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Abstract

In this paper, we present a novel approach for the
design of application specific multiprocessor systems-on-
chip. Our approach is based on a generic architecture
model which is used as a template throughout the design
process. The key characteristics of this model are its great
modularity, flexibility and scalability which make it
reusable for a large class of applications. In addition, it
allows to accelerate the design cycle. This paper focuses on
the definition of the architecture model and the systematic
design flow that can be automated. The feasibility and
effectiveness of this approach are illustrated by two
significant demonstration examples.

1. Introduction

Current system design methods tend towards codesign
of mixed hardware/software  systems  targeting
multi procesor system-on-chip. One of the most important
issues in multiprocessor design is the target architecure.
The rigidity of the target architedure may leal to a very
restricted applicaion field o poa performances.
Modularity, flexibility and scdability are required to have
an efficient appli cation-spedfic multi processor design flow.
Modularity is needed to master complexity. It allows the
separate design of the different modules and provides an
overall asembling scheme. The most common way to
achieve modularity is to separate the inter-sub-system
communicaion from the behavior when partitioning a
system. Modularity allows for reuse of existing modules.
Flexibility is required in order to avoid ealy dedsions. It
alows the designer to dedde quite late in the design process
which technology will be used for the design of ead
module. When combined with modularity, flexibility allows
to change the implementation for a given module & any
stage of the design process For instance asoftware module
may be mnverted into a hardware module for performance
reasons. Scdability allows to adapt the same achitedure
model for applications of different complexity scdes, e.g.
incressing the number of procesors or communication
buses. For architedure design, modularity means separate
design of inter-processors communication, flexibility
requires the posshility to design applicaion-spedfic inter-
procesors communication, and scdability requires the

posshility to scde the ammunication network on chip.

This paper deds with the use of a generic achitecture
model for the design of applicaion-spedfic multi processor
systems-on-chip. The model used provides a grea ded of
modularity, flexibility and scdability. In the next sedion,
we ded with the related works and outline our contribution.
Sedion 3 introduces our generic achitedure. The
systematic design approach for multiprocessor systems-on-
chip isdescribed in sedion 4. Sedion 5 detail s the design of
an applicaion-spedfic achitedure for a padet routing
switch. Sedion 6 is devoted to the evaluation of the
architecdure model and the associated design flow. Finally,
sedion 7 provides our conclusions.

2. Related work and contribution

Figure 1 shows typicd multiprocessor architedures as
discussed in clasdcd literature [6, 20]. The model is made
of a set of processoors communicating through a
communicéaion network.
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Figure 1. Generic architectural model as
found in classical literature

A procesor may be aspedfic CPU or an IP (memory,
peripheral, spedfic hardware). The communication network
congtitutes the hardware links that suppat the
communicaion primitives between components. The
simplest way to conned the components of a system is to
have adedicaed communication link between every two
communicaing components. The other extreme isto have a
single bus conneding all the components. Between the fully
connected network and the single bus lution, there is a
wide range of interconnedion networks. These networks are
a major fador to dfferentiate modern multiprocessor
architedures.

