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Abstract

An extension of SystemC for mixed-multi level communi-
cation modeling and Interface-based system design is pro-
posed in this paper. SystemCSVprovides a new design unit,
the interface, which enables specification, design and ver-
ification of system communication separately from system
functionality, thus introducing a new quality of system de-
sign into SystemC. The concepts and computational model
of SystemCSVinterfaces are presented together with a de-
sign example, the digital part of a wireless SmartCard
transponder-reader/writer system.

1. Introduction

With growing complexity of integrated circuits and the
possibility to realize whole electronic systems with all hard-
and software components on a single chip, there is a need
for new system design methodologies and accompanying
languages which allow to capture executable system spec-
ifications at a high level of design abstraction early in the
design cycle. Among other approaches to a system level de-
sign language such as SpecC [3], in the last year SystemC
[5] has emerged as a C++ based language for specification
of digital systems. With SystemC, all hard- and software
components of a digital system can be described using one
language which in addition most hard- and software archi-
tects are familiar with. However, currently SystemC does
not extend the modeling capabilities of VHDL or Verilog
HDL but rather resembles them. In particular, the level
of design abstraction is not effectively raised in SystemC,
compared to common HDL’s.

In this paper, we propose an extension of SystemC,
called SystemCSV(the SV superscript is a reference to
SuperVISE, ICL’s design methodology that first used the
concept of interfaces). With this extension, we want to ad-

dress two major challenges designers have to face at the
system level. First, as the complexity of system modules
grows rapidly, they reveal very complex control-dominated
interfaces which are connected to system buses with sophis-
ticated data communication protocols. Therefore, beside
the design and implementation of system functionality, the
proper design ofsystem communicationis more and more
in the focus of the designer. This involves the exploration
of the design space for different communication protocols
regarding their influence on the overall system performance
and implementation cost for the corresponding controller
logic. Second, in large and highly complex systems, differ-
ent parts of the design my be at different levels of design
abstraction. This may stem from the situation that the work
is split onto a number of designer teams which advance with
a different speed. Or, an IP core is used whose simulation
model is at a low level of abstraction with a clock cycle ac-
curate interface while the surrounding design has been mod-
eled at a higher level of abstraction. And finally, concern-
ing testbench reuse, testbenches have mostly to be rewritten
as the design advances to lower abstraction levels because
stimuli become more complex and detailed.

1.1. Overview

SystemCSVattempts to provide a solution for the prob-
lems previously mentioned by introducing a new design unit
to SystemC, called theinterface. The Interface describes
communication between a number of behaviours at differ-
ent levels of abstraction in terms ofinterface items. An in-
terface item describes communication between behaviours
at a specific level of abstraction. Taking the CAN bus proto-
col as an example, an item may represent a complete CAN
bus transaction, a data or address frame, a field within this
frame or just a single bit, represented by a signal state on
the physical bus wire. Figure 1 visualizes the principle of
SystemCSVinterfaces. Modules A and B represent two com-
municating behaviours which are part of a system to be de-
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Figure 1. Mixed multi-level communication
modeling in SystemC SV

signed and which themselves may be at different levels of
design abstraction. In an early stage of the design these
modules are usually represented as asynchronously com-
municating processes and no communicative details such as
data exchange protocols have been fixed. Therefore, com-
munication is modeled with abstract transactionsT. As
the design of the system advances, the module behaviours
will be iteratively refined through decomposition into a set
of lower level behaviours. In the SystemCSVinterface, ab-
stract communication items can be refined accordingly by
decomposing them into a set of lower level items (M1..M4
in Fig. 1). This enables the design of system communi-
cation similar to the design of system functionality. At the
lowest level of interface abstraction, items finally represent
signal states on physical wires. It is an inherent feature of a
SystemCSVinterface to represent an interface itemconcur-
rentlyatall levels of interface abstraction that are described
by means of item compositions. This feature enables mixed
multi-level communication modeling as depicted in Fig. 1.
There is no need for explicit module interface wrappers
that perform the necessary translation of communication
between abstraction levels, e.g. if a module with a signal
level interface wants to communicate with another more ab-
stract module that only understands abstract transactions.
The interface itself will perform the necessary translation
between interface abstraction levels in all directions.

