
Behavioral Synthesis with SystemC
�

GeorgeEconomakos,PetrosOikonomakos,IoannisPanagopoulos,
IoannisPoulakisandGeorgePapakonstantinou

NationalTechnicalUniversityof Athens
Departmentof ElectricalandComputerEngineering

ZographouCampus,GR-15773Athens,Greece

E-mail:george@cslab.ece.ntua.gr

Abstract

Having to cope with the continuously increasing com-
plexity of modern digital systems, hardware designers
are considering more and more seriously language based
methodologies for parts of their designs. Last year, the in-
troduction of a new language for hardware descriptions, the
SystemC C++ class library, initiated a closer relationship
between software and hardware descriptions and develop-
ment tools. This paper presents a synthesis environment and
the corresponding synthesis methodology, based on tradi-
tional compiler generation techniques, which incorporate
SystemC, VHDL and Verilog to transform existing algo-
rithmic software models into hardware system implemen-
tations. Following this approach, reusability of software
components is introduced in the hardware world and time-
to-market is decreased, as shown by experimental results.

1. Introduction

Overthelasttwentyyears,advancesin circuit fabrication
technologyhave increaseddevice densitiesandasa conse-
quence,they have increaseddesigncomplexity. To man-
agecontinuouslyemergingtasks,designershavemovedto-
wardshigher levels of abstractionandlanguagebasedde-
signdescriptions.However, eachdesignmustbedescribed,
eventually, at the lowestlevel (e.g. layoutmasks),in order
to be fabricated,throughvarioussynthesisprocesses.This
hasmotivatedtheElectronic Design Automation (EDA) in-
dustry to producesoftware tools, which acceptlanguage
baseddesignspecifications(mostof the times,schematics
canalsobe usedif the useris morefamiliar) andperform

�
This work waspartially fundedby the GreekMinistry of Develop-

ment,GeneralSecretariatfor ResearchandTechnology, projectPENED����������	�

synthesis.

Themostwidely usedHardware Description Languages
(HDLs) todayareVHDL [2] andVerilog [1]. Sincetheir
adoptionasIEEEstandards,they havebeenenthusiastically
adoptedby they EDA industryalso. Today, having over-
comeinitial maturity problems,they areusedin many de-
signhousesall over theworld. Lastyear, a new competitor
cameinto themarket, theSystemCC++ classlibrary [14].
Eventhoughcommercialsynthesisenvironmentsbasedon
SystemCare not available yet, this languagepromisesa
higher level of designabstraction.Sinceit is a C++ class
library, it can operateon software, and thus algorithmic,
systemmodelsand usesoftware developmenttools (C++
compilationenvironments)for simulation.

Algorithmic or behavioral hardwaremodelingintroduce
a higher level of designabstractionfor the EDA industry.
High-level or behavioral synthesis [3, 9, 17], is definedas
the transformationof behavioral circuit descriptionsinto
register-transfer level (RTL) structuraldescriptionsthatim-
plementthe given behavior while satisfyinguserdefined
constraints.

When languagebaseddesignentry is used,high-level
synthesispresentsmany similarities with traditional com-
piler construction(at leastduringthe initial transformation
stages).Therefore,toolsandtechniquesappliedto the lat-
ter, may also be applied to the former if advantageous.
The reasonthat suchapplicationmay be favorableis that,
even thoughhigh-level synthesishasbeenintroducedover
twenty yearsago, someproblemshave to be solved be-
fore it is widely acceptedby both industryandacademia.
Amongthem,high-levelsynthesislacksatheoreticalframe-
work (likeBooleanalgebrafor logic design)thatwouldfur-
theraccelerateresearch.Examplesof hardwaredesignen-
vironmentsbasedon compilationtechniquescanbe found
in [5, 6, 7, 10, 12].

