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Abstract

In this paper, we present a novel approach for the
design of application specific multiprocessor systems-on-
chip. Our approach is based on a generic architecture
model which is used as a template throughout the design
process. The key characteristics of this model are its great
modularity, flexibility and scalability which make it
reusable for a large class of applications. In addition, it
allows to accelerate the design cycle. This paper focuses on
the definition of the architecture model and the systematic
design flow that can be automated. The feasibility and
effectiveness of this approach are illustrated by two
significant demonstration examples.

1. Introduction

Current system design methods tend towards codesign
of mixed hardware/software systems targeting
multiprocessor system-on-chip. One of the most important
issues in multiprocessor design is the target architecture.
The rigidity of the target architecture may lead to a very
restricted application field or poor performances.
Modularity, flexibility and scalabili ty are required to have
an efficient application-specific multiprocessor design flow.
Modularity is needed to master complexity. It allows the
separate design of the different modules and provides an
overall assembling scheme. The most common way to
achieve modularity is to separate the inter-sub-system
communication from the behavior when partitioning a
system. Modularity allows for reuse of existing modules.
Flexibil ity is required in order to avoid early decisions. It
allows the designer to decide quite late in the design process
which technology will be used for the design of each
module. When combined with modularity, flexibili ty allows
to change the implementation for a given module at any
stage of the design process. For instance a software module
may be converted into a hardware module for performance
reasons. Scalabili ty allows to adapt the same architecture
model for applications of different complexity scales, e.g.
increasing the number of processors or communication
buses. For architecture design, modularity means separate
design of inter-processors communication, flexibili ty
requires the possibil ity to design application-specific inter-
processors communication, and scalability requires the

possibili ty to scale the communication network on chip.

This paper deals with the use of a generic architecture
model for the design of application-specific multiprocessor
systems-on-chip. The model used provides a great deal of
modularity, flexibili ty and scalabili ty. In the next section,
we deal with the related works and outline our contribution.
Section 3 introduces our generic architecture. The
systematic design approach for multiprocessor systems-on-
chip is described in section 4. Section 5 details the design of
an application-specific architecture for a packet routing
switch. Section 6 is devoted to the evaluation of the
architecture model and the associated design flow. Finally,
section 7 provides our conclusions.

2. Related work and contribution

Figure 1 shows typical multiprocessor architectures as
discussed in classical l iterature [6, 20]. The model is made
of a set of processors communicating through a
communication network.
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Figure 1. Generic architectural model as
found in classical literature

A processor may be a specific CPU or an IP (memory,
peripheral, specific hardware). The communication network
constitutes the hardware links that support the
communication primitives between components. The
simplest way to connect the components of a system is to
have a dedicated communication link between every two
communicating components. The other extreme is to have a
single bus connecting all the components. Between the fully
connected network and the single bus solution, there is a
wide range of interconnection networks. These networks are
a major factor to differentiate modern multiprocessor
architectures.

