic modules of
the processor.
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