This paperpresentsa high-level hardwarecompilerthat
takes SystemCbehavioral input specificationsand gener-

atesVHDL, Verilog and SystemCRTL output specifica-
tions, after performinghigh-level synthesis.Utilizing this
environment,awholenew hardwaredesignmethodologyis
presented,whichcanstartby writing new or reusingalready
testedsoftware models. The basicbuilding block for the
new environmentis arobustandflexible compilerconstruc-
tion systemcalled Eli [16], which offers declarative, and
thusmoreabstract,waysto describetheproblemsof high-
level synthesisand their solutions. Declarative notations
along with modularity form an abstractionlayer, a meta-
level betweenhardware transformationsand their imple-
mentation.Theperformanceof the overall environmentin
bothexecutionspeedandquality of resultsis very promis-
ing, asshown with experimentalresults.

2. Hardware Compilation Environment

Thedesignenvironmentusedto build hardwaremodels
out of algorithmicspecificationsis based,asstatedabove,
on the Eli compiler constructionsystem. Eli makes ex-
tensive useof the Attribute Grammar (AG) computational
model,originally proposedin [8]. AGs consistof a setof
syntacticrulesandasetof domainspecificvaluescalledat-
tributes.Eachsyntacticrule is associatedwith a numberof
attributesandequations,calledsemanticrules,whichdefine
eachattribute in termsof other attributesof the syntactic
rule (or even of remotesyntacticrules in the caseof Eli).
Largecomputationsbasedon a syntacticallydefinedinput
setcanbeperformedwith AGs. Their advantageis thatthe
programmerdefinestherelationsbetweenattributes,which
mostof the time representcharacteristicvaluesof the in-
put set,andnot the computationstepsneededto calculate
them(loops, conditions,etc). Attribute dependenciesde-
terminetheorderof attributecomputations.Attributescan
hold complex datatypes,eventext templates(which is ex-
tensively usedthecurrentwork to produceoutputin differ-
entlanguages).

2.1. Hardware Transformations Using AGs

Whenlanguagebaseddesignis applied,behavioral cir-
cuit transformationscanbeperformedduringacompilation
phase,using AGs. This happensbecause,compilationis
basedontheparsetreeof abehavioral description,which is
in factasupersetof its dataflow graph,onwhichbehavioral
transformationsareapplied.In this context, schedulingfor
exampleis performed,by decoratingthenonterminalsym-
bolsof theparsesubtreecorrespondingto primitive opera-
tions,with anattributethatis evaluatedasthecontrolstepat
which theoperationwill beperformed.By alteringthese-
mantics,theevaluationrulesarealteredandthus,different
heuristicsareimplemented.

For simpleschedulingheuristics,like ASAP andALAP,
evaluationrulesarevery easyto implementsincedecision
aboutthetime wheneachoperationwill beperformed,de-
pendsontheimmediateinputsandoutputsof theoperation.
By generatinglocaldependenciesbetweeninputandoutput
attributes,whole operatorchainsarescheduled.Using an
automatedcompilerwriting systembasedon AGs,this for-
malismworksasanexecutablespecificationalsoandthus,
a hardwarecompilerperformingASAP or ALAP schedul-
ing to every input behavioral descriptionis automatically
generated.

However, theASAPandALAP schedulingexamplesare
ratherrestrictedandof nopracticaluse.Modernscheduling
andallocationheuristicsrequirecomplicatedcomputations.
To supportthem,an automatedcompilerconstructionsys-
temmustberich in expressivepowerandprovidecomputa-
tionalconstructsthat,alongwith simpleattributeevaluation
rules,candescribeany kind of dataflow graphcomputation.
Suchconstructsareprovidedby theEli compilerconstruc-
tion system.

