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Abstract

Having to cope with the continuously increasing com-
plexity of modern digital systems, hardware designers
are considering more and more seriously language based
methodologies for parts of their designs. Last year, the in-
troduction of a new languagefor hardware descriptions, the
SystemC C++ class library, initiated a closer relationship
between software and hardware descriptions and develop-
ment tools. Thispaper presents a synthesis environment and
the corresponding synthesis methodology, based on tradi-
tional compiler generation techniques, which incorporate
SystemC, VHDL and Verilog to transform existing algo-
rithmic software models into hardware system implemen-
tations. Following this approach, reusability of software
components is introduced in the hardware world and time-
to-market is decreased, as shown by experimental results.

1. Introduction

Overthelasttwentyyearsadwancesn circuitfabrication
technologyhave increasedlevice densitiesandasa conse-
guencethey have increaseddesigncompleity. To man-
agecontinuouslyemepgingtasks,designersiave movedto-
wardshigherlevels of abstractionrandlanguagebasedde-
signdescriptionsHowever, eachdesignmustbe described,
eventually at the lowestlevel (e.g. layoutmasks),in order
to be fabricatedthroughvarioussynthesigprocessesThis
hasmotivatedthe Electronic Design Automation (EDA) in-
dustry to producesoftware tools, which acceptlanguage
baseddesignspecificationdmostof the times, schematics
canalsobe usedif the useris morefamiliar) and perform
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synthesis.

Themostwidely usedHardware Description Languages
(HDLs) todayare VHDL [2] andVerilog [1]. Sincetheir
adoptionas|EEE standardsthey have beenenthusiastically
adoptedby they EDA industryalso. Today having over-
comeinitial maturity problemsthey areusedin mary de-
signhousesall overthe world. Lastyear, a nev competitor
cameinto the market, the SystemCC++ classlibrary [14].
Eventhoughcommercialsynthesisrnvironmentsbasedon
SystemCare not available yet, this languagepromisesa
higherlevel of designabstraction.Sinceit is a C++ class
library, it can operateon software, and thus algorithmic,
systemmodelsand use software developmenttools (C++
compilationervironments)or simulation.

Algorithmic or behavioral hardwaremodelingintroduce
a higherlevel of designabstractiorfor the EDA industry
High-level or behavioral synthesis [3, 9, 17], is definedas
the transformationof behaioral circuit descriptionsinto
register-transfer level (RTL) structuraldescriptionghatim-
plementthe given behaior while satisfyinguserdefined
constraints.

When languagebaseddesignentry is used, high-level
synthesispresentamary similarities with traditional com-
piler construction(at leastduring the initial transformation
stages).Therefore tools andtechniquesappliedto the lat-
ter, may also be appliedto the former if advantageous.
The reasonthat suchapplicationmay be favorableis that,
eventhoughhigh-level synthesishasbeenintroducedover
twenty yearsago, some problemshave to be solved be-
fore it is widely acceptedoy both industry and academia.
Amongthem,high-level synthesidacksatheoreticaframe-
work (like Booleanalgebréfor logic design)thatwould fur-
theraccelerateesearch Examplesof hardwaredesignen-
vironmentsbasedon compilationtechniquesanbe found
in[5,6,7,10,12].

This paperpresentsa high-level hardwarecompilerthat
takes SystemCbehavioral input specificationsand gener



atesVHDL, Verilog and SystemCRTL output specifica-
tions, after performinghigh-level synthesis.Utilizing this

ervironment,awholenew hardwaredesignmethodologyis

presentedwhich canstartby writing new or reusingalready
testedsoftware models. The basicbuilding block for the
new ernvironmentis arobustandflexible compilerconstruc-
tion systemcalled Eli [16], which offers declaratve, and
thusmoreabstractwaysto describethe problemsof high-
level synthesisand their solutions. Declaratve notations
alongwith modularity form an abstractionlayer, a meta-
level betweenhardware transformationsand their imple-
mentation. The performanceof the overall environmentin

both executionspeedandquality of resultsis very promis-
ing, asshavn with experimentaresults.