We can classify system architectures into two



categories: single-processor and multiprocessor
architectures. A single-processor architecture consists of
one CPU and one or more ASICs. This scheme follows a
master–slave synchronization pattern where the CPU acts as
a top controller in charge of coordinating the activities of
the other components which are acting as coprocessors.
Although very useful in several application domains, the
single processor architecture can only offer a restricted
performance capabili ty in many applications because of the
lack of true parallelism. A multiprocessor architecture
allows more flexibil ity and improved performances thanks
to the distribution of computation among processors.
However, it is much more difficult to handle due to
parallelism. Several new simplified versions of this generic
architecture were used for hardware/software codesign.
Most of these works target single-processor architectures,
and the most used model in this class is the single CPU
single ASIC target architecture. Even though this
architecture is a special and limited example of a distributed
system, it is relevant in the area of embedded systems [16].
In this class of work we can cite LYCOS [15], COSYMA
[19], and PMOSS [7]. Other design systems, such as Vulcan
[11], TOSCA [1] and COBRA [12] can support more than
one ASIC. Several research groups tried to target
multiprocessor architectures, e.g. POLIS [2], Chinook [5],
SpecSyn [8], CoWare [14,22,23] and the work led by Wolf
and Yen [24]. In the POLIS [2] system, the target
architecture is a system consisting of general-purpose
processors combined with a few ASICs and possible other
components such as DSPs. COSY [4] tried to extend this
approach with a layered communication model. The target
architecture in the SpecSyn [8] system is a heterogeneous
multiprocessor with any number of processors,
coprocessors, ASIP or FPGA, communicating through
multiple buses. A more generic architecture was used in
CoWare [23]. The authors presented an architecture and an
associated design flow to target application-specific
multiprocessor systems-on-chip. However, they restricted
their communication model to point-to-point
communication with “Rendez-vous” protocol. Besides these
academic research projects, there were also several
industrial trails of open standards and design methodologies
[3,9,17,18,26,27,28,29,31,32,34] that try to deal with the
more and more complex system on chip designs. However,
we believe that in all above works, target architectures and
design methodologies still l ack generic aspects and thus
only tackle a restricted application field. In fact, most of the
above mentioned systems restrict the kind of components
used and/or the communication network to few proprietary
and/or specific models designed to be plugged together. The
work presented in this paper allows the building of
application-specific communication network (architecture)
for heterogeneous multiprocessor system on chip.

The main contribution of this paper is the definition of a
Modular, Flexible, and Scalable Architecture Model
(MFSAM) that handles a large class of applications and
may be used for an efficient multiprocessor SoC design

flow. Additionally, this model allows for the systematic
design of multiprocessor architectures. This will facilit ate
the development of automatic architecture generation tools.
The long-term objective is to use this model as a platform
for the automatic generation of application-specific
multiprocessor system-on-chip from a high-level
specification.

3. A multiprocessor architecture platform for
application-specific SoC design

From the huge design space represented by figure 1 we
chose the most appropriate elements that promote the
adaptabilit y for multiprocessor SoC design and the
possibili ty of an automatic generation of the final
architecture.

The components of our architecture model belong to the
three essential categories: software, hardware, and
communication components. They consist of CPUs,
hardware blocks, memories, and communication interfaces.
Several kinds of CPUs may be used within the same design.
The addition of an extra CPU requires the availabil ity of a
set of tools (ISS, compiler, debugger) and models (layout,
timing, operating systems…). The current version of this
work makes use of ARM7 and MC68000 CPUs. Of course
the addition of new CPUs (e.g. DSP) will not change the
principle of the approach. The communication network may
be of whatever complexity from a single bus to a network
with complex protocols. Processors are linked to the
common network through communication interfaces. The
scalabili ty of this architecture depends on the scalabil ity of
the chosen communication network. Modularity is ensured
by the use of specific interfaces to link processors to the
communication network. This gives the possibili ty to design
separately each part of the application, we can even include
pre-designed modules (IPs). The generic assembling
scheme of our model largely increases its modularity. This
separation between processor and communication network
through specific interfaces also provides high flexibility. In
fact, if we change the technology implementing a given
module (processor) the only part of the architecture that
needs to be changed is the interface of the corresponding
module.

Figure 2 shows a typical instance of this platform made
of N processors (ARM7 and MC68000 processors). The
communication network is a point-to-point network.
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Figure 2 A multiprocessor architecture platform

The choice of the processors was based on availability.



These were the only two processors we had access to when
we started this project.

The architecture platform parameters that can be
configured by the designer are the number of CPUs, the
memory sizes for each processor, I/O ports for each
processor and interconnections between processors, the
communication protocols and the external connections
(peripherals). These parameters show the scalabili ty of the
platform and enable the design of application-specific
architectures of different scales. The communication
interface depends on the processor attributes and on the
application-specific parameters (communication structure).

In fact, the communication interface that we use to
connect the processor to the communication network, is
composed of two parts; one specific to the processor
(interfacing its bus), and the other is generic and depends on
the number of communication channels and communication
protocols used. Figure 3 shows a generic model of a
processor interface.