1.2. Related work and motivation

The concept of separating system communication from
system functionality is not new. In [4] a design method-
ology referred to as Interface-based design was proposed
that orthogonalizes functionality and communication of a
digital system, aiming at the separate, independent explo-
ration of the corresponding design spaces. Among other
system level specification languages, SpecC [3] implements
this methodology with its capability to model systems at
the system level as a set of behaviours which communicate
by means of abstract messages bundled in virtual channels.
In the course of specification refinement, the designer can

describe communication in terms of channel functionality,
represented by two distinct behaviours that decompose mes-
sage parameters into a sequence of physical bus signals and
vice versa. Because the design of these control-dominated
behaviours may be time-consuming, the designer usually
assigns standardized communication protocols to the chan-
nels for which the corresponding behaviours are retrieved
from a protocol library. VHDL+, an extension of VHDL for
system level specification [6], also enables communication
modeling in terms of high level message passing between
behaviours. In addition theinterfacedesign unit is provided
which lets the designer specify declarative, hierarchically
structured protocols for the abstract messages instead of re-
quiring the explicit specification of the corresponding com-
posing and decomposing channel behaviours that map the
message to physical bus signal states and vice versa. One
of the main advantages of this concept is that communica-
tion between system modules which are at different levels
of abstraction is established without the need of interface
wrapper modules that translate between the levels of inter-
face abstraction.

In the last years, a number of C++ based system design
languages have been proposed. They are based on C++
class libraries for modeling of hardware-inherent properties
such as timing and concurrency. SystemC is to our knowl-
edge the only language that is purely implemented in C++
and, in contrast to e.g. the Cynapps Hardware Specification
Environment [1] does not require a compiler to translate
the models into C++ code, meaning that the language can
be easily extended by the user by simply adding new C++
classes. In SystemC, high level communication is currently
implemented in form of the Remote Procedure Call (RPC)
mechanism introduced in version 1.1. The RPC mechanism
uses fixed, predefined signaling protocols and does not al-
low to actually design system communication. Also, for
communication across levels of design abstraction explicit
wrapper modules have to be implemented that translate be-
tween RPC level and signal level.

Currently, there is no feasible language and design
environment making the benefits of interface-based sys-
tem design fully available to the designer. Therefore,
SystemCSVwas created to combine the advantages of the in-
terface modeling concepts of VHDL+, the high simulation
speed and HW/SW-domain unifying language approach of
C++ based system modeling and the user extensibility of
SystemC.

2. Interface modeling

2.1. Interface specification

An example for a SystemCSVinterface specification
is given in Lst 1. An interface is declared with the



SC INTERFACE keyword and populated with a set of in-
terface item references. The referenced interface items, in
our case the messageFrame, are declared and implemented
subsequently. Finally, in the interface constructor the logi-
cal ends of the interface between which items are transmit-
ted (Master,Slave) are specified and all item references are
linked with an allocated item of the corresponding type.

SC_INTERFACE(IEC14443) {
sc_SVMessageRef Frame_M;

};

SC_MESSAGE(Frame) {
sc_SVParamArray <sc_uint<8>, 8> data;
sc_SVParamArray <sc_uint<8>, 2> crc;
sc_SVParam <sc_uint<8> > datalen;

SC_MESSAGE_CTOR(Frame) {
FROM << "Master"; TO << "Slave";
TAKES(16,200);
PARAMETER(data);PARAMETER(crc);
PARAMETER(datalen); }

};

SC_INTERFACE_CTOR(IEC14443) {
BETWEEN << "Master" << "Slave";
ALLOCATE_ITEM(Frame, Frame_M);

}

Listing 1. SystemC SVinterface specification

2.2. Interface Item

The basic element of a SystemCSVinterface is thein-
terface item. Interface items represent resources used for
communication between behaviours at a specific level of
abstraction. Listing 2 shows the C++ class model of a
SystemCSVinterface item. In order to have interface items
executed concurrently to other SystemC modules during
simulation, they are simply derived from the scmodule
class.

class sc_SVInterfaceItem : sc_module {

sc_SVInterfaceEnd FROM, TO, BETWEEN;
sc_SVTimer TAKES;
sc_SVParam_base_list PARAMETERS;
sc_SVCompositionScheme COMPOSITION;

void generate(); void consume();
void decompose(); void compose();
void notify(); };

Listing 2. SystemC SVinterface item model

This ensures that they are scheduled and executed by the
SystemC simulation kernel like any other module. A further

advantage of this method is that SystemCSVdoes not make
any modification of the code of the SystemC class library
but hooks onto the well-defined user interface, which should
ensure compatibility with future versions of SystemC.