2. Hardware Compilation Environment

The designervironmentusedto build hardwaremodels
out of algorithmic specificationss based as statedabove,
on the Eli compiler constructionsystem. Eli makes ex-
tensve useof the Attribute Grammar (AG) computational
model, originally proposedn [8]. AGs consistof a setof
syntacticrulesanda setof domainspecificvaluescalledat-
tributes.Eachsyntacticrule is associateavith a numberof
attributesandequationscalledsemanticules,whichdefine
eachattribute in termsof other attributesof the syntactic
rule (or even of remotesyntacticrulesin the caseof Eli).
Large computationsdasedon a syntacticallydefinedinput
setcanbe performedwith AGs. Their advantages thatthe
programmedefinestherelationsbetweenattributes,which
most of the time representharacteristiozaluesof the in-
put set,and not the computationstepsneededo calculate
them (loops, conditions, etc). Attribute dependenciede-
terminethe orderof attribute computations Attributescan
hold complex datatypes,eventext templategwhich is ex-
tensvely usedthe currentwork to produceoutputin differ-
entlanguages).

2.1. Hardware Transformations Using AGs

Whenlanguagebaseddesignis applied,behaioral cir-
cuittransformationganbeperformedduringa compilation
phase,using AGs. This happenshecausecompilationis
basedntheparsetreeof abehaioral descriptionwhichis
in factasupersebf its dataflav graph,onwhich behaioral
transformationsreapplied. In this context, schedulingfor
exampleis performed by decoratinghe nonterminalsym-
bols of the parsesubtreecorrespondindo primitive opera-
tions,with anattributethatis evaluatedasthe controlstepat
which the operationwill be performed.By alteringthe se-
mantics,the evaluationrulesarealteredandthus, different
heuristicsareimplemented.

For simpleschedulingheuristicsJike ASAP andALAP,
evaluationrulesarevery easyto implementsincedecision
aboutthetime wheneachoperationwill be performedde-
pendsontheimmediatenputsandoutputsof theoperation.
By generatindocal dependenciesetweerinputandoutput
attributes,whole operatorchainsare scheduled.Using an
automatedcompilerwriting systembasedon AGs, this for-
malismworks asan executablespecificatioralsoandthus,
a hardwarecompilerperformingASAP or ALAP schedul-
ing to every input behavioral descriptionis automatically
generated.

However, theASAP andALAP schedulingexamplesare
ratherrestrictecandof no practicaluse.Modernscheduling
andallocationheuristicsrequirecomplicateccomputations.
To supportthem,an automateccompilerconstructionsys-
temmustberich in expressve powerandprovide computa-
tional constructghat,alongwith simpleattribute evaluation
rules,candescribeary kind of dataflav graphcomputation.
Suchconstructsareprovided by the Eli compilerconstruc-
tion system.

In brief, four basicadvancedconstructf Eli canbeap-
plied to define advancedhigh-level synthesistransforma-
tions. Thefirst is supportfor iterative attribute evaluations,
which leadsto generalizedoop computationghroughat-
tribute dependenciegall attributesthat dependon an iter-
ative attribute are also iteratively evaluated). The second
constructis remoteattribute dependeng operatorswhich
lead to a multi-passand global attribute evaluationalgo-
rithm, transparento the user(the userwritesdependencies
andthe systemdetermineghe correctvisit sequencevhich
will satisfythem). The third constructis the chaindepen-
deng operator which evaluatesand propagateshe value
of an attribute at all nodesof the parsetree, during a left-
to-right depth-firsttraversal. Thechaindependengmaybe
usedto force multiple passeshroughall nodesof theparse
tree. Thefinal advancedconstructs the dependengopera-
tor, usedto describedependentomputationsn time. That
is, the computatiorat the left of the operatoyusuallyanat-
tribute evaluation,will be executedafterevaluatinga list of
otherattributes foundattheright, regardles®of theirvalues
(moredetailsaboutEli canbefoundin [16]).

