
MULTI-NODE STATIC LOGIC IMPLICATIONS FOR

REDUNDANCY IDENTIFICATION

Kabir Gulrajani† and Michael S. Hsiao‡
†Intel Corporation, Dupont, WA

‡Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ

Abstract

This paper presents a method for redundancy
identification (RID) using multi-node logic im-
plications. The algorithm discovers a large
number of direct and indirect implications by
extending single node implications [7] to mul-
tiple nodes. The large number of implications
found by multi-node implication method in-
troduces a new redundancy identification tech-
nique. Our approach uses an effective node-pair
selection method which is O(n) in the number of
nodes to reduce execution time, and it can be
used as an efficient preprocessing phase for test
generation. Application of these multi-node
static logic implications uncovered more redun-
dancies in ISCAS85 combinational circuits than
previous single-node methods without excessive
computational effort.

1 Introduction

Static logic implication (also called static learning) is a
procedure which performs implications on both value
assignments (0 and 1) for all nodes in the given cir-
cuit. Direct implications can be easily learned dur-
ing automatic test pattern generation (ATPG) process;
indirect implications, on the other hand, involve ex-
tensive use of contrapositive law, transitive law, and
the extended backward implication method [7]. Dis-
covery of large numbers of indirect implications can
have tremendous benefit in redundancy identification,
ATPG, multi-level logic optimization and logic verifi-
cation.

A number of previous approaches have dealt with
implication procedures. A 16-value logic algebra and
reduction list method were used in [6] to determine
node assignments. [1] [2] used a transitive closure
on direct implications to identify indirect implications.
Due to the NP-hard nature of the problem for finding
all the implications for a given set of nodes, the practi-

cality of such complete algorithms is limited. Another
complete learning algorithm is the recursive learning
proposed in [5]. For this method, the depth of recursion
must be kept low to keep the computation costs within
reasonable bounds. [7] introduced the extended back-
ward implication method, which captures some non-
trivial implications between nodes.

In this work, we present a linear-order extension of
single-node learning algorithm for logic implications.
Besides using set algebra to find a very large number
of direct and indirect implications within short time
limits, we extend the algorithm to multi-nodes. We
limit the number of nodes by considering only the most-
likely candidate pairs that will produce useful indirect
implications. In doing so, our complexity remains lin-
ear instead of quadratic in the number of nodes in the
circuit. These multi-node implication sets are then
used for identifying more redundancies. Our RID pro-
cedure is based on the FIRE algorithm [4, 3], except
that it is modified for multiple nodes. By using this
technique, we obtained a very large number of hard-
to-find implications and more redundancies than those
presented in previous implication-based RID’s.

The remainder of the paper is organized as follows.
Section 2 presents the basic concept for single-node im-
plications and their use in redundancy identification.
Section 3 describes how results for multi-node implica-
tions can be used to identify redundant faults in the cir-
cuit. Section 4 gives experimental results obtained on
the ISCAS85 combinational benchmark circuits, and
Section 5 concludes the paper.

2 Preliminaries

In deductive fault simulation, sets of faults are are
propagated from inputs of a node to its outputs us-
ing set operations of intersection, union and difference.
In an analogous manner, we propagate sets of impli-
cations from inputs to outputs of each node using the
similar operations of set intersection, union, and set
difference. Figure 1 shows the basic concept for direct

implications for the 2-input OR gate. In this figure, A0

c

A1, A0
a

b
B1,B0

C0 = A0 B0

C1 = A1 B1

Figure 1: Single Node Implication

represents the set of implications obtained for setting
node a to 0 and A1 is the set of implications obtained
by setting node a to 1. Similarly, B0 and B1 are sets of
implications for setting input b to 0 and 1 respectively.
Using direct implication, c = 0 implies that both a and
b have to be zero; in other words, C0 = A0

⋃
B0. Like-

wise, c = 1 implies that at least one of a and b has
to be zero; thus, C1 = A1

⋂
B1. Similar rules can be

obtained for other primitive gates such as NOR, AND,
NAND and NOT gates.

Before going further, we will use the notations [a, v]
to indicate logic value of node a to be v, a/v to in-
dicate line a stuck-at v and, impl[a, v] to denote the
implication set of setting a to logic value v.