A SystemCSVinterface item has a number of attributes
which reflect typical properties of communication. So ex-
press theFROM , TO andBETWEEN attributes the fact
that communication is directed and specify that direction
in terms of interface terminals between which a particu-
lar item is transmitted. In Lst. 1, messageFrame would
be transmitted from endMaster to endSlave. Furthermore
does the time-basedTAKES attribute reflect the property
that the transmission of an item consumes an amount of
time. This time attribute can actually be set to a concrete
value in terms of interface clock cycles or to a time span,
which introduces controlled nondeterminism into interface
modeling. This is especially useful in early stages of design
for constraining the design space without actually making a
concrete implementation decision. In the example it would
take between 16 and 200 cycles to transfer messageFrame.
Finally, thePARAMETER attribute describes the informa-
tion content or payload of an interface item. MessageFrame
has three parametersdata, crc anddatalenwhich contain
the user data to be transmitted betweenMasterandSlave.
Currently, three different types of interface items, describ-
ing different levels of communication abstraction, are de-
fined in SystemCSV:

Transaction item. The most abstract SystemCSVinterface
item is the transaction item and is declared with the
SC_TRANSACTIONkeyword. It is used for specification
of a multi-directionalinformation transfer between system
modules, e.g. a data transfer which involves a turnaround
in direction such as handshaking. A transaction item speci-
fication basically looks the same as a message item specifi-
cation, except that the direction attribute is set separately
for each transaction parameter which reflects the multi-
directional information flow.

Message item.In contrast to the transaction item, the mes-
sage item represents aunidirectional information transfer
between system modules and usually describes a specific
part of a transaction. The specification of a message item in
SystemCSVis shown in Lst. 1.

PHYMAP item. This item provides a means for clock-
synchronous mapping of ”virtual” transactions and mes-
sages with their parameters to sequences of physical signal
states, which eventually implement the communication be-
tween system modules. Listing 3 shows a code example for
a PHYMAP item specification.

SC_PHYMAP(MapBit) {
sc_SVSignalRef<bool> XD;
sc_SVParam<bool> XD_val;



SC_PHYMAP_CTOR(MapBit) {
FROM << "Master"; TO << "Slave";
PARAMETER(XD_val);
ASSOCIATE(XD - XD_val);

}
};

Listing 3. PHYMAP item specification

2.3. Interface item composition

The item model has a further element, the COMPOSI-
TION. It describes the implementation of an interface item
at a lower level of abstraction in a declarative style. An item
composition is formed by a set of lower level interface items
whose execution is scheduled relatively to each other in a
particular scheme. Currently, SystemCSVprovides four dif-
ferent composition schemes to the designer (Fig. 2), which
can be arbitrarily combined and should allow for model-
ing of any communication protocol used in practice. Items
can be composed serially or in parallel using the SERIAL
or PARALLEL composition scheme, respectively, and, de-
pending on the value of an item parameter, items can be
repeatedly scheduled (REPEAT scheme) or one item out of
a list of alternatives can be selected (SELECT scheme). An
example for a SystemCSVitem composition is shown in Lst.
4:

SC_MESSAGE(Frame) { ...
SC_MESSAGE_CTOR(Frame) { ...

COMPOSITION(
SERIAL(SoF_M(),

DATA_M(data,datalen),
CRC_M(crc),
EoF_M()))

};

Listing 4. interface item composition

The property of an interface to translate interface item rep-
resentations between all abstraction levels that have been
defined for them implies that item composition schemes
must be reversible and actually reveal two distinct be-
haviours. Thedecomposing behaviourdescribes how the
corresponding item is decomposed in time into a number
of lower level items. Thecomposing behaviourdescribes
the reversed decomposing behaviour, e.g. how a sequence
of lower level items are assembled to form a more abstract
item. These behaviours are implemented in every item’s
compose() and decompose() methods, respectively. Due to
limited space, the behaviours of the composition schemes
are not detailed. It is just pointed out that the demand for
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loop

data
dep.

n times

end

loop
static

start end

start end

start end

n <=> n

n <=> n

n <=> n 0

1

2

n

Item A Item B

Item A

Item C

Item BItem C

Item A Item A Item B

Item AItem A

Item A

Item C

Item B

Figure 2. Item composition schemes in
SystemC SV

reversibility has a consequence for parameter driven com-
position schemes such as the REPEAT and the SELECT
scheme: In the decompositional behaviour, parameter val-
ues determine the number of repeats or select the item to be
executed. However, in the compositional behaviour these
parameter values areestablishedby the composition, e.g. in
the SELECT schemen is set to the value which corresponds
to the consumed item. The REPEAT composition scheme
has two forms concerning its compositional behaviour: The
first form realizes a statically bounded loop, e.g. the number
of itemsA to be consumed is fixed by parametern. The sec-
ond form implements a data dependent loop which is termi-
nated by an itemB that must be different from itemA. The
parametern will then be set to the number of consumed
itemsA.