Theseconstructcanbe put to usefor the designof ex-
ecutableand formal descriptionsof advancedtransforma-
tions, like resourceconstrainedist schedulind3]. For each
operatortype, ready operatorsare insertedin a different
priority list, using the operators modality (ALAP-ASAP
value)asits priority. Iteratingthroughthe availablecontrol
stepspperatorarescheduledslongasresourcesreavail-
able. This algorithmcanbe expressedusing Eli advanced
specificationconstructsjn orderto be performedduring a
compilationphase. This specification,in pseudocodeis
givenbelow.

At each operator node:



comput e ASAP

comput e ALAP

conpute nodality

At root of the parse tree:
Cstep=1

| TERATE UNTIL all
Wth a chain:
for each ready operator put its nodality
into a root list attribute (one for each
operator type)

At each operator node:
if ready and nodality has a position in
list such that resources are avail abl e,
then schedule it at root.Cstep and maeke
schedul ed=true

At root of the parse tree:
Cst ep=Cst ep+1

END | TERATE

operators are schedul ed

As a secondrepresentatie example,considerthe prob-
lem of optimumregisterallocationandthe left-edgealgo-
rithm[3] usedo solwveit. For eachvariableof thebehaioral
descriptionthe 2-tuple( St art Ti me, EndTi ne) repre-
sentsits lifetime interval. Variablesnot yet mappedo reg-
istersareinsertedn alist in ascendingrderwith their start
timesasthe primarykey, andin descendingrderwith their
endtimesasthe secondarykey. lteratingthroughavailable
registers,compatiblevariablesare detectecand mappedo
the sameregister As in the caseof list schedulingthis al-
gorithmcanalsobeexpressedo work duringa compilation
phase usingadwancedspecificationconstructs.This spec-
ification in pseudocodémplementecusingEli syntaxin a
straightforvardmanneyis givenbelow.

At each vari abl e node
conpute start
conpute end
At root of the parse tree
reg=1
| TERATE UNTIL all operators are schedul ed
At root of the parse tree
| ast =0
Wth a chain:
put each not mapped variable into a root
list attribute
At each vari abl e node:
i f not mapped, has start>root.| ast
and all previous opera-
tors in list can not
be nmapped, nmap it to register root.reg,
make root.last=end, delete it fromlist
and nmake nmapped=true
At root of the parse tree
reg=reg+l
END | TERATE

In this way, the basicoperationsof high-level synthesis
areperformedin a compilergeneratoernvironment. How-

ever, furtherfunctionality is required.Resourceconstraints
aremaintainedusinga symboltabletype of constructike
in [6]. Timing constraintsand interfacespecificationsare
givenfollowing a specialsyntax,and play the role of ini-
tial valuesfor schedulingattributes[11]. Userinteraction
is throughTcl/Tk scripts,which presentgraphicalview of
the synthesizedlataflav graphof the algorithmic descrip-
tion alongwith its textual specification.

2.2. Language I nterfaces

With themethodologypresentedn the previoussubsec-
tion, the parsetree of an input behaioral specificationis
transformednto a structuralRTL description.However its
effectivenesslepend®n the input andoutputlanguagen-
terfaces,which integrate the proposedsystemwith other
componentsn the designautomationprocess. The pre-
sentedsystemincludesone input languageinterface, for
SystemCandthreeoutputlanguagenterfacesfor VHDL,
Verilog andSystemcC.

The input languageinterfacecorrespondgo the syntax
of theinput beharioral specificationandis givenin a sepa-
ratefile, asa setof productionsin Eli. SystemChasbeen
chosenastheinputlanguagebecausét is basedon a tradi-
tional programminglanguageand may look more familiar
for writing behaioral models.

The output languageinterfacesproducesynthesizable
VHDL and Verilog architecturaldescriptionsas produced
afterhigh-level synthesiswhich canbeusedatlowerlevels
of thesynthesiprocessFurthermorgéhesamearchitectural
detailsandthesamearchitecturatlescriptiorstyleis usedto
generatarchitecturalSystemCdescriptionsalso. With this
output, pre-synthesisand post-synthesisimulationresults
canbeobtainedfrom the sametestpatterngeneratoandin
thefuture,if SystemCsynthesizerbecomeavailable,RTL
synthesiswill alsobe performed.