Input Controller
(Buffer, Protocol)

CPU - I/F

Controller

Comm. Network
CPU bus

Rest Of System

CPU dependent Application dependent

Adr. Decoder

Output Controller
(Buffer, Protocol)

Adr. Decoder
Adr. Decoder

Figure 3. Communication coprocessor

This decomposition in two parts allows to dissociate the
CPU from the communication network. Each interface
module acts as a coprocessor for the corresponding CPU.
The application dependent part may include several
communication controllers managing the communication
through parallel channels. The arbitration is done by the
CPU-dependent part. The overhead induced by this
communication coprocessor depends on the design of the
basic components and may be very low. As it will be
explained later, the use of this architecture for interfaces
provides huge flexibility and allows for modularity and
scalabili ty. Additionally, it allows for fast communication
protocols (e.g. burst mode).

4. Application-specific multiprocessor SoC
design

Our design flow follows the Y-chart [2, 13] shown in
figure 4.
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Figure 4. The Y-chart: MFSAM-based
architecture generation scheme

In this model, the application-specific parameters are
used to configure the architecture platform and an
application-specific architecture is produced. These
parameters result from an analysis of the application to be
designed.

The overall design flow from a system-level application
model is shown in figure 5. Starting from a high-level
model of the application at the system level (parallel
communicating processes), and considering one
multiprocessor architecture platform, the designer has to
choose the adequate parameters of his final architecture. In
this choice, the functional and non-functional constraints
must be taken into account. A hardware/software codesign
tool or a performance estimation tool can be used to assist
the designer in his choice. The parameters that must be
fixed in this step are the number of CPUs (of each available
type), the memory sizes for each processor and the size of
the shared memory if needed, I/O ports for each processor
and interconnections between processors, the
communication protocols and the external connections
(peripherals). The results of this stage are two elements: an
abstract architecture description and an allocation table. The
abstract architecture constitutes the skeleton of the final
SoC. It is an instance of the architecture platform and
contains all the application specific parameters. The
allocation table contains all the information about the
memory map, the memory addresses and the interruption
levels reserved for each CPU. Writing the allocation table
requires a deep knowledge of the processors attributes (i.e.
address space, interrupts levels).
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Figure 5. MFSAM-based architecture
generation flow for multiprocessor SoC

The architecture design step makes use of the allocation
table to refine the abstract architecture and to produce the
detailed architecture. The main action here is the design of
the communication network including the processor
communication interfaces.

The software-adaptation step produces the programs
which will run on each CPU. This may be a quite



sophisticated step for large applications. This is true
especially when an operating system is required to run the
software. This step is out of the scope of this paper. The
allocation table which was used to configure the
communication interfaces, may be used for the software
adaptation, for memory mapping and addresses allocation
(I/O ports, interruptions). The results of this step are the
binary codes that must be loaded onto the memory of each
processor. Of course, the operation of software adaptation is
done separately for each processor.

For the SoC validation, we need a cycle-accurate
executable architecture that can run the application. To that
end, we used a cosimulation approach [10] where CPUs are
replaced by cycle accurate ISSs and bus functional models.
All other parts of the architecture are modeled in VHDL-
RTL and executed by a VHDL simulator (e.g. Synopsys
VSS [33]). Further ill ustrations about the validation of this
flow will be given in the next section through a
demonstration example.

5. Designing an application-specific architect-
ure for a packet routing switch

In order to ill ustrate the efficiency of the proposed
architecture model and design flow, we detail in this section
the design process of a packet routing switch [30].

5.1. The packet routing switch

It constitutes a powerful solution for large-frame or
cell -switching systems [30].The version we present here
consists of two input controllers and two output controllers.
Each of the controllers handles one communication channel.
The communication links between input and output
controllers are configured by an external signal to be direct
or switched. Figure 6 shows the block diagram of the packet
routing switch.
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Figure 6 Block diagram of the packet routing switch

