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Abstract

Simulation is still one of the most important subtasks
when designing a VLSI circuit. However, more and more el-
ements on a chip increase simulation runtimes. Especially
on transistor level with highly accurate element modelling,
long simulation runtimes of typically several hours delay
the design process. One possibility to reduce these runtimes
is to divide the circuit into several partitions and to simu-
late the partitions in parallel. But the success of such a par-
allel simulation is heavily depending on the quality of the
partitioning. This paper presents a new approach for parti-
tioning VLSI circuits on transistor level and gives runtimes
of parallel simulations of large industrial circuits. The
resulting runtimes show considerable improvement com-
pared to a known partitioning method, the Node Tearing
method [10].

1. Introduction

Integratedcircuitsbelongto themostimportantproducts
of today’s industry, addressinga hugemarket. Therefore,
thecompetitorsmakegreatefforts to producethebestchip
with thelowestcostin theshortestpossibletime. All three
objectivesareaddressedby high quality designtools. For
achieving high quality, the tools perform more and more
work oneachdesigntask.

Oneof themosttime consumingdesigntasksis simula-
tion on transistorlevel, but often thesesimulationsarein-
evitablefor designvalidation.Simulationruntimesincrease
bothbecauseof thepermanentincreasein numberof tran-
sistorsperchipandtheshrinkingdimensionsinsidea chip,
which requiremoreaccurateandmorecomplex modelling.
Simulationof comparablysmall designsof about20,000
transistorsfor a simulatedtime of about200 nanoseconds
lastsabout10hoursonahighperformancesingleprocessor
workstation.

Onepossibility to reducesimulationruntimeis to split
the circuit into several piecesand to simulatethe pieces
in parallelonepieceper processor. Our cooperationpart-
ner Infineon Technologies,the former semiconductordi-
vision of Siemens,usesthis approachand developedthe
inhousetool TITAN [4] for parallel simulationon transis-
tor level. This simulatoris basedon a parallelmultilevel
Newton methodandshows excellentspeedupsfor circuits
which canbe divided in fairly independentpieces.But in
typicalVLSI circuitstheelementsarehighly connectedand
a partitioningusuallyshows a lot of connectionsbetween
thepartitionscausingsignificantdependencies.For achiev-
ing relevantspeedups,it is inevitableto find a partitioning
with asfew connectionsaspossiblebetweenthepartitions.
Secondly, for equalusageof eachprocessorthe partitions
shouldhave aboutthesamesize.

At Infineon Technologiesalso the partitioning tool
TIPART (TItan PARTitioning) [12] has been developed.
This tool usestheNode Tearing algorithm [10], whichwas
oneof thefirstpublishedalgorithmsfor partitioningontran-
sistorlevel.

Startingfrom aninputvoltagesource,adjacentelements
aregathereduntil a specifiedpartitionsizeis reached.Se-
lectionof thenext adjacentelementto gatheris performed
by a contour table. If thereareseveralpossibilitiesfor the
selectionthe nodeis taken,which causeslessconnections
to otherclusters.

Furtherapproachesfor partitioning on transistorlevel
are some clustering algorithms as building DC/Chan-
nel/Strongly Connected Components [6, 11] or Diagonal
Dominance Norton Partitioning [2]. Somehierarchical
methods useclusteringor exploit thesubcircuitinformation
containedin thecircuit descriptionasfirst stepandrunclas-
sicalFiduccia-Mattheyses [3] like methodsfor postprocess-
ing [1, 7, 9]. Most of theseapproachesareonly applicable
to MOS-technologycircuits,othersarehighly dependenton
thesimulationtool they have beendevelopedfor.

Anotherapproachsimply splits the ASCII file contain-



ing the circuit descriptionand improves this initial parti-
tioningby shiftingcomponents[8]. Theparallelsimulation
speedupfor this simple partitioning is only 9 for 49 pro-
cessorson a distributedmemorymessagepassingparallel
computer.