2.4. Interface computational model

As stated before, the interface represents communication
concurrently at all levels of abstraction, thus enabling mixed
multi-level communication. The computational model for
performing the translation between the abstraction levels
is shown in Fig. 3. If e.g a message item is sent by a
behaviour the following actions are taken by the interface
simulation kernel: The item generate() method is invoked,
which starts the item life timer that has been initialized be-
fore with the value of the TAKES attribute. Concurrently, if
the item has a composition, the item decompose() method is
invoked with the consequence that a number of lower level
items forming the item composition will be generated and
which will in turn invoke their decompose() methods. If the
item composition has PHYMAP items, the PHYMAP item
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between levels of interface abstraction

decompose() method is executed, mapping the item with its
parameters to physical signal states. Through this recursive
item decomposition, all lower level representations of the
item are generated in the interface. If the item had no com-
position, the item life timer would determine the duration
of the item. In case the item has a composition, the time
required to execute it is automatically checked against the
expiration of the item alive timer, and an error would be sig-
naled if the composition execution took longer than the time
specified in the TAKES attribute.

In order to translate an item into higher level represen-
tations, it has to be considered that the item could be ref-
erenced in the composition of different higher level items.
In order to account for this, when generated each item exe-
cutes notify() callbacks to these higher levels items. These
items will then invoke their consume() method, trying to as-
semble themselves according to their composition, by com-
posing the lower level items appearing in the interface over
time. Because an item composition is unambiguous, in the
course of item consumption, the composition of only one
particular item will be satisfied and this item will be re-
ceived by a behaviour listening to the interface. All other
item compositions are abandoned. With this mechanism, a
SystemCSVinterface can translate an abstract transaction or
message into a sequence of signal states or, vice versa, a
signal sequence into a more abstract interface item, while
inherently verifying the conformity of all lower level inter-
face implementations to the timing constraints specified in
higher levels of abstraction.

3. Behavioural modeling extensions

While conventional SystemC modules are connected via
ports by means of signals, in SystemCSVthey can also be
connected viainterface portsand interface signals, (latter
are instances of a particular interface), which enables in-
terface item-based messaging. Interface ports implement
the logical ends of an interface and provide methodssend
andreceivefor sending and receiving message items in be-
haviours, as shown in the code example in Lst. 5. Multi-
directional transactions can be initiated or participated in
behaviours by means of thejoin method. All these methods
implement ablockingcommunication, e.g. their execution
will block the enclosing threads.

SC_MODULE(IEC14443_Master) {
sc_SVInterfacePort<IEC14443> IP;
IP.IMPLEMENTS("Master");
...
IP.send(IP->Frame_M(data,crc,8));

};

Listing 5. Use of interface items in behaviours

4. Design example: Wireless SmartCard
transponder-reader/writer system

For evaluation purposes, SystemCSVhas been applied
to the design of the digital part of a wireless SmartCard
transponder-reader/writer system [2] (Fig. 5). The mo-
bile SmartCard contains the transponder whose core part

SOF DATA EOFCRC

DATA BYTE0 BYTEn

BYTE0 BYTE0

SOF

EOF

FRAME
Field Level

. . .BYTE1

CRC

BYTE DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Bit Level

Byte Level

10 x ’0’

10 x ’0’ 1 x ’1’

2 x ’1’

Figure 4. IEC14443 frame and character trans-
mission format

is a non-volatile FRAM used for storing data such as elec-
tronic signatures. The reader/writer is a stationary terminal
whose task is to read and modify the transponder FRAM.
Transponder and reader/writer communicate using a serial
protocol which conforms to the IEC14443 character and
frame transmission format as shown in Fig. 4. In terms
of SystemCSVinterfaces, communication can be represented



at the abstraction levelsField,ByteandBit. The most ab-
stract interface item is the IEC14443 Frame consisting of
Start/End-of-Frame and checksum fields and a field con-
taining the actual data to be transmitted. This data block
contains a SmartCard command for reading and writing
to the transponder FRAM. The design task was to cre-
ate an abstract model of the transponder/reader-writer sys-
tem with the reader/writer sending commands to the Smart-
Card as well as receiving the SmartCard replies. For the
reader/writer, also a software component for processing of
the SmartCard reply data was to be implemented. Finally
should the abstract model allow an iterative implementa-
tion of the reader/writer and transponder down to RTL level
while enabling the verification of them in the functionally
proven abstract model.

