
Automatic Equivalence Check of Circuit Descriptions at
Clocked Algorithmic and Register Transfer Level�

Jens Sch¨onherr Bernd Straube
Fraunhofer-Institut f¨ur Integrierte Schaltungen (IIS/EAS)

Zeunerstraße 38, D-01069 Dresden, Germany
fschoenherr,straubeg@eas.iis.fhg.de

1. Introduction

One of the big challenges in circuit design is the formal
verification at clocked algorithmic or register-transfer level.
To overcome the limits of BDD based approaches we ap-
ply an abstraction of the datapath by uninterpreted functions
[2]. A function f is uninterpreted if all properties except
8i:(si = ti)) f (s1; : : : ;sn) = f (t1; : : : ; tn) are dropped.

In the past symbolic execution and theorem proving were
used to check the equivalence of two sequential circuits that
are abstracted by uninterpreted functions. Symbolic execu-
tion is an enumeration of states reachable from the initial
state [2]. Because of the uninterpreted functions there is no
general termination condition of such procedures.

In the theorem prover based approach [4] the proof is
usually carried out using the induction principle. Often lem-
mas are needed to prove the equivalence. These lemmas
are also proven by induction. These lemmas are often in-
variants. The proof of the induction step is automated by
decision procedures.

In our approach symbolic execution is used to generate
potentialinvariants. Then the equivalence is proven by au-
tomatic induction proofs of the lemmas. A more detailed
description of the procedure can be found in [3].

2. Derivation of potential invariants

Potential invariants are approximations to invariants.
They can be derived by symbolic execution with a little ef-
fort. Every time a new state is reached in symbolic execu-
tion the potential invariants is refined. Even if symbolic ex-
ecution did not terminate the potential invariants may hold.

Two types of invariants are considered here: Equality of
two variables of uninterpreted type in every time-step af-
ter they were initialized, e.g.8t:is init zS(t) ! (zI(t) =
zS(t)) and arbitrary relation between finite variables, e.g.
8t:(q(t) = 1)^ ((st(t) = 0)_ (st(t) = 1)).

�This work was supported by DFG SFB 358.

3. Equivalence proof

At the beginning of the proof setA contains all potential
invariants derived from the symbolic execution whereas set
P contains the transition relation and the initial state.

In every step a setL � A of some potential lemmasli is
attempted to be proven under the premise that all formulas
of Phold. If the assumptionL could be proven this way then
all li 2 L become assertions. This process repeats untilA is
empty or it is impossible to prove at least one assumption
L� A. After that the proof of the goal, i.e. the equivalence
of the outputs, is tried under the premiseP (Fig. 1).

goal

assumptions assertion
(valid)

A
if (P L)

potential invariants automaton δ, λ

P goal?
lemma L ⊆ A

P

Figure 1. Proof-procedure

The proof step consists of an induction proof. The in-
duction base and induction step are proven independently
using the automatic decision procedure SVC [1].

The procedure is been implemented by a prototype. The
verification of a RT level description of GCD against an al-
gorithmic model could be carried out on a Sun Ultra Sparc
5 in 13.4s (symbolic execution) plus 4.2s (induction proof).

References

[1] C. Barrett, D. Dill, and J. Levitt. Validity checking for combi-
nations of theories with equality. InFMCAD’96, pp. 187-201.

[2] R. Hojati and R. K. Brayton. Automatic datapath abstraction
in hardware systems. InCAV’95, pages 98–113, 1995.

[3] J. Schönherr and B. Straube. A procedure for induction based
equivalence check at RT level. Technical Report SFB 358-
C1-1/99, TU Dresden, 1999.

[4] M. K. Srivas and S. P. Miller. Formal Verification of a Com-
mercial Microprocessor. Technical Report SRI-CSL-95-04,
SRI Computer Science Laboratory, 1995.


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