To generatearchitecturaldescriptions gachoutputlan-
guageinterface generatelanguageconstructsthat corre-
spondto registersand functional units. Registersare de-
scribedin VHDL with a processthat includesthe i f
clk="1" and cl k’ event constructand in Verilog
with the alwaysblock al ways @ (posedge cl k). A
similar constructin SystemGCis to declarea memberfunc-
tion asbeingsensi ti ve_pos(cl k) . Functionalunits
arestraightforvardto describe.They correspondo opera-
torsin expressionsprovidedthe correctdatatypesandop-
eratorfunctionsareavailable(sometimesthey canbefound
in specialpurposdibrary units).

Underthe Eli ervironment,outputfor all languagess
producedusing the Pattern-based Text Generator (PTG)
tool. A PTG specificationis a setof namedpatternsde-
scribing the structureand textual componentof the out-
put description. Each patterncorrespondgo a function,



whichyieldsaninternalrepresentationf a patternapplica-
tion. Thesefunctionsarecalledat appropriatenodesof the
parsetree. Their argumentsare eitherattributescalculated
during high-level synthesispr specific,syntaxbasednfor-
mationaboutthe particulartreenode(lik e the functionality
of anoperator- addition, subtractionmultiplication, divi-
sion, etc.). The resultof thesefunction calls is a pointer
attribute, which pointsto ready-to-be-outputext patterns.
All ready patternsare actually output at a later phaseby
the system after all transformationdiave beenperformed.
So,thewholesynthesigprocessanbesplitinto threeparts:
high-level synthesigransformationshroughattribute eval-
uations, patternpreparationwith PTG and finally system
initiated patternoutput. The conceptof text patternsat-
tachedo treenodesmakesoutputcodingvery flexible, be-
causdt supportanodularandreusablecodingtechniques.

As an example,considerVHDL codingof a functional
unit thatis requiredto work at a specificcontrol step. The
following codefragmentis required.

if (present_state=statel) then
al<=a2+a3;
endi f;

Suchcodingis generatedisingthefollowing generatext
pattern,calledi f f rame (\ n and\ t arethe newline and
tabcharacters).

ifframe : "\t\t\tif present_state=state"

$1 " then\n"
"NtltVeVtt $2 "<=" $3 $4 $5
"sAn\t\t\tendif;"

Thei f f r ame patterninstructsEli to generatehefunc-
tion PTGif frame, which takesfive aguments($1, $2,
$3, $4 and $5 in the above text) and when called, re-
turns a pointer to a piece of code with all alguments
placedasthe patterndictates. This functionis calledat all
nodesof the parsetree that have the form operation —
operand; operator operands asfollowing.

PTG@Gif frame(operation.cs, operation.place,
operand, .place, operator.place,

operands.place)

wherecs is the control stepwhenoperationis to be ex-
ecutedandplace is a string attribute that holdsthe lexical
valuesof the correspondingokens.

3. Design M ethodology

The designervironmentpresentedn the previous sec-
tion supporta new algorithmic level designmethodology
thatcantransformsoftwareinto hardwaresystemmodels.

Underthis methodologya designstartsby writing anew
or reusinga pre-«isting software implementationof the
algorithm underimplementationusing the C++ language.
The software modelis testedwith the correspondingoft-
waredevelopmentervironment. Next C++ is changednto
System@n a straightforvardway andtiming is introduced
to the design. With the samesoftware developmentervi-
ronmentthis initial hardware modelis testedagainstthe
softwaremodel. Next, eachmembeifunction of the beha-
ioral SystemCimplementationis passedhroughthe syn-
thesiservironmentpresentedibore. Fromthe VHDL and
Verilog outputs,synthesiggoeson until thefinal implemen-
tationis reached The SystemCoutputreplacegartsof the
initial hardware modelandthroughsimulation,it canval-
idate the resultsof high-level synthesiswith the sametest
vectorgenerator

The effectivenessf the proposedmethodologywill be
shavn with experimentakesults.