In brief, four basicadvancedconstructsof Eli canbeap-
plied to defineadvancedhigh-level synthesistransforma-
tions. Thefirst is supportfor iterative attributeevaluations,
which leadsto generalizedloop computationsthroughat-
tribute dependencies(all attributesthat dependon an iter-
ative attribute are also iteratively evaluated). The second
constructis remoteattribute dependency operators,which
lead to a multi-passand global attribute evaluationalgo-
rithm, transparentto theuser(theuserwritesdependencies
andthesystemdeterminesthecorrectvisit sequencewhich
will satisfythem). The third constructis the chaindepen-
dency operator, which evaluatesandpropagatesthe value
of an attribute at all nodesof the parsetree,during a left-
to-rightdepth-firsttraversal.Thechaindependency maybe
usedto forcemultiple passesthroughall nodesof theparse
tree.Thefinal advancedconstructis thedependency opera-
tor, usedto describedependentcomputationsin time. That
is, thecomputationat theleft of theoperator, usuallyanat-
tributeevaluation,will beexecutedafterevaluatinga list of
otherattributes,foundat theright, regardlessof theirvalues
(moredetailsaboutEli canbefoundin [16]).

Theseconstructscanbeput to usefor thedesignof ex-
ecutableand formal descriptionsof advancedtransforma-
tions,likeresourceconstrainedlist scheduling[3]. For each
operatortype, ready operatorsare insertedin a different
priority list, using the operator’s modality (ALAP-ASAP
value)asits priority. Iteratingthroughtheavailablecontrol
steps,operatorsarescheduledaslongasresourcesareavail-
able. This algorithmcanbe expressedusingEli advanced
specificationconstructs,in orderto be performedduring a
compilationphase. This specification,in pseudocode,is
givenbelow.

At each operator node:

compute ASAP
compute ALAP
compute modality
At root of the parse tree:
Cstep=1
ITERATE UNTIL all operators are scheduled
With a chain:
for each ready operator put its modality
into a root list attribute (one for each
operator type)

At each operator node:
if ready and modality has a position in
list such that resources are available,
then schedule it at root.Cstep and make
scheduled=true

At root of the parse tree:
Cstep=Cstep+1

END ITERATE

As a secondrepresentative example,considerthe prob-
lem of optimumregisterallocationandthe left-edgealgo-
rithm[3] usedto solveit. Foreachvariableof thebehavioral
description,the2-tuple(StartTime,EndTime) repre-
sentsits lifetime interval. Variablesnot yet mappedto reg-
istersareinsertedin a list in ascendingorderwith theirstart
timesastheprimarykey, andin descendingorderwith their
endtimesasthesecondarykey. Iteratingthroughavailable
registers,compatiblevariablesaredetectedandmappedto
thesameregister. As in thecaseof list scheduling,this al-
gorithmcanalsobeexpressedto work duringacompilation
phase,usingadvancedspecificationconstructs.This spec-
ification in pseudocode,implementedusingEli syntaxin a
straightforwardmanner, is givenbelow.

At each variable node:
compute start
compute end
At root of the parse tree:
reg=1
ITERATE UNTIL all operators are scheduled
At root of the parse tree:
last=0

With a chain:
put each not mapped variable into a root
list attribute

At each variable node:
if not mapped, has start � root.last
and all previous opera-

tors in list can not
be mapped, map it to register root.reg,
make root.last=end, delete it from list
and make mapped=true

At root of the parse tree:
reg=reg+1

END ITERATE

In this way, thebasicoperationsof high-level synthesis
areperformedin a compilergeneratorenvironment.How-

ever, furtherfunctionality is required.Resourceconstraints
aremaintainedusinga symboltabletypeof construct,like
in [6]. Timing constraintsand interfacespecificationsare
given following a specialsyntax,andplay the role of ini-
tial valuesfor schedulingattributes[11]. User interaction
is throughTcl/Tk scripts,whichpresentagraphicalview of
the synthesizeddataflow graphof the algorithmicdescrip-
tion alongwith its textualspecification.

2.2. Language Interfaces

With themethodologypresentedin theprevioussubsec-
tion, the parsetree of an input behavioral specificationis
transformedinto a structuralRTL description.However its
effectivenessdependson the input andoutputlanguagein-
terfaces,which integrate the proposedsystemwith other
componentsin the designautomationprocess. The pre-
sentedsystemincludesone input languageinterface, for
SystemC,andthreeoutputlanguageinterfaces,for VHDL,
VerilogandSystemC.