We can classfy system architectures into two



caegories: single-processor and multi processor
architedures. A single-procesor architedure mnsists of
one CPU and one or more ASICs. This sheme follows a
master—dlave synchronization pattern where the CPU ads as
a top controller in charge of coordinating the adivities of
the other components which are ading as coprocessors.
Although very useful in several applicaion domains, the
single processor architedure can only offer a restricted
performance caability in many applications becaise of the
ladk of true paralelism. A multiprocesor architedure
alows more flexibility and improved performances thanks
to the distribution of computation among processors.
However, it is much more difficult to handle due to
paralelism. Several new simplified versions of this generic
architedure were used for hardware/software design.
Most of these works target single-processor architedures,
and the most used model in this classis the single CPU
single ASIC target architedure. Even though this
architedure isa spedal and limited example of a distributed
system, it is relevant in the aeaof embedded systems [16].
In this class of work we can cite LY COS [15], COSYMA
[19], and PMOSS][7]. Other design systems, such as Vulcan
[11], TOSCA [1] and COBRA [12] can suppat more than
one ASIC. Severa reseach goups tried to target
multi procesor architedures, e.g. POLIS [2], Chinook [5],
SpecSyn [8], CoWare [14,22,23] and the work led by Wolf
and Yen [24]. In the POLIS [2] system, the target
architedure is a system consisting of genera-purpose
procesors combined with a few ASICs and passble other
components such as DSPs. COSY [4] tried to extend this
approach with a layered communicaion model. The target
architedure in the SpecSyn [8] system is a heterogeneous
multiprocesor  with  any number of processrs,
coprocesors, ASIP or FPGA, communicating through
multiple buses. A more generic architedure was used in
CoWare [23]. The authors presented an architedure and an
asciated design flow to target applicdion-spedfic
multiprocessor systems-on-chip. However, they restricted
their communicaion model to pdnt-to-point
communicaion with “Rendezvous’ protocol. Besides these
acalemic reseach projeds, there were dso severd
industria trail s of open standards and design methoddogies
[3,9,17,18,26,27,28,29,31,32,34] that try to ded with the
more and more cmplex system on chip designs. However,
we believe that in all above works, target architectures and
design methoddogies still 1adk generic aspeds and thus
only tackle arestricted applicetion field. In fad, most of the
above mentioned systems restrict the kind of components
used and/or the coommunication network to few proprietary
and/or spedfic models designed to be plugged together. The
work presented in this paper alows the building of
applicaion-spedfic communicaion network (architedure)
for heterogeneous multi processor system on chip.

The main contribution of this paper is the definition of a
Modular, Flexible, and Scdable Architedure Model
(MFSAM) that handles a large dass of applicaions and
may be used for an efficient multiprocessor SoC design

flow. Additionally, this model alows for the systematic
design of multiprocesor architedures. This will facilitate
the development of automatic architedure generation todls.
The long-term objedive is to use this model as a platform
for the atomatic generation of applicaion-spedfic
multiprocesoor  system-on-chip  from a  high-level
spedficaion.

3. A multiprocessor architecture platform for
application-specific SoC design

From the huge design spacerepresented by figure 1 we
chose the most appropriate dements that promote the
adaptability for multiprocessor SoC design and the
posshility of an automatic generation of the final
architedure.

The components of our architecure model belong to the
three eential cdegories: software, hardware, and
communication components. They consist of CPUSs,
hardware blocks, memories, and communication interfaces.
Severa kinds of CPUs may be used within the same design.
The adition of an extra CPU requires the avail ability of a
set of tods (ISS compiler, debugger) and models (layout,
timing, operating systems...). The aurrent version of this
work makes use of ARM7 and MC68000CPUs. Of course
the adition of new CPUs (e.g. DSP) will not change the
principle of the goproach. The mmmunication network may
be of whatever complexity from a single bus to a network
with complex protocols. Procesors are linked to the
common network through communicaion interfaces. The
scdability of this architedure depends on the scdability of
the chosen communicaion network. Modularity is ensured
by the use of spedfic interfaces to link processors to the
communicaion network. This gives the posshility to design
separately ead part of the gplicaion, we can even include
pre-designed modules (IPs). The generic assembling
scheme of our model largely increases its modularity. This
separation between procesor and communication network
through spedfic interfaces also provides high flexibility. In
faa, if we change the technology implementing a given
module (processor) the only part of the achitedure that
neals to be dhanged is the interface of the arresponding
module.

Figure 2 shows a typicd instance of this platform made
of N processors (ARM7 and MC68000 pocessors). The
communicaion network is a point-to-point network.
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Figure 2 A multiprocessor architecture platform

The dhoice of the processors was based on avail ability.
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These were the only two processors we had access to when
we started this projed.

The achitedure platform parameters that can be
configured by the designer are the number of CPUs, the
memory sizes for ead proceswor, 1/0O ports for eadh
procesor and interconnedions between processors, the
communicdion protocols and the external connedions
(peripherals). These parameters show the scalability of the
platform and enable the design of applicaion-spedfic
architedures of different scdes. The mmunication
interface depends on the processor attributes and on the
appli caion-spedfic parameters (communication structure).

