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1. Introduction

One of the big challenges in circuit design is the formal
verification at clocked algorithmic or register-transfer level.
To overcome the limits of BDD based approaches we ap-
ply an abstraction of the datapath by uninterpreted functions
[2]. A function f is uninterpreted if all properties except
8i:(si = ti)) f (s1; : : : ;sn) = f (t1; : : : ; tn) are dropped.

In the past symbolic execution and theorem proving were
used to check the equivalence of two sequential circuits that
are abstracted by uninterpreted functions. Symbolic execu-
tion is an enumeration of states reachable from the initial
state [2]. Because of the uninterpreted functions there is no
general termination condition of such procedures.

In the theorem prover based approach [4] the proof is
usually carried out using the induction principle. Often lem-
mas are needed to prove the equivalence. These lemmas
are also proven by induction. These lemmas are often in-
variants. The proof of the induction step is automated by
decision procedures.

In our approach symbolic execution is used to generate
potentialinvariants. Then the equivalence is proven by au-
tomatic induction proofs of the lemmas. A more detailed
description of the procedure can be found in [3].

2. Derivation of potential invariants

Potential invariants are approximations to invariants.
They can be derived by symbolic execution with a little ef-
fort. Every time a new state is reached in symbolic execu-
tion the potential invariants is refined. Even if symbolic ex-
ecution did not terminate the potential invariants may hold.

Two types of invariants are considered here: Equality of
two variables of uninterpreted type in every time-step af-
ter they were initialized, e.g.8t:is init zS(t) ! (zI(t) =
zS(t)) and arbitrary relation between finite variables, e.g.
8t:(q(t) = 1)^ ((st(t) = 0)_ (st(t) = 1)).
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3. Equivalence proof

At the beginning of the proof setA contains all potential
invariants derived from the symbolic execution whereas set
P contains the transition relation and the initial state.

In every step a setL � A of some potential lemmasli is
attempted to be proven under the premise that all formulas
of Phold. If the assumptionL could be proven this way then
all li 2 L become assertions. This process repeats untilA is
empty or it is impossible to prove at least one assumption
L� A. After that the proof of the goal, i.e. the equivalence
of the outputs, is tried under the premiseP (Fig. 1).
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Figure 1. Proof-procedure

The proof step consists of an induction proof. The in-
duction base and induction step are proven independently
using the automatic decision procedure SVC [1].

The procedure is been implemented by a prototype. The
verification of a RT level description of GCD against an al-
gorithmic model could be carried out on a Sun Ultra Sparc
5 in 13.4s (symbolic execution) plus 4.2s (induction proof).
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