The input languageinterfacecorrespondsto the syntax
of theinput behavioral specificationandis givenin a sepa-
ratefile, asa setof productionsin Eli. SystemChasbeen
chosenastheinput languagebecauseit is basedon a tradi-
tional programminglanguageandmay look morefamiliar
for writing behavioral models.

The output languageinterfacesproducesynthesizable
VHDL andVerilog architecturaldescriptions,asproduced
afterhigh-level synthesis,whichcanbeusedat lower levels
of thesynthesisprocess.Furthermorethesamearchitectural
detailsandthesamearchitecturaldescriptionstyleisusedto
generatearchitecturalSystemCdescriptionsalso.With this
output,pre-synthesisandpost-synthesissimulationresults
canbeobtainedfrom thesametestpatterngeneratorandin
thefuture, if SystemCsynthesizersbecomeavailable,RTL
synthesiswill alsobeperformed.

To generatearchitecturaldescriptions,eachoutput lan-
guageinterface generatelanguageconstructsthat corre-
spondto registersand functional units. Registersare de-
scribed in VHDL with a processthat includes the if
clk=’1’ and clk’event construct and in Verilog
with thealwaysblockalways @ (posedge clk). A
similar constructin SystemCis to declarea memberfunc-
tion asbeingsensitive_pos(clk). Functionalunits
arestraightforwardto describe.They correspondto opera-
tors in expressions,providedthecorrectdatatypesandop-
eratorfunctionsareavailable(sometimes,they canbefound
in specialpurposelibrary units).

Under the Eli environment,output for all languagesis
producedusing the Pattern-based Text Generator (PTG)
tool. A PTG specificationis a set of namedpatternsde-
scribing the structureand textual componentsof the out-
put description. Each patterncorrespondsto a function,

whichyieldsaninternalrepresentationof apatternapplica-
tion. Thesefunctionsarecalledat appropriatenodesof the
parsetree. Their argumentsareeitherattributescalculated
duringhigh-level synthesis,or specific,syntaxbasedinfor-
mationabouttheparticulartreenode(like thefunctionality
of an operator- addition,subtraction,multiplication, divi-
sion, etc.). The result of thesefunction calls is a pointer
attribute, which points to ready-to-be-outputtext patterns.
All readypatternsare actually output at a later phaseby
the system,after all transformationshave beenperformed.
So,thewholesynthesisprocesscanbesplit into threeparts:
high-level synthesistransformationsthroughattributeeval-
uations,patternpreparationwith PTG and finally system
initiated patternoutput. The conceptof text patternsat-
tachedto treenodesmakesoutputcodingvery flexible, be-
causeit supportsmodularandreusablecodingtechniques.

As an example,considerVHDL codingof a functional
unit that is requiredto work at a specificcontrolstep.The
following codefragmentis required.

if (present_state=state1) then
a1<=a2+a3;

endif;

Suchcodingisgeneratedusingthefollowinggeneraltext
pattern,calledifframe (\n and\t arethe newline and
tabcharacters).

ifframe : "\t\t\tif present_state=state"
$1 " then\n"

"\t\t\t\t" $2 "<=" $3 $4 $5
";\n\t\t\tendif;"

Theifframe patterninstructsEli to generatethefunc-
tion
������������������ , which takesfive arguments($1, $2,
$3, $4 and $5 in the above text) and when called, re-
turns a pointer to a piece of code with all arguments
placedasthepatterndictates.This function is calledat all
nodesof the parsetree that have the form � �����!��"#�#�!$&%
� �'�����($*),+-� ���.����"��!��� �'�����($*)�/ asfollowing.

������������!���0�213� �'������"#�#�!$54 687(9:� �'�����("#�#�!$54 �';<��68�(9
� �'�����($*) + 4 �';<�26=��9>� �'������"��!��4 ��;3�26=��9

� �'������$*) / 4 ��;3�26=��?

where 687 is thecontrolstepwhenoperationis to beex-
ecutedand ��;3�26=� is a string attribute that holdsthe lexical
valuesof thecorrespondingtokens.