In fad, the communicaion interface that we use to
conned the processor to the wmmunicdion network, is
composed of two parts; one spedfic to the processor
(interfadng its bus), and the other is generic and depends on
the number of communication channels and communicaion
protocols used. Figure 3 shows a generic model of a
procesr interface
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Figure 3. Communication coprocessor

This decomposition in two parts al owsto dissociate the
CPU from the communicaion network. Eadh interface
module ads as a @mprocesor for the wrresponding CPU.
The gplicaion dependent part may include severd
communicaion controllers managing the @mmunication
through parallel channels. The abitration is done by the
CPU-dependent part. The overheadl induced by this
communicaion coprocesor depends on the design of the
basic components and may be very low. As it will be
explained later, the use of this architecure for interfaces
provides huge flexibility and allows for modularity and
scdability. Additionally, it alows for fast communicaion
protocols (e.g. burst mode).
4. Application-specific SoC
design

multiprocessor

Our design flow follows the Y-chart [2, 13] shown in
figure 4.
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Figure 4. The Y-chart: MFSAM-based
architecture generation scheme

In this model, the gplication-spedfic parameters are
used to configure the achitecdure platform and an
application-spedfic achitedure is produced. These
parameters result from an analysis of the gplication to be
designed.

The overall design flow from a system-level application
model is shown in figure 5. Starting from a high-level
model of the @plicaion at the system level (parallel
communicaing proceses), and considering one
multi procesor architedure platform, the designer has to
choaose the alequate parameters of his final architedure. In
this choice, the functional and non-functional constraints
must be taken into acount. A hardware/software design
tod or a performance etimation too can be used to assst
the designer in his choice The parameters that must be
fixed in this step are the number of CPUs (of ead available
type), the memory sizes for eat procesor and the size of
the shared memory if neaded, 1/0 ports for ead processor
and  interconnedions  between  procesors,  the
communicdion protocols and the external connedions
(peripherals). The results of this gage ae two elements: an
abstrad architecture description and an alocaion table. The
abstrad architedure @nstitutes the skeleton of the final
SoC. It is an instance of the achitecture platform and
contains al the @gplicdion spedfic parameters. The
dlocdion table ontains al the information about the
memory map, the memory addresses and the interruption
levels reserved for ead CPU. Writing the dlocation table
requires a degp knowledge of the processors attributes (i.e.
address pace interrupts levels).
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Fixed param. system level description

Arch. Platform

*Network type
*Memory Arch.
+CPU types

*Nb. of CPU
+Comm. Prtocls.
*Memory size
+I/O for each CPU
*Processors
Abstract interconnects
Archi. Descrp. «External /O

Param. Choice
(user constraints)

[ —
Pr. Attributes Alloc. Table

‘Libra (Adr. & Rsrces.)

Software
Adaptation

Binary Code|
for each Pr

Detailed
Archi.

[—
Pr. & Mem.
Simulators

[——
Pr. & Mem.
Cores

SoC Validation

by cosimulation

SoC synthesis

Figure 5. MFSAM-based architecture
generation flow for multiprocessor SoC

The achitedure design step makes use of the dlocation
table to refine the dstrad architedure and to produce the
detail ed architedure. The main action here is the design of
the @mmunication nretwork including the processor
communicaion interfaces.

The software-adaptation step produces the programs
which will run on each CPU. This may be a quite



sophisticaed step for large gplicdions. This is true
espedally when an operating system is required to run the
software. This gep is out of the scope of this paper. The
alocation table which was used to configure the
communicaion interfaces, may be used for the software
adaptation, for memory mapping and addresses all ocaion
(1/0O ports, interruptions). The results of this gep are the
binary codes that must be loaded onto the memory of each
procesor. Of course, the operation of software alaptation is
done separately for ead procesor.

For the SoC validation, we need a cycle-accurate
exeautable achitedure that can run the goplication. To that
end, we used a cosimulation approach [10] where CPUs are
replacad by cycle acarate |SSs and bus functional models.
All other parts of the achitedure ae modeled in VHDL-
RTL and executed by a VHDL simulator (e.g. Synopsys
VSS[33]). Further ill ustrations about the validation of this
flow will be given in the next sedion through a
demonstration example.

5. Designing an application-specific architect-
urefor a packet routing switch

In order to illustrate the dficiency of the proposed
architedure model and design flow, we detail in this sdion
the design processof a padet routing switch [30].

5.1. The packet routing switch

It congtitutes a powerful solution for large-frame or
cdl-switching systems [30].The version we present here
consists of two input controllers and two output controll ers.
Eadh of the controll ers handles one communication channel.
The mmunicaion links between input and output
controllers are cnfigured by an externa signal to be dired
or switched. Figure 6 shows the block diagram of the padket
routing switch.

