Automatic Equivalence Check of Circuit Descriptions at
Clocked Algorithmic and Register Transfer Level

Jens Schriherr Bernd Straube
Fraunhofer-Institutdi Integrierte Schaltungen (IIS/EAS)
Zeunerstral3e 38, D-01069 Dresden, Germany
{schoenherr,straub@eas.iis.fhg.de

1. Introduction 3. Equivalence proof

One of the big challenges in circuit design is the formal At the beginning of the proof sét contains all potential
verification at clocked algorithmic or register-transfer level. invariants derived from the symbolic execution whereas set
To overcome the limits of BDD based approaches we ap-P contains the transition relation and the initial state.
ply an abstraction of the datapath by uninterpreted functions  In every step a sdt C A of some potential lemmdsis
[2]. A function f is uninterpreted if all properties except attempted to be proven under the premise that all formulas
Vi(s =t) = f(sy,...,s) = f(t,...,tn) are dropped. of P hold. If the assumptioh could be proven this way then

In the past symbolic execution and theorem proving were all I € L become assertions. This process repeats Al
used to check the equivalence of two sequential circuits thatempty or it is impossible to prove at least one assumption
are abstracted by uninterpreted functions. Symbolic execu-L C A. After that the proof of the goal, i.e. the equivalence
tion is an enumeration of states reachable from the initial of the outputs, is tried under the premR¢Fig. 1).
state [2]. Because of the uninterpreted functions there is no

general termination condition of such procedures.

In the theorem prover based approach [4] the proof is , i
usually carried out using the induction principle. Often lem- @ LGl N
mas are needed to prove the equivalence. These lemmas:  assumptions assertion
are also proven by induction. These lemmas are often in- (valid)
variants. The proof of the induction step is automated by Figure 1. Proof-procedure
decision procedures.
In our approach symbolic execution is used to generate The proof step consists of an induction proof. The in-
potentialinvariants. Then the equivalence is proven by au- duction base and induction step are proven independently
tomatic induction proofs of the lemmas. A more detailed using the automatic decision procedure SVC [1].

description of the procedure can be found in [3]. The procedure is been implemented by a prototype. The
verification of a RT level description of GCD against an al-
2. Derivation of potential invariants gorithmic model could be carried out on a Sun Ultra Sparc

5in 13.4s (symbolic execution) plus 4.2s (induction proof).

Potential invariants are approximations to invariants.
They can be derived by symbolic execution with a little ef-
fort. Every time a new state is reached in symbolic execu-
tion the potential invariants is refined. Even if symbolic ex- nations of theories with equality. FMCAD'96, pp. 187-201
ecution did not terminate the potential invariants may hold. [2] R. Hojati and R. K. Brayton. Automatic date{path abstraction

Two types of invariants are considered here: Equality of in hardware systems. IBAV'95 pages 98-113, 1995.
two variables of uninterpreted type in every time-step af- [3] J. Sclonherr and B. Straube. A procedure for induction based

References

[1] C. Barrett, D. Dill, and J. Levitt. Validity checking for combi-

ter they were initialized, e.gVt.is_init_zSt) — (zI(t) = equivalence check at RT level. Technical Report SFB 358-
zSt)) and arbitrary relation between finite variables, e.g. C1-1/99, TU Dresden, 1999. -
VE.(q(t) = 1) A ((st(t) = 0) V (st(t) = 1)). [4] M. K. Srivas and S. P. Miller. Formal Verification of a Com-

mercial Microprocessor. Technical Report SRI-CSL-95-04,
*This work was supported by DFG SFB 358. SRI Computer Science Laboratory, 1995.




	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