5.2. Parameters extraction

From this specification we can note that we have 4
communicating modules, 4 internal communication
channels and 5 external links. We know also that the input
frame is 128 bytes long. The application was specified in
the SystemC language. Thus, in order to implement this
application on the proposed architecture platform, we
started by choosing the application-specific parameters and
writing (as result) the allocation table and the architecture

description. We chose a 4-processor architecture as a first
implementation. Table 1 shows the details of all the chosen
parameters. In this table, each line contains the specific
parameters of one module (processor) of the architecture.
For example, in the first line we see that the IC1 module
will be implemented on an ARM7 processor running with a
40 MHz clock frequency. The local memory size for this
module was chosen approximately (after a first pre-
compilation of the software part). There are 4
communication channels in this module, and the
communication protocol used for all of them is a FIFO
protocol with handshaking. The three last columns depend
on the chosen communication protocol. We can see that in
this communication protocol, the FIFO is placed at the
output channel and its size is equal to the transmitted frame
size. For input channels (Ch_in_1 and Mode), the
communication is done by interrupts; we use in this module
the IRQ interrupt of ARM7 processor. In the last column of
the table, we reserved the global addresses for the
communication channels (see next section).

Table 1. A 4-processor architecture
description for the packet routing switch

Input
Controller 1

(IC1)

Allocation
Table

Input
Controller 2

(IC2)

Output
Controller 1

(OC1)

Allocation
Table

Output
Controller 2

(OC2)

Modules

External
Environment
 (periphs.)

CPU Memory
size

Comm.
channels

Comm.
Protocols

Buffer
size
(Hw)

Interrupts

ARM7

40 MHz

ROM: 10 KB

RAM: 20 KB

ARM7

40 MHz

ROM: 10 KB

RAM: 20 KB

Ch_in_1

Mode

IC1 ⇒ OC1

IC1 ⇒ OC2

0

0

128 Bytes

128 Bytes

IRQ*

IRQ*

-

-

Ch_in_2

Mode

IC2 ⇒ OC2

IC2 ⇒ OC1

0

0

128 Bytes

128 Bytes

IRQ*

IRQ*

-

-

M68000

20 MHz

ROM: 20 KB

RAM: 20 KB

IC1 ⇒ OC1

IC2 ⇒ OC1

Ch_out_1

0

0

128 Bytes

Level 5

Level 6

-

M68000

20 MHz

ROM: 20 KB

RAM: 20 KB

IC2 ⇒ OC2

IC1 ⇒ OC2

Ch_out_2

0

0

128 Bytes

Level 5

Level 6

-

VHDL process

100 MHz

Ch_in_1

Mode

Ch_in_2

Ch_out_21

Ch_out_2

FIFO
at transmitter

with HSK

FIFO
at transmitter

with HSK

FIFO
at transmitter

with HSK

FIFO
at transmitter

with HSK

FIFO
at transmitter

with HSK
- -

* The address of the communication controller that requested the interruption will be delivered by the
   communication interface to the CPU when a read access is performed at the address 0x7100 

Adr.

0x7000

0x7004

0x7008

0x700C

0x7000

0x7004

0x7008

0x700C

0x9000

0x9002

0x9004

0x9000

0x9002

0x9004

-

This table will be used for the configuration of the
communication interfaces and for the software adaptation
(see figure 5).

5.3. Architecture design

As the architecture contains 4 CPUs, 4 communication
interfaces must be designed. The interfaces of figure 3 are
modeled in VHDL-RTL as a generic component that needs
to be personalized according to the application. So, for each
of the 4 communication interfaces we analyze the
parameters of table 1, and modify the VHDL files to obtain
the specific interface. For example, in order to design the



communication interface of the first module (IC1), the
interface controller of ARM7 was selected and 4
communication controllers were instantiated (2 input
controllers and 2 output controllers). The chosen
communication controllers correspond to handshake
protocol with buffering at the transmitter side. The size of
the buffer was configured to 128 bytes (see table 1). The
memory addresses of the communication controllers are
also configured to the values mentioned in table 1. These
addresses are also used to configure the address decoder
which enables the corresponding communication interface
(i.e. external accesses of the CPU). The result of this stage
is a VHDL component which represents the specific
communication interface of the first module (IC1). Figure 7
shows the block diagram of this interface. We notice that
input communication controllers use interrupts to
communicate data to the CPU, so the interrupt controller
must be configured to use the IRQ interrupt of the ARM7 as
mentioned in table 1.