S Input [« Ch_in_1
Ch_out 1« Controller 1 Controller 1
Mode
Output Input
c”Loutz(;Controllerz Controller2|__ ¢p in 2

Figure 6 Block diagram of the packet routing switch

5.2. Parameter s extraction

From this gedficaion we @an note that we have 4
communicaing modules, 4 interna communicéion
channels and 5 external links. We know also that the input
frame is 128 kytes long. The gplicaion was pedfied in
the SystemC language. Thus, in order to implement this
application on the proposed architedure platform, we
started by choosing the goplicaion-spedfic parameters and
writing (as result) the dlocaion table and the achitedure

description. We dchose a4-procesor architedure & a first
implementation. Table 1 shows the details of all the chosen
parameters. In this table, ead line @ntains the spedfic
parameters of one module (procesor) of the achitedure.
For example, in the first line we see that the IC1 module
will be implemented on an ARM7 processor running with a
40 MHz dock frequency. The locd memory size for this
module was chosen approximately (after a first pre-
compilation of the software part). There ae 4
communicaion channels in this modue, and the
communicaion protocol used for al of them is a FIFO
protocol with handshaking. The three last columns depend
on the chosen communicaion protocol. We can seethat in
this communicdion protocol, the FIFO is placal at the
output channel and its $zeis equal to the transmitted frame
size For input channels (Ch in_1 and Mode), the
communicaion is done by interrupts;, we use in this module
the IRQ interrupt of ARM7 processor. In the last column of
the table, we reserved the globa addreses for the
communicéion channels (seenext section).

Table 1. A 4-processor architecture
description for the packet routing switch

Memor Comm Comm Buffer
Modules |CPU mory N | size |Interrupts| Adr.
size |channels |Protocols
(Hw)
Ch_in_1 0 IRQ* 0x7000
Input ARM7 | ROM: 10 KB Mode FIFO 0 IRQ* 0x7004
Controller 1 at transmitter
(Ic1) 40 MHz| RAM: 20KB | IC1 0 OC1 with HSK 128 Bytes - 0x7008
IC10 Ooc2 128 Bytes - 0x700C
Ch.in_2 0 IRQ* 0x7000
Input ARM7 | ROM: 10 KB Mode FIFO 0 IRQ* 0x7004
Controller 2 at transmitter
(IC2) 40 MHz| RAM: 20KB | IC20 OC2 with HSK 128 Bytes - 0x7008
IC20 OC1 128 Bytes - 0x700C
IC10 OC1 0 Level 5 0x9000
Output M68000| ROM: 20 KB FIFO
Controller 1 IC20 OC1 | at transmitter 0 Level 6 0x9002
(oc1) 20 MHz| RAM: 20 KB with HSK
Ch out 1 128 Bytes - 0x9004
IC2 0 OoC2 0 Level 5 0x9000
Output M68000| ROM: 20 KB FIFO
Controller 2 IC10 OC2 | attransmitter 0 Level 6 0x9002
(oc2) 20 MHz| RAM: 20 KB with HSK
Ch_out_2 128 Bytes - 0x9004
Chin 1
Mode
External VHDL process 4 FIFO
Environment Ch_in_2 at transmitter
(periphs.) 100 MHz Chout 21 | WithHSK
Ch_out_2
* The address of the communication controller that requested the interruption will be delivered by the
communication interface to the CPU when a read access is performed at the address 0x7100
This table will be used for the anfiguration of the

communicaion interfaces and for the software alaptation
(seefigure 5).

5.3. Architecture design

As the achitedure mntains 4 CPUs, 4 communicéion
interfaces must be designed. The interfaces of figure 3 are
modeled in VHDL-RTL as a generic component that needs
to be personalized acording to the goplication. So, for eah
of the 4 communicaion interffaces we aalyze the
parameters of table 1, and modify the VHDL filesto oltain
the spedfic interface For example, in order to design the



communicdion interface of the firss modue (IC1), the
interface ontroller of ARM7 was <leded and 4
communicaion controllers were instantiated (2 input
controllers and 2 aitput controllers). The cosen
communicaion controllers correspond to handshake
protocol with buffering at the transmitter side. The size of
the buffer was configured to 128 lytes (seetable 1). The
memory addresses of the cmmunication controllers are
aso configured to the values mentioned in table 1. These
addresses are dso used to configure the aldress decoder
which enables the crresponding communicdion interface
(i.e. externa accesses of the CPU). The result of this stage
is a VHDL component which represents the spedfic
communicdion interfaceof the first modue (IC1). Figure 7
shows the block diagram of this interface We notice that
input communicaion controllers use interrupts to
communicae data to the CPU, so the interrupt controll er
must be onfigured to use the IRQ interrupt of the ARM7 as
mentioned in table 1.
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Figure 7 Communication Interface of IC1