For indirect implications, all relevant implication
sets are propagated, added to, and subtracted, using
the following implication laws:

1. Transitive law

2. Contrapositive law

3. Extended Backward implication [7]

We will use Figure 2 to illustrate the transitive and
contrapositive laws. In this figure, by direct implica-

b
c

d

e

f

ga a2

Figure 2: RID Using Implication Sets

tions and propagation due to transitive laws, we get
impl[a, 0] = {[a, 0], [a2, 0], [c, 1], [e, 0], [f, 0], [g, 0]}. Us-
ing the contrapositive law we obtain:

1. [a2, 1] → [a, 1]

2. [c, 0] → [a, 1]

3. [e, 1] → [a, 1]

4. [f, 1] → [a, 1]

5. [g, 1] → [a, 1]

Implications for other nodes can be computed in a sim-
ilar manner. Extended Backward implications [7] fur-
ther increases the number of implications by consider-
ing known values at the inputs of given nodes.

2.1 RID using single node implications
Redundant faults are those faults that are unexcitable,
unpropagatable, or both. A method described in the
FIRE algorithm [4] is used to identify these redundan-
cies without performing ATPG. A fault is redundant
if it requires conflicting values on the same line as a
necessary condition to be detected.

For each node N in the circuit, let set0 = the set of
faults that require N at 0 as a necessary condition for
excitation or propagation. set1 = the set of faults that
require N at 1 as a necessary condition for excitation
or propagation. Then, the set of redundant faults is
simply {set0

⋂
set1}.

We will use node a of Figure 2 again to explain how
these sets are obtained. Observing the implication
set impl[a, 0] = {[a, 0], [a2, 0], [c, 1], [e, 0], [f, 0], [g, 0]},
it is clear that in order to excite any of the following
faults, a/0, a2/0, c/1, e/0, f/0, g/0, we would require
[a, 1] as a necessary assignment. Now let us consider
the faults that require necessary assignments for
propagation. All Faults on lines b, d, e, and f require
lines a, c, e, and f to have non-controlling values.
For instance, setting a to 0 prevents the faults on
lines d, e, c, andb to propagate to gate g. Following
through this analysis, faults b/0, b/1, d/0, d/1,
e/0, e/1, f/0, and f/1 require [a, 1] as a necessary
assignment for propagation. Considering both ex-
citation and propagation criteria, we obtain set1 =
{a/0, a2/0, b/0, b/1, c/1, d/0, d/1, e/0, e/1, f/0, f/1, g/0}.
Likewise, we can compute set0 for node a:
set0 = {a/1, a2/1, f/1}. The intersection of set0
and set1 is {f/1}, indicating that in order for fault
f/1 to be detected, node a needs to take on both
logic values 0 and 1; this is a conflicting/impossible
assignment for node a, making fault f/1 redundant.

Our proposed multi-node algorithms (to be dis-
cussed in the next section), aside from using multi-node
implications, the computation of single-node implica-
tions also differ from the one used in [7]. Rather than
performing the extended backward implication itera-
tively, which is costly in time, our algorithms apply
the extended backward implication on all nodes after
all the other implication laws have been applied. As
a result, significant speed up was obtained. However,
a few implications may be missed as a consequence.
Nevertheless, for most circuits, we were still able to
identify all the redundancies.

3 Multi-node implications and

RID

This method is a new technique aimed at increasing
the implication set size in hope of finding more redun-

dancies that may have been missed by the previous
single-node method. We limit the number of nodes in
multi-node implication to 2 nodes. Let us consider two
nodes, say a and b. We compute the following four im-
plication sets: impl{[a, 0]

⋃
[b, 0]}, impl{[a, 0]

⋃
[b, 1]},

impl{[a, 1]
⋃

[b, 0]}, and impl{[a, 1]
⋃

[b, 1]}. If we de-
fine

1. set0 = Untestable faults due to impl{[a, 0]
⋃

[b, 0]},
2. set1 = Untestable faults due to impl{[a, 0]

⋃
[b, 1]},

3. set2 = Untestable faults due to impl{[a, 1]
⋃

[b, 0]},
4. set3 = Untestable faults due to impl{[a, 1]

⋃
[b, 1]},

then {set0
⋂

set1
⋂

set2
⋂

set3} would give us the set of
redundant faults due to impossible value combinations
on nodes a and b.

