An Incremental Specification Flow for Real Time Embedded Systems

Alex Niemegeers, Alcatel SRD, F. Wellesplein 1, B-2018 Antwerp, Belgium (alex.niemegeers@alcatel.be)
Gjalt de Jong,, Alcatel, SRD, F. Wellesplein 1, B-2018 Antwerp, Belgium (gjalt.de_jong@alcatel.be)

Abstract

The fast growing complexity of today’s real time
embedded systems necessitates new design methods and
tools to face the problems of integration and validation
of complex systems. We have combined a number of
different hardware and software methods into one system
level design method. The proposed flow is based on
UML concepts, executable specifications and platform
based design.

1. INTRODUCTION

Integration and validation of complex systems is a
bottleneck in the traditional design flow. We have used a
new system level design approach in the design of a high
speed VDSL modem. To tackle the integration and
validation problem, we have combined a number of
different hardware and software methods into one
system level design method [1,2]. Our flow uses UML
concepts [1] for specifying both the hardware and
embedded software components (documentation flow),
executable specifications and platform based design.

2. DOCUMENTATION FLOW

A number of well-defined specification documents
describe the system at a well-defined abstraction level,
and provide the necessary blueprints that document the
system throughout the flow. Our flow adds a number of
system level descriptions above the traditional detailed
module level descriptions and hence provides a better
system overview. The documentation consists of a
number of graphical representations at different
hierarchical levels. At the system level, we specify the
interaction of the system with its environment. At an
intermediate level, the realization of the use cases is
specified by a static view (block diagram) and a dynamic
view (message sequence chart). The graphs have a well-
defined syntax and are accompanied by textual
descriptions. Our documentation flow is inspired by the
UML software methodology, and is here applied to the
specification of real time embedded systems, consisting
of software and hardware components. The system level
descriptions allow the validation of a number of design
aspects before any code is available. By specifying a
selected number of interface transactions in the graphical
representations and a selected number of communication
attributes, we prepare the executable specification of the
functional architecture at the token based performance
level.

3. EXECUTABLE SPECIFICATION

In a second step, the blueprints are used to write the
executable specification of the system. The written
specifications are replaced with a set of documents and a
piece of executable code. The choice of the abstraction
level [3,4] of the executable specification is a key issue
in our system level design flow. This choice determines
what effort is spent in building the model, but also what
design aspects can be validated and/or verified before
the RTL design phase. Our executable specification
describes the functional architecture at the token based
performance level. In this model a strict separation is
made between the description of the communication of
an entity and its functionality. This allows us to abstract
from the data-flow functions and validate the control
aspects (i.e. the trickiest aspects in most of our
applications) only, with a considerable gain in effort and
simulation time. The split between data-flow and
control-flow allows a further division of the specification
and integration problem in smaller sub-problems.

4. PLATFORM BASED DESIGN

To validate the hardware-software partitioning of our
design before the RTL phase, our system level design
flow includes the mapping of the functional architecture,
defined in the executable specification, onto a physical
architecture consisting of a general purpose processor
and a digital signal processor. The architecture is
common to a wide range of access telecommunication
systems. Our platform supports the abstraction level we
have defined for the previous steps.

5. CONCLUSION

Our flow divides the specification, integration and
validation problem into a number of smaller sub-
problems. Key in our flow is the entry abstraction level,
the use case driven approach, the orthogonality of
control flow and data flow aspects and platform design.

REFERENCES

[1] UML, http://www.rational.com/uml/

[2] I. Bolsens, et al., ‘Hardware/Software Co-design of Digital
Telecommunications Systems.” Proc. of the IEEE, 85(3):391-
418, March 1997.

[3] RASSP Taxonomy Working Group, ‘RASSP VHDL
Modeling Terminology and Taxonomy’, revision 2.3, June 23,
1998, http://www.atl.external.Imco.com|
rassp/taxon/rassp_taxon.html

[4] VSI initiative, http://www.vsi.org



http://www.atl.external.lmco.com/

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