In the same way we nstructed the 3 ather
communicaion interfaces. As all of these interfaces are
VHDL components, we chose to gather al of them with the
communicaion network (point-to-point connedions) in one
VHDL block. Table 1 isalso used at this dage to determine
the links between the 4 interfaces and their externa links
with the eavironment. In this example, the ewvironment was
a simple test bench which sends and receéves the data
padkets, it was written in VHDL and uses the same
communicaion protocol (i.e. handshake) as mentioned in
table 1.

5.4. Softwar e adaptation

We wrote simple test programs to run on each of the 4
procesors. Each program makes use of rea/write
functions. An output operation corresponds to writing the
corresponding data & the right address For example, in
module IC1, to transfer the recaéved padket to module OC1
the padket is written (byte by byte) on the global address

0x7008 The communicaion interfacebuffers this data and
takes charge of its transfer to module OCL. Input operations
use interrupt events and require interrupt handlers. For
example, for the IRQ handler of IC1 module, the CPU starts
by performing a read access at the aldress 0x710Q When
accessgng this address the interfacedelivers the aldress of
the corresponding communicaion controller which requests
the interrupt (0x7000or 0x7004), and then the data is read
a this receved address Note that this way of interrupt
vedorisation is very useful when the number of the input
communicaion controllers is greaer than the available
interruption levels of the CPU. In this example, the data
padket was recaved byte by byte. These test programs were
compiled and linked with the arresponding boa code for
eah CPU (to initialize the RAM/ROM, stacks, vectors,
interrupts...). The results of this gep are the binary codes
that must be loaded onto the ROM of ead procesor.

5.5. Architectur e validation

In order to validate the generated architedure, we use a
cycle acorate cosimulation approach based on SystemC
[10, 21]. In this approach, CPUs are replacad by cycle-
acarate 1SS and bus-functional models. With this
cosimulation tool we dready have two cycle-accurate
simulators, one for ARM7 (based on ARMulator) and the
other for M680Q. In addition, with these simulators, locd
memories are modeled in software as a part of the ISS and
the acces to those memories is cycle acurate.
Communication interfaces, communication network and the
external environment (the test bench) were modeled in
VHDL-RTL (cf. sedion 5.3). The VHDL part is exeauted
by a VHDL simulator (e.g. VSS. We nstructed the
cosimulation environment which consists of 2 ARM7 ISSs,
2 M680001SSs and one VSS Figure 8 shows the schema of
the generated cosimulation environment.

MC68k ISS MC68k ISS ARM7 ISS ARM7 ISS
(oc1) (Ic2) (Ic1)
Mem.| Mem.,
BEM BEM
cu<?ﬁ T c|sz cu<1T T
cosimulation bus (SystemC
- L] | -
0oc2 0 Ic2 OC10 IC2
0C2 0 IC1 OCi0 IC1
Coutl Cin2 |mode
Cout2
ou 1 [ —
Env.
(Test bench) VHDL

Figure 8 A 4-processor cosimulation
architecture of the packet routing switch

The msimulation bus is based on SystemC and ensures
the interconnection and synchronizaion of the running
simulators (shared memory and monitors) for coherent
exeadtion of the overall system [21]. The binary codes were
loaded onto the @rresponding 1SSs and the VHDL block
was loaded onto the VSS



6. Evaluation of the model and the associated
design flow

In order to analyze the dficiency of this model, we will
use 2 ather designs based on this architedure platform: A 2-
procesor implementation of the padket routing switch and a
4-processor implementation of a DSP applicaion — the IS
95 CDMA protocol.