4. Experimental Results

The presentedsynthesiservironment has been found
to provide notableadvantagesgespeciallyfor researchers.
Thisis dueto thefactthatthetransformatiorspecifications
neededhredeclaratve andthus,very closeto the actualde-
scriptionof the heuristicthey implement. This makesthem
flexible andeasyto manipulateand causeminor modifica-
tions,whichis crucialfor new researchdeas.

Another advantageis that all specificationsare modu-
lar, soaproblemcaneasilybe partitionedinto subproblems
with separatespecifications.Whencommonsubproblems
arefound,reusablespecificationsnay bewritten. Relevant
to this is the fact that the Eli systemincludesa library of
specificationsfor somecommonsubproblemswhich are
easilyavailable.

However, a questionthat had to be answeredwvas the
efficiengy of the proposedmethodology For this reason
testswere conductedwith a numberof randomly gener
ated benchmarkcircuits, a numberof benchmarkcircuits
foundin [4] anda completeexampleof a medicalapplica-
tion foundin [15].

Fromtherandomlygeneratetbenchmarksheexecution
speedof the ervironmentwas measured. Table 1 shavs
executiontimes for experimentswith differentscheduling
heuristics,usinga Pentium166MHz Linux basedwvorksta-
tion. It is showvn thatthe new ervironmentcanhandleboth
smallandlarge experimentsn considerabléime.



10 50 100
nodes nodes nodes
ASAP | 0.02sec| 0.09sec| 0.17sec
ALAP | 0.02sec| 0.09sec| 0.18sec
LIST | 0.03sec| 0.10sec| 0.20sec

Table 1. Execution times for randoml y gener-
ated cir cuits

From the benchmarkgaken from [4], the final results
were comparedwith resultsobtainedfrom equialentbe-
havioral specificationspassedhroughthe SynopsysBe-
havioral Compiler[13]. The resultsof the proposedenvi-
ronmentusedresourceshatrangedirom 16%lessthanthe
correspondingesultfrom Behavioral Compilerto 5% more
than the correspondingesult from the Behavioral Com-
piler.

Finally, the examplefoundin [15] implementsa feature
detectionalgorithm, which consistsof five computational
componentsa low-passfilter, a high-pasdfilter, a deriva-
tion, a squaringanda moving window integration. A soft-
ware modelfor eachcomponenis givenin [15]. All five
componentsvere written in SystemCand passedhrough
the proposedervironment separately At the sametime
the softwaremodelswere manuallytranslatednto VHDL,
without changingcodingstyle. Sincethe specificsoftware
modelsusedcommonand simple constructsjt turnedout
thatthe manuallygenerated/HDL codewassynthesizable
by commercialRTL synthesizers.So both the automati-
cally generateautputof the proposecervironmentandthe
manualdesignwerepassedhroughtheXilinx’ sFoundation
Expresq18] synthesizeandimplementatiorervironment,
usingdifferentsynthesisonstraintgbit width of operands,
targetlibrary, etc). Theresultsof the proposecervironment
usedresourceghat rangedfrom 7% lessthan the corre-
spondingresultfrom FoundationExpresso 6% morethan
the correspondingesultfrom FoundationExpress.

5. Conclusion

This paperhaspresentedh new designernvironmentfor
high-level hardware synthesis,involving VHDL, Verilog
and the recentlyintroducedSystemC.The corresponding
designmethodologyutilizes a traditional compilergenera-
tor, to implementbehavioral transformationsndautomati-
cally translatesxisting softwareprojectsinto hardware. Ex-
perimentshave shavn thatthis approactoffers advantages
in designspaceexploration, without compromisingeither
executiontimes or quality of results. Moreover, the pre-
senteckrvironmentmakesextensie useof declaratve pro-
grammingconstructsandthus,it standsasa meta-level be-

tweenhardwaretransformationandtheir implementation.
Suchtoolsetscanbe proven valuablein fastevaluationof
new researclideasandtechniquesn thefield.
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