3. Design Methodology

The designenvironmentpresentedin the previous sec-
tion supporta new algorithmic level designmethodology
thatcantransformsoftwareinto hardwaresystemmodels.

Underthismethodology, adesignstartsby writing anew
or reusinga pre-existing software implementationof the
algorithm underimplementationusing the C++ language.
The softwaremodel is testedwith the correspondingsoft-
waredevelopmentenvironment.Next C++ is changedinto
SystemCin a straightforwardway andtiming is introduced
to the design. With the samesoftwaredevelopmentenvi-
ronmentthis initial hardware model is testedagainstthe
softwaremodel.Next, eachmemberfunctionof thebehav-
ioral SystemCimplementationis passedthroughthe syn-
thesisenvironmentpresentedabove. From the VHDL and
Verilogoutputs,synthesisgoesonuntil thefinal implemen-
tationis reached.TheSystemCoutputreplacespartsof the
initial hardwaremodelandthroughsimulation,it canval-
idatethe resultsof high-level synthesiswith the sametest
vectorgenerator.

The effectivenessof the proposedmethodologywill be
shown with experimentalresults.

4. Experimental Results

The presentedsynthesisenvironment has been found
to provide notableadvantages,especiallyfor researchers.
This is dueto thefactthatthetransformationspecifications
neededaredeclarativeandthus,verycloseto theactualde-
scriptionof theheuristicthey implement.This makesthem
flexible andeasyto manipulateandcauseminor modifica-
tions,which is crucialfor new researchideas.

Another advantageis that all specificationsare modu-
lar, soaproblemcaneasilybepartitionedinto subproblems
with separatespecifications.Whencommonsubproblems
arefound,reusablespecificationsmaybewritten. Relevant
to this is the fact that the Eli systemincludesa library of
specifications,for somecommonsubproblems,which are
easilyavailable.

However, a questionthat had to be answeredwas the
efficiency of the proposedmethodology. For this reason
testswere conductedwith a numberof randomly gener-
atedbenchmarkcircuits, a numberof benchmarkcircuits
foundin [4] anda completeexampleof a medicalapplica-
tion foundin [15].

Fromtherandomlygeneratedbenchmarks,theexecution
speedof the environmentwas measured.Table 1 shows
executiontimes for experimentswith differentscheduling
heuristics,usinga Pentium166MHzLinux basedworksta-
tion. It is shown that thenew environmentcanhandleboth
smallandlargeexperimentsin considerabletime.

10 50 100
nodes nodes nodes

ASAP 0.02sec 0.09sec 0.17sec
ALAP 0.02sec 0.09sec 0.18sec
LIST 0.03sec 0.10sec 0.20sec

Table 1. Execution times for randoml y gener-
ated cir cuits

From the benchmarkstaken from [4], the final results
were comparedwith resultsobtainedfrom equivalentbe-
havioral specifications,passedthrough the SynopsysBe-
havioral Compiler [13]. The resultsof the proposedenvi-
ronmentusedresourcesthatrangedfrom 16%lessthanthe
correspondingresultfrom Behavioral Compilerto 5%more
than the correspondingresult from the Behavioral Com-
piler.

Finally, theexamplefoundin [15] implementsa feature
detectionalgorithm, which consistsof five computational
components,a low-passfilter, a high-passfilter, a deriva-
tion, a squaringanda moving window integration. A soft-
waremodel for eachcomponentis given in [15]. All five
componentswerewritten in SystemCandpassedthrough
the proposedenvironment separately. At the sametime
thesoftwaremodelsweremanuallytranslatedinto VHDL,
without changingcodingstyle. Sincethespecificsoftware
modelsusedcommonandsimpleconstructs,it turnedout
thatthemanuallygeneratedVHDL codewassynthesizable
by commercialRTL synthesizers.So both the automati-
cally generatedoutputof theproposedenvironmentandthe
manualdesignwerepassedthroughtheXilinx’ sFoundation
Express[18] synthesizerandimplementationenvironment,
usingdifferentsynthesisconstraints(bit width of operands,
targetlibrary, etc).Theresultsof theproposedenvironment
usedresourcesthat rangedfrom 7% less than the corre-
spondingresultfrom FoundationExpressto 6% morethan
thecorrespondingresultfrom FoundationExpress.