6.1. A 2-processor solution for the packet routing
switch

A 2-procesor implementation of the padket routing
switch was also redized following the same flow. Table 2
shows the dlocaion table for this new implementation.
Only two CPUs are used: the two modues IC1 and IC2 are
implemented on one ARM7 CPU, and the two ather
modules (OC1 and OC2) are implemented on one M68000
CPU. Therefore, only two communicdion interfaces had to
be designed. These communication interfaces differ from
the ones developed in the previous architecture by the
number of communication controllers. So whil e building the
communicaion interfface of the ARM7 CPU, 7
communicaion controllers were instantiated (3 input and 4
output controllers). We modified the test programs to adapt
them to this new architedure, and we validated the system
by cosimulation.

Table 2. A 2-processor architecture
description for the packet routing switch

Memor Comm Comm Buffer
Modules |CPU mory N | size |Interrupts| Adr.
size | channels |Protocols
(Hw)
Ch_in_1 0 IRQ* 0x7000
Ch_in_2 0 IRQ* 0x7004
Mode 0 IRQ* 0x7008
Input ARM7 | ROM: 10 KB FIFO
Controller 1&2 Cl(cooc) | attransmitter | 128 Bytes - 0x700C
(IC) 40 MHz| RAM: 20 KB with HSK
C2(co oc) 128 Bytes - 0x7010
C3(ic 1 0c) 128 Bytes - 0x7014
C4 (icu oc) 128 Bytes - 0x7018
C1(co oc) 0 Level 3 0x9000
C2(co oc) 0 Level 4 0x9002
Output M68000| ROM: 20 KB | C3(c 1 0c) FIFO 0 Level 5 0x9004
Controller 1&2 a
(oC) 20MHz| RAM: 20KB | C4(C00C) |  with HSK 0 Level 6 0x9006
Ch_out_1 128 Bytes - 0x9008
Ch_out_2 128 Bytes - 0x900A
Ch_in_1
Mode
External 'VHDL process . FIFQ
Environment Ch_in_2 at transmitter
(periphs.) 100 MHz Ch_out 1 with HSK
Ch_out_2

* The address of the communication controller which requested the interruption will be delivered by the
communication interface to the CPU when a read access is performed at the address 0x7100

In order to compare the 2 architedures, we synthesized
the VHDL blocks corresponding to the interfaces for the
two architedures. The synthesis results of the two
architedures are shown in table 3.

In both cases, the biggest part of the aeais used for
CPUs and memories. The alditional logic amounts only to
5156 gates for the 4-procesor architedure and 3376gates
for the 2-procesor architedure. In both cases this

represents less than 5% of the total chip area The size of
the memory used for communicéion remains the same for
both architedures. In this case, the biggest difference mmes
from the aeaused for embedded CPUs (2 instead of 4). As
expeded, the cosimulation has shown that the throughput of
the 4-procesor architedure is twice as large & the 2-
processor solution.

Table 3. Synthesis results of the two architectures
implementing the packet routing switch

Comm. IIF &

Processor Cores
Comm. Network

Architecture

5156 Gates
+ 6 FIFOs of 128 bytes

2 ARM7 Cores
2 M68000 Cores

4-processor
Architecture

3376 Gates
+ 6 FIFOs of 128 bytes

1 ARM7 Cores
1 M68000 Cores

2-processor
Architecture

This example shows clealy the scdability of this
model. This was obtained thanks to the flexibility of the
communicaion interface ad the modularity of the

approad.

6.2. Analyzing the design cycle

We designed an 1S-95 CDMA protocol to analyze the
duration of the design cycle. This experiment has shown
that a multiprocessor architedure @an be designed in about
one week when al the cmponents of the achitedure
platform are realy.

In an IS95 CDMA cdlular phone system [25], the
mobil e station contains two CDMA baseband modems (Tx
and Rx), a QCELP (Qualcomm Code Excited Linea
Prediction) voice encoder (ENC) and decoder (DEC), and a
call processor (CAP). Figure 10 shows the block diagram of
the system.