One important issue in the multi-node implication
method is on selecting the right node-pairs, since per-
forming this procedure on all node pairs will result in
O(n2) complexity. We found that most nodes far apart
in the circuit graph generally do not yield a large num-
ber of new implications. Therefore, we limited the size
of node pairs by using the following two selection meth-
ods which give large implication sets at a linear cost.

1. Method 1: In this method, we consider only 2-
input nodes with at least one of the inputs hav-
ing a fanout size greater than 1. We make two
checks before we proceed for multi-node implica-
tions. These two checks are aimed at eliminating
node pairs that have a low probability of yield-
ing any new redundancies. Figure 3 explains the
selection procedure for this method.

(a) Case 1: Referring to Figure 3, if the 2-input
node under consideration is node C, we see
that one of the inputs, node A, reconverges in
the circuit through a path that contains node
C. Thus, including node B ensures that this
path is always excited, which increases the
possibility of finding a redundancy in this re-
convergent path. Therefore, the two nodes
selected for multi-node implications are A
and B. In brief, the first check we make for
each 2-input node N is to see if one of the
input nodes reconverges with N through a
path.

(b) Case 2: If the above check returns no can-
didate node, we consider the second option
where the 2-input node under consideration
is a reconvergent node, or one of the nodes
in a reconvergent path. These two possibili-
ties are shown in Figure 4. In this figure, the
2-input node under consideration is C. This

C

A

B A reconverges through C

D

Figure 3: First Check Made For Selecting Node Pairs
Using Method I

node C is a reconvergent node in part (a) of
the figure, while it (node C) is on a reconver-
gent path on some other node in part (b) of
Figure 4. For both situations, nodes A and B
are considered for candidate multi-node im-
plications, because keeping node C excited in
either case may lead to obtaining more impli-
cations. The second check basically considers
those 2-input nodes that lie on a reconvergent
path or are reconvergent nodes themselves.

A

C

A

B

Reconvergent
Gate

B

Figure (a)

Figure (b)

Gate on a reconvergent
path

C

D

Figure 4: Second Check Made for Selecting Node Pairs
Using Method I

In both cases of Method 1, the number of node
pairs we have to consider is limited to less than n,
where n is the total number of nodes in the circuit
graph.

2. Method 2: For each level L in the circuit, we se-
lect the node with the maximum number of impli-
cations and denote it as node A. The remaining
nodes in the same level are checked to see if they
have a common predecessor with node A. If there
exists a common predecessor, we mark this node to
be a potential node partner for node A. Next, we

check all the potential node partners to see if they
reconverge with node A in the circuit. If there ex-
ists a reconvergent path, these nodes are combined
for multi-node RID.

The reason for selecting node A, which has the
maximum number of implications, is that it in-
creases the untestable fault list size. Therefore,
the probability of set intersection increases when
RID procedure is applied. For example, in Fig-
ure 5, node A is combined with node B as well as
with node C for multi-node RID, since they each
share a common predecessor with node A. The
complexity of this method is also well below O(n)
for the entire circuit.

C

B

Max. Implications

Level ’L’

Common
Predecessor

A

Figure 5: Using Method II for Selecting Node Pairs

Because we limit the number of node pairs during
multi-node simulations to only O(N) pairs, we do not
incur the higher cost as in recursive learning [5], in
which all pairs are considered. Another attribute of
our algorithm that reduces the computation costs is
the linear complexity in set operations (intersection,
union and difference) used to compute implications.

4 Experimental Results
Both the implication and redundancy identification al-
gorithms were computed for ISCAS85 combinational
circuit on a UltraSPARC-1 station with 64MB RAM.
Results for the number of implications using single-
node implications are first shown in Table 1. For each
circuit, the number of implications found is first re-
ported, followed by the constant nodes in the circuit
that can be deduced from the implications found, and
the execution time given in seconds. For all circuits,
large numbers of implications were obtained in a few
seconds or minutes. For example, in circuit c3540,
more than 300 thousand single-node implications were
obtained in 329 seconds.