5. Conclusion

This paperhaspresenteda new designenvironmentfor
high-level hardware synthesis,involving VHDL, Verilog
and the recently introducedSystemC.The corresponding
designmethodologyutilizesa traditionalcompilergenera-
tor, to implementbehavioral transformationsandautomati-
cally translateexistingsoftwareprojectsinto hardware.Ex-
perimentshave shown that this approachoffersadvantages
in designspaceexploration,without compromisingeither
executiontimes or quality of results. Moreover, the pre-
sentedenvironmentmakesextensiveuseof declarativepro-
grammingconstructsandthus,it standsasa meta-level be-

tweenhardwaretransformationsandtheir implementation.
Suchtoolsetscanbe proven valuablein fastevaluationof
new researchideasandtechniquesin thefield.

References

[1] J. Bhasker. A Verilog HDL Primer, Second Edition. Star
GalaxyPublishing,1999.

[2] J. Bhasker. A VHDL Primer, Third Edition. PrenticeHall,
1999.

[3] G. De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[4] N. Dutt andC. Ramachandran.Benchmarksfor the 1992
high-level synthesisworkshop. TechnicalReport92-108,
UCI, 1992.

[5] G. Economakos,G. Papakonstantinou,andP. Tsanakas.An
attribute grammarapproachto high-level automatedhard-
ware synthesis. Information and Software Technology,
37(9):493–502,1995.

[6] G. Economakos, G. Papakonstantinou,and P. Tsanakas.
AGENDA: An attributegrammardrivenenvironmentfor the
designautomationof digital systems.In Design Automation
and Test in Europe Conference and Exhibition, pages933–
934.ACM/IEEE,1998.

[7] K. KeutzerandW. Wolf. Anatomyof a hardwarecompiler.
In Conference on Programming Language Design and Im-
plementation, pages95–104.ACM SIGPLAN,1988.

[8] D. E. Knuth. Semanticsof context-free languages.Mathe-
matical Systems Theory, 2(2):127–145,1968.

[9] Y.-L. Lin. Recentdevelopmentin highlevel synthesis.ACM
Transactions on Design Automation of Electronic Systems,
2(1):2–21,1997.

[10] J.Oberg, A. Kumar, andA. Hemani.Grammar-basedhard-
ware synthesisfrom port-size independentspecifications.
IEEE Transactions on Very Large Scale Integration Systems,
8(2):184–194,2000.

[11] I. Poulakis,G. Economakos,andP. Tsanakas.Interactionin
languagebasedsystemlevel designusinganadvancedcom-
piler generatorenvironment. In Workshop on VLSI, pages
97–102.IEEE/CS,2000.

[12] A. Seawright and F. Brewer. Clairvoyant: A synthesis
systemfor production-basedspecification. IEEE Transac-
tions on Very Large Scale Integration Systems, 2(2):172–
185,1994.

[13] Synopsys. Behavioral Compiler User Guide Version
1999.10, 1999.

[14] Synopsys,CoWare,FrontierDesign. SystemC Version 1.0
User’s Guide, 2000.

[15] W. J. Tompkins. Biomedical Digital Signal Processing: C-
Language Examples and Laboratory Experiments for the
IBM PC. PrenticeHall, 1995.

[16] W. M. Waite.An executablelanguagedefinition.ACM SIG-
PLAN Notices, 28(2):21–40,1993.

[17] R. A. WalkerandS.Chaudhuri.High-level synthesis:Intro-
ductionto theschedulingproblem. IEEE Design & Test of
Computers, 12(2):60–69,1995.

[18] Xilinx. Foundation Series 2.1i User Guide, 1999.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