Communication I/F

Controller_out
(FIFO+HSK)

F1 F3F2

F4 Req
Ack

DataFIFO

Controller_out
(FIFO+HSK)

F1 F3F2
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Ack

DataFIFO

Controller_in
(FIFO+HSK)

F1 F2

F3
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Ack
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Data
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Mode

IC1 ⇒⇒ OC1

IC1 ⇒⇒ OC2
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D
A
T
A

B
U
S
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Figure 7 Communication Interface of IC1

In the same way we constructed the 3 other
communication interfaces. As all of these interfaces are
VHDL components, we chose to gather all of them with the
communication network (point-to-point connections) in one
VHDL block. Table 1 is also used at this stage to determine
the links between the 4 interfaces and their external l inks
with the environment. In this example, the environment was
a simple test bench which sends and receives the data
packets, it was written in VHDL and uses the same
communication protocol (i.e. handshake) as mentioned in
table 1.

5.4. Software adaptation

We wrote simple test programs to run on each of the 4
processors. Each program makes use of read/write
functions. An output operation corresponds to writing the
corresponding data at the right address. For example, in
module IC1, to transfer the received packet to module OC1
the packet is written (byte by byte) on the global address

0x7008. The communication interface buffers this data and
takes charge of its transfer to module OC1. Input operations
use interrupt events and require interrupt handlers. For
example, for the IRQ handler of IC1 module, the CPU starts
by performing a read access at the address 0x7100. When
accessing this address, the interface delivers the address of
the corresponding communication controller which requests
the interrupt (0x7000 or 0x7004), and then the data is read
at this received address. Note that this way of interrupt
vectorisation is very useful when the number of the input
communication controllers is greater than the available
interruption levels of the CPU. In this example, the data
packet was received byte by byte. These test programs were
compiled and linked with the corresponding boot code for
each CPU (to initialize the RAM/ROM, stacks, vectors,
interrupts…). The results of this step are the binary codes
that must be loaded onto the ROM of each processor.

5.5. Architecture validation

In order to validate the generated architecture, we use a
cycle accurate cosimulation approach based on SystemC
[10, 21]. In this approach, CPUs are replaced by cycle-
accurate ISSs and bus-functional models. With this
cosimulation tool we already have two cycle-accurate
simulators, one for ARM7 (based on ARMulator) and the
other for M68000. In addition, with these simulators, local
memories are modeled in software as a part of the ISS, and
the access to those memories is cycle accurate.
Communication interfaces, communication network and the
external environment (the test bench) were modeled in
VHDL-RTL (cf. section 5.3). The VHDL part is executed
by a VHDL simulator (e.g. VSS). We constructed the
cosimulation environment which consists of 2 ARM7 ISSs,
2 M68000 ISSs and one VSS. Figure 8 shows the schema of
the generated cosimulation environment.

Cin1

modeCin2Cout1

Cout2

ARM7 ISS
(IC1)

BFM
Mem.

VHDL

ARM7 ISS
(IC2)

BFM
Mem.

MC68k ISS
(OC1)

BFM
Mem.

MC68k ISS
(OC2)

BFM
Mem.

OC1 ⇐ IC1OC2 ⇐ IC1

OC2 ⇐ IC2 OC1 ⇐ IC2

Env. 
(Test bench)

Clk4 Clk3 Clk2 Clk1

cosimulation bus (SystemC)

Figure 8 A 4-processor cosimulation
architecture of the packet routing switch

The cosimulation bus is based on SystemC and ensures
the interconnection and synchronization of the running
simulators (shared memory and monitors) for coherent
execution of the overall system [21]. The binary codes were
loaded onto the corresponding ISSs and the VHDL block
was loaded onto the VSS.



6. Evaluation of the model and the associated
design flow

In order to analyze the efficiency of this model, we will
use 2 other designs based on this architecture platform: A 2-
processor implementation of the packet routing switch and a
4-processor implementation of a DSP application – the IS-
95 CDMA protocol.