CDMA Modem: Rx

baseband signal —>_"DE

dial pad
. CAPl[¢—>
CDMA Modem: Tx ‘l: ’Ei I display panel
baseband signal <—‘I4_h

Voice_out
——————>

End]

Voice_in

Figure 10 Block diagram of the
I1S-95 CDMA mobile station

In the forward traffic channel, the input frame (on
voice_in channel) is 160 kyteslong, the encoded frameis 44
byte, and the transmitted frame is 1536 lyte. Although,
many architedural solutions are mncevable, we chose to
map this applicaion on the same 4-processor architedure &
the one used to implement the padket routing switch (we did
not implement the call processor — CAP). In order to do
that, we wrote the dlocation table and the achitedure
description for the 1S-95 CDMA applicaion. Comparing
with those of the padket routing switch, the communicaion
architedure is dightly different. Also the FIFOs gzesin the
communicaion controllers are different. Thus, we re-built
the 4 new communicaion interfaces. Moreover, as a C++



version of the gplicaion was available, we prepared the 4
software programs that will run on the 4 CPUs and
generated the mrresponding binary codes. Figure 11 shows
the @simulation architedure we used to vaidate the
applicdion on its gedfic designed architedure. Externa
modules —base station and user input/output— were modeled
in SystemC.

ARM7 MC68k
hin — —>
speechin ISS Mem ISS Mom rev_rec
BFM BFM
N [ S, C1KS) M SO
VSS .+

i :
== atgn

B
speechout +— ISS Mem| ISs Mem: —— for_tra
ARM7 MC68k

voe_rx Jor_rec

Mobile Station Base Station

Figure 11 A 4-processor cosimulation
architecture of the 1IS-95 CDMA

Table 4 gives the time nealed to fit the ISO5-CDMA
applicaion on the proposed multi processor platform using a
4-procesor implementation. We have measured the time
nealed for ead step of the generation flow of figure 5. We
noticed that the time for manual generation depends on the
number of procesors (4 in this example), it is a linea
function with slope 8 hours/procesor. In fad, the manual
generation is not only time consuming but also fastidious, as
complex applications are ill difficult to handle without
todls asdstance It is worth noting that we asume that the
designer has a good knowledge of the processors tod kits
and the gplicaion when doing the manual generation.
Otherwise you would have to add the time required to
aquire this knowledge. In an automatic generation scheme,
this knowledge will not be required though. The software
adaptation step includes only system cdl insertion in an
existing software cde.

Table 4. Time needed to fit the 1S95
CDMA on the multiprocessor platform

) Time Needed
Operation )
(Manual coding)
Param. Extrat. (Arch. Descrp. & Alloc. Table) ~2hrx4
Architecture Design ~2hrx4+2hr
Software Adaptation ~4hrx4
Build the Cosim. Env. ~8hr
Total ~42hr

6.3. Analysis of theresults

These examples illustrate the feasibility and the
efficiency of our architedure model. With this model,
multi procesor architedures become much easier to handle.

We illustrated how the generation of application-spedfic
architedures can become systematic and very fast. Note that
the achiteaure model we propaose in this paper is far more
generic than the achitedure platform we used for the
examples. This leads obviously to a huge gplication field.
Other kinds of CPUs (and DSP cores) can be integrated and
used in the same way. This shows the grea flexibility and
modularity of the proposed architedure model.

The modularity of our architedure model appeasin the
organization scheme, which consists of separated modules
communicaing through a @mmunicaion network. It
separates the behavior from the inter-sub-systems
communicaion. In addition, eadr modue can be designed
separately, an assembling scheme is provided to conned
them efficiently and to enable the reuse of existing modules.
This asembling scheme is quite structured and easily
permits the reconfiguration of the achitedure. Thus, the
technology choice ca be done late in the design process
which leals to a grea flexibility. The scdability of our
architedure model is also achieved thanks to the assembling
scheme. It depends on the scalability of the chosen
communicaion network. This scalabili ty all ows to adapt the
proposed architedure model to applications of different
complexity scdes. For instance increasing the number of
procesors or communication buses.

7. Conclusion

In this paper, we presented a generic architecure model
for application-spedfic multiprocesor  system-on-chip
design. The proposed model is moduar, flexible and
scdable. It permits a systematic generation of
multi processor architedures for embedded systems-on-chip.
This work is a promising step towards the definition of an
efficient multi processor SoC design environment appli cable
to a large gplicaion domain. This paper focused on the
definition of the achitecture model and a systematic design
flow that cen be aitomated. The feasibility and
effectiveness of this architedure model were ill ustrated by
design examples showing the scdability of the model. We
have dso demonstrated that the use of such a model
shortens ggnificantly the design cycle of complex
applicdions.
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