4.1. Design flow

In the first step, both transponder and reader/writer
were described as abstract behavioural models (ABM, Fig.
5a). The reader/writer sends commands to the SmartCard
transponder which executes the desired FRAM access and
sends the result back to the reader/writer. Commands and
replies are exchanged using IEC14443 frames. The inter-
face specification contained just one transaction specifying
this frame. With this abstract system model, a functional
simulation of the system was performed, and the application
software could be implemented. In the next step, the inter-
face specification was refined down to signal level accord-
ing to the protocol specification in Fig. 4 and simulated in
order to verify their correctness (Fig. 5b). Afterwards, the
reader/writer was implemented at RT-Level (Fig. 5c). The
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Figure 5. Interface-based design of a Smart-
Card transponder-reader/writer system

major part of this module is the IEC14443 protocol con-
troller, modeled as explicit FSM. With the transponder still
being at the very abstract behavioural level, the implemen-
tation of the reader/writer was verified by simulation using
the same testbench. It was up to the interface to perform

the translation of IEC14443 frame transactions generated
by the reader/writer from their signal level representation
up to their transaction level counterpart understood by the
transponder, and vice versa to translate abstract frames sent
by the transponder into the signal protocol understood by
the reader/writer. Finally, also the transponder was imple-
mented as RT model and simulated against the reader/writer
(Fig. 5d). Now with the interface still translating the signal
level representation of the IEC14443 frames up to the trans-
action level, the data stream was automatically checked for
protocol errors which would be detected and asserted by the
interface.

In conventional system design, both transponder and
reader/writer, which are control-dominated designs, would
have been specified at RT level with both behaviours being
able to generate or consume IEC14443 transactions at sig-
nal level in order to perform a first system simulation. For
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Figure 6. IEC14443 interface trace in
transponder-reader/writer simulation

protocol checking, a third component implementing a com-
plex automaton that listens to the transmitted signals and
checks it for legal states would have been required. With
SystemCSV, system simulation was possible much earlier
in the design cycle, and the proven abstract executable sys-
tem specification could serve as a simulation environment
through all stages of the design.

Figure 6 gives an impression of the interface tracing ca-
pabilities of SystemCSV. It shows a trace of the IEC14443
interface at all levels of abstraction. For each interface
item, the composition state and parameters are automati-
cally recorded by the SystemCSVinterface trace engine.

4.2. Experimental results

Figure 5a suggests that, due to the high abstraction level
of transponder and reader/writer and abstracted communi-
cation, the simulation performance of the abstract system
specification should be essentially higher compared to the
RTL implementation. In order to investigate into this, a
total of 5 simulations were conducted with transponder,



reader/writer and IEC14443 interface being at different lev-
els of abstraction. In these simulations, 1000 frames of
average length of 8 data bytes were exchanged between
transponder and reader/writer. The time required per frame
for each simulation is listed in Tab. 1. All examples were
compiled with GCC 2.95.2 under Solaris 2.5.1 and run on
a SUN UltraSparc with 200 MHz and 512MB RAM. Table
entries marked ABM and RTL correspond to reader/writer
and transponder at abstract behavioural or RT-level, respec-
tively. For the interface, FL corresponds to Frame level and
SL to Signal level. For comparison purposes, the figures for
a conventional SystemC RT simulation without interface are
shown. The figures show that with the abstract models of

Abstraction Level

Transponder ABM ABM ABM RTL RTL
Reader/Writer ABM ABM RTL RTL RTL
Interface FL SL SL SL -

Time/Frame 1.3ms 0.10s 0.15s 0.3s 0.21s

Table 1. Simulation time per frame for mixed
abstraction level simulation

transponder, reader/writer and interface, simulation speed is
approximately 160 times higher compared to a conventional
RT simulation. However, if the interface is refined to signal
level, speed figures are in the magnitude of RT simulation,
because the number of events generated in the interface is
approximately the number generated in the protocol state
machines of transponder and reader/writer.

5. Conclusion and future work

We presented an extension to SystemC, which lets sys-
tem designers take full advantage of the interface-based de-
sign methodology in terms of raising the abstraction level
in the system specification phase, and designing and veri-
fying system communication separately from functionality.
Future work will address the problem of concurrent use of
the same interface item by different behaviours, which re-
quires the development of concepts for specification of item
arbitration and item queues in SystemCSV.
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