6.1. A 2-processor solution for the packet routing
switch

A 2-processor implementation of the packet routing
switch was also realized following the same flow. Table 2
shows the allocation table for this new implementation.
Only two CPUs are used: the two modules IC1 and IC2 are
implemented on one ARM7 CPU, and the two other
modules (OC1 and OC2) are implemented on one M68000
CPU. Therefore, only two communication interfaces had to
be designed. These communication interfaces differ from
the ones developed in the previous architecture by the
number of communication controllers. So while building the
communication interface of the ARM7 CPU, 7
communication controllers were instantiated (3 input and 4
output controllers). We modified the test programs to adapt
them to this new architecture, and we validated the system
by cosimulation.

Table 2. A 2-processor architecture
description for the packet routing switch

Input
Controller 1&2

(IC)

Modules

External
Environment
 (periphs.)

CPU Memory
size

Comm.
channels

Comm.
Protocols

Buffer
size
(Hw)

Interrupts

ARM7

40 MHz

ROM: 10 KB

RAM: 20 KB

Ch_in_1

Mode

C1 (IC ⇒ OC)

0

0

0

128 Bytes

IRQ*

IRQ*

IRQ*

-

Ch_in_2

128 Bytes

128 Bytes

128 Bytes

-

-

-

VHDL process

100 MHz

Ch_in_1

Mode

Ch_in_2

Ch_out_1

Ch_out_2

FIFO
at transmitter

with HSK

FIFO
at transmitter

with HSK
- -

* The address of the communication controller which requested the interruption will be delivered by the
   communication interface to the CPU when a read access is performed at the address 0x7100 

Adr.

0x7000

0x7004

0x7008

0x700C

0x7010

0x7014

0x7018

-

C2 (IC ⇒ OC)

C3 (IC ⇒ OC)

C4 (IC ⇒ OC)

Output
Controller 1&2

(OC)

M68000

20 MHz

ROM: 20 KB

RAM: 20 KB

C1 (IC ⇒ OC)

C3 (IC ⇒ OC)

C4 (IC ⇒ OC)

0

0

0

0

Level 3

Level 4

Level 5

Level 6

C2 (IC ⇒ OC)

128 Bytes

128 Bytes

-

-

FIFO
at transmitter

with HSK

0x9000

0x9002

0x9004

0x9006

0x9008

0x900A

Ch_out_1

Ch_out_2

In order to compare the 2 architectures, we synthesized
the VHDL blocks corresponding to the interfaces for the
two architectures. The synthesis results of the two
architectures are shown in table 3.

In both cases, the biggest part of the area is used for
CPUs and memories. The additional logic amounts only to
5156 gates for the 4-processor architecture and 3376 gates
for the 2-processor architecture. In both cases this

represents less than 5% of the total chip area. The size of
the memory used for communication remains the same for
both architectures. In this case, the biggest difference comes
from the area used for embedded CPUs (2 instead of 4). As
expected, the cosimulation has shown that the throughput of
the 4-processor architecture is twice as large as the 2-
processor solution.

Table 3. Synthesis results of the two architectures
implementing the packet routing switch

2 ARM7 Cores
2 M68000 Cores

4-processor
Architecture

Architecture Processor Cores

1 ARM7 Cores
1 M68000 Cores

2-processor
Architecture

5156 Gates

+ 6 FIFOs of 128 bytes

Comm. I/F &
Comm. Network

3376 Gates

+ 6 FIFOs of 128 bytes

This example shows clearly the scalabili ty of this
model. This was obtained thanks to the flexibili ty of the
communication interface and the modularity of the
approach.

6.2. Analyzing the design cycle

We designed an IS-95 CDMA protocol to analyze the
duration of the design cycle. This experiment has shown
that a multiprocessor architecture can be designed in about
one week when all the components of the architecture
platform are ready.

In an IS-95 CDMA cellular phone system [25], the
mobile station contains two CDMA baseband modems (Tx
and Rx), a QCELP (Qualcomm Code Excited Linear
Prediction) voice encoder (ENC) and decoder (DEC), and a
call processor (CAP). Figure 10 shows the block diagram of
the system.