After single-node implications had been computed,
they were then used to compute multi-node implica-

Table 1: Number of Implications Found
Ckt. Impl #Const Time(s)
c17 70 0 0.037
c432 2734 0 0.14
c499 7366 0 0.54
c880 6990 0 0.40
c1355 31718 0 4.16
c1908 47214 0 4.80
c2670 61560 11 18.60
c3540 309364 1 329.0
c5315 106758 1 24.80
c6288 30974 17 5.90
c7552 304814 3 259.80

tions, which in turn were used to uncover redundancies
in the circuit. Table 2 shows the comparison of the
number of redundancies and CPU time for FIRE [4],
Simprid [7], and our method. As indicated in Table
2, our multi-node technique almost always found more
redundancies, and these redundancies were missed by
both FIRE [4] and Simprid algorithm [7]. For instance,
in circuit c3540, FIRE identified 93 redundant faults
in 11.9 seconds, Simprid identified 105 in 14.7 seconds,
and our multi-node method identified 115 redundant
faults in 98 seconds. All the additional redundant
faults discovered by our approach were non-trivial re-
dundant faults, thus they required extra computation
effort. However, because we select only O(n) node
pairs, we can keep the CPU time to a reasonable level.
For circuits c499 and c880, there were no additional re-
dundancies found by our multi-node method than the
single-node methods, thus they were not included in
the table.

Table 2: Redundancies Found
Ckt. FIRE [4] Simprid [7] Multi-Node

Red Time Red Time Red Time
c432 0 1.8 0 2.2 1 0.4
c2670 29 1.5 39 2.5 44 12.4
c3540 93 11.9 105 14.7 115 98.0
c6288 33 1.3 34 2.7 34 55.1
c7552 30 47.0 42 15.6 44 98.0

Finally, Table 3 shows the difference in the effective-
ness between the two proposed multi-node methods de-
scribed in the section 3. In this table, we report the
number of redundant faults identified and the execu-
tion times by each multi-node method without first call-
ing the single-node RID procedure. It is clear from Ta-
ble 3 that Method I is more effective than Method II,
but requiring extra computation effort. For example,
Method I identified 101 redundant faults for c3540

while Method II identified only 73. This is because
the number of node pairs selected using Method II is
fewer than Method I. Furthermore, the sets of redun-
dancies identified by the two methods are also different.
Sometimes a method will uncover a redundancy missed
by the other. However, in most cases, the redundan-
cies from Method I covered all redundancies found by
Method II.

Table 3: Comparison Between Method I and II
Ckt. Method I Method II

Time (s) Red Time (s) Red
c432 0.3 1 0.08 0
c2670 29.0 38 19.0 20
c3540 53.0 101 32.0 73
c6288 42.0 34 8.0 17
c7552 56.0 15 26.0 9

5 Conclusion

A new method for finding combinational redundan-
cies using multi-node implications has been presented.
More implications as well as redundant faults were
captured with this approach while keeping a linear
complexity in the number of node-pairs to consider.
Since this method of finding redundancies is based on
static learning, it does not rely on any other procedure
and can interface with existing applications (such as
ATPG) readily. As true in other static learning appli-
cations, most of the execution time is spent on comput-
ing a small number of non-trivial indirect implications.
Future work includes other methods for selecting node
pairs, as well as application to sequential redundancies
and state reachability.

References

[1] S. T. Chakradhar and V. D. Agrawal. A Transitive
Closure Based Algorithm for Test Generation. In
Proc. of the Design Automation Conf. ACM/IEEE,
June 1991.

[2] S. T. Chakradhar and V. D. Agrawal. A Transitive
Closure Algorithm for Test Generation. In Trans.
Computer-Aided Design. IEEE, June 1993.

[3] M. A. Iyer and M. Abramovici. Low Cost Redun-
dancy Identification for Combinational Circuits.
Proc. Int. Conference VLSI Design, June 1994.

[4] M. A. Iyer and M. Abramovici. FIRE: A Fault inde-
pendent Combinational Redundancy Identification
Algorithm. Trans. VLSI systems, June 1996.

[5] W. Kunz and D. K. Pradhan. Recursive learn-
ing: An Attractive Alternative to the Decision Tree
for Test Generation in Digital Circuits. Trans. on
CAD, May 1993.

[6] J. Rajski and H. Cox. A Method to Calculate Nec-
essary Assignments in ATPG. In Proc. of the Int’l.
Test Conf. IEEE, September 1990.

[7] Zhao, M. Rudnick, and Janak Patel. Static Logic
Implication with Application to Fast Redundancy
Identification. VLSI Test Symposium, April 1997.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