A B C

D E F

DEC

ENC

CAP

CDMA
baseband signal

Modem: Rx

Modem: Tx

Voice_out

dial pad
display panel

Voice_in

CDMA
baseband signal

Figure 10 Block diagram of the
IS-95 CDMA mobile station

In the forward traffic channel, the input frame (on
voice_in channel) is 160 bytes long, the encoded frame is 44
byte, and the transmitted frame is 1536 byte. Although,
many architectural solutions are conceivable, we chose to
map this application on the same 4-processor architecture as
the one used to implement the packet routing switch (we did
not implement the call processor – CAP). In order to do
that, we wrote the allocation table and the architecture
description for the IS-95 CDMA application. Comparing
with those of the packet routing switch, the communication
architecture is slightly different. Also the FIFOs sizes in the
communication controllers are different. Thus, we re-built
the 4 new communication interfaces. Moreover, as a C++



version of the application was available, we prepared the 4
software programs that will run on the 4 CPUs and
generated the corresponding binary codes. Figure 11 shows
the cosimulation architecture we used to validate the
application on its specific designed architecture. External
modules –base station and user input/output– were modeled
in SystemC.
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Figure 11 A 4-processor cosimulation
architecture of the IS-95 CDMA

Table 4 gives the time needed to fit the IS95-CDMA
application on the proposed multiprocessor platform using a
4-processor implementation. We have measured the time
needed for each step of the generation flow of figure 5. We
noticed that the time for manual generation depends on the
number of processors (4 in this example), it is a linear
function with slope 8 hours/processor. In fact, the manual
generation is not only time consuming but also fastidious, as
complex applications are still difficult to handle without
tools assistance. It is worth noting that we assume that the
designer has a good knowledge of the processors tool kits
and the application when doing the manual generation.
Otherwise you would have to add the time required to
acquire this knowledge. In an automatic generation scheme,
this knowledge will not be required though. The software
adaptation step includes only system call insertion in an
existing software code.

Table 4. Time needed to fit the IS95
CDMA on the multiprocessor platform

~ 4 hr x 4

~ 8 hr

~ 42 hr

~ 2 hr x 4Param. Extrat. (Arch. Descrp. & Alloc. Table)

Software Adaptation

Build the Cosim. Env.

Total

Time Needed
(Manual coding)

Operation

Architecture Design ~ 2 hr x 4 + 2 hr

6.3. Analysis of the results

These examples il lustrate the feasibili ty and the
efficiency of our architecture model. With this model,
multiprocessor architectures become much easier to handle.

We ill ustrated how the generation of application-specific
architectures can become systematic and very fast. Note that
the architecture model we propose in this paper is far more
generic than the architecture platform we used for the
examples. This leads obviously to a huge application field.
Other kinds of CPUs (and DSP cores) can be integrated and
used in the same way. This shows the great flexibility and
modularity of the proposed architecture model.

The modularity of our architecture model appears in the
organization scheme, which consists of separated modules
communicating through a communication network. It
separates the behavior from the inter-sub-systems
communication. In addition, each module can be designed
separately, an assembling scheme is provided to connect
them efficiently and to enable the reuse of existing modules.
This assembling scheme is quite structured and easily
permits the reconfiguration of the architecture. Thus, the
technology choice can be done late in the design process
which leads to a great flexibili ty. The scalabili ty of our
architecture model is also achieved thanks to the assembling
scheme. It depends on the scalabili ty of the chosen
communication network. This scalabili ty allows to adapt the
proposed architecture model to applications of different
complexity scales. For instance increasing the number of
processors or communication buses.

7. Conclusion

In this paper, we presented a generic architecture model
for application-specific multiprocessor system-on-chip
design. The proposed model is modular, flexible and
scalable. It permits a systematic generation of
multiprocessor architectures for embedded systems-on-chip.
This work is a promising step towards the definition of an
efficient multiprocessor SoC design environment applicable
to a large application domain. This paper focused on the
definition of the architecture model and a systematic design
flow that can be automated. The feasibili ty and
effectiveness of this architecture model were ill ustrated by
design examples showing the scalability of the model. We
have also demonstrated that the use of such a model
shortens significantly the design cycle of complex
applications.
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