Thework presentedin thefollowing is focusedonanew
partitioningmethodfor theparallelsimulationtool TITAN.
After a specialcircuit preparationfor respectingthe con-
straintsof the simulationtool, elementsare clusteredby
evaluatingthelevel of couplingbetweenadjacentelements.
The algorithmis probabilistic,constructive, andvery fast.
As it outperformstheotherpartitioningmethodTIPART de-
velopedfor TITAN, it is now usedin combinationwith the
parallelTITAN, which is appliedintenselyin industry, be-
causeof its excellentperformance.It provedto speedupthe
simulationby a factor closeto the ideal speedupof 8 for
8 processorsappliedon fairly independentcircuits [4] and
alsoprovedto beableto simulatevery largecircuitsof up
to 3 million transistorson transistorlevel.

Therestof thepapergivesa detaileddescriptionof the
new partitioningmethodCOPART (COuplePARTitiong) [5]
andshowssimulationresultsfor largestate-of-the-artindus-
trial circuits.

2. Partitioning for Parallel Simulation

2.1. Partitioning Objectives

The main objective of partitioning for parallel simula-
tion is to reducethe parallelsimulationruntime. For low
simulationruntimesit is crucial to achieve a low number
of signals connecting the partitions: Firstly, eachconnec-
tion signal causestime consumingcommunication. Sec-
ondly, theparallelsimulationby TITAN [4] is synchronized
by a masterprocess,which calculatesthe connectionnet-
work while the parallelsimulationon the slave processors
is stopped.Theconnectionnetworkcalculationis verytime
critical and increasescubically with eachadditionalcon-
nectingsignal.

Besidesa low numberof connectingsignalsthesecond
main issuefor partitioning is an equalworkloadfor each
slave processor, i.e. simulationeffort shouldbedistributed
optimally. To be ableto estimateworkload,eachelement
is assigneda weightaccordingto the computationaleffort
neededfor its simulation.Thus,similar workloadfor each
slave processoris given, if the the element weight sums
are similar for all partitions.

2.2. Preparing the Circuit for Partitioning

Input for TITAN simulationsis a circuit descriptionin a
SPICE-likeformat.Beforepartitioningthis descriptionhas
to beparsedandthestructureof thecircuit to beextracted.
Theparallelsimulationrequiressomeconstraints:E.g.,no

pathsareallowedfrom apin of apartitionto ground,which
containonly voltagesourcesand inductors,as this would
leadto unsolvableequations.Also controllingelementsof
controlledsourceshaveto bepackedinto thesamepartition,
becausethe controlledsourcesneedinformationaboutthe
statusof the controllingelements.Someflexibility for se-
lectionof thepartitioningalgorithmis achievedby mapping
the structureof the circuit to an undirectedgraph,where
the nodesrepresentthe circuit elementsandthe edgesare
the signalsconnectingthem. The parallelsimulationcon-
straintsare met by a specialpackingof critical elements
into a singlegraphnode[4]. Thus,thepartitioningoperates
onanundirectedgraph.

As describedin [4] we useda graphpartitioning tool
originallydevelopedfor layoutsynthesis.Theachievedpar-
titioning quality outperformedTIPART in termsof fewer
signalsbetweenthepartitionsandin lower simulationrun-
times, but the partitioning itself took about4 hoursfor a
40,000transistorcircuit design,whereasTIPART partition-
ing lastedjust a few minutes. To reducepartitioningrun-
times, COPART hasbeendevelopedwhich also has run-
times of just a few minutes. Partitioning resultsshowed
even fewer connectingsignalsas the layout synthesispar-
titioning tool [5]. As COPART is fasterby magnitudesand
achieves betterresults,we dismissedthe layout synthesis
partitioningtool andconcentratedon COPART.

Anotherbig advantageof COPART is its muchsmaller
programcode,which makesit easierto fine-tunetheparti-
tioning algorithmto theapplication.Experienceshows us,
thata goodpartitioningquality canonly beachievedby an
applicationspecifictool.

3. The Partitioning Method COPART

3.1. Outline of COPART

COPART createsclustersby mergingadjacentnodes.For
nodemerginganedgeof thegraphis selectedfromall edges
following a suitableobjective(Section3.5). Thetwo nodes
connectedto theselectededgearemergedintoonenodeand
theedgeis absorbed(Section3.4). Continuouslyselecting
edges,merging nodesand absorbingedgesdecreasesthe
numberof nodesuntil it equalsthenumberof desiredparti-
tions. Eachgrown noderepresentsa partof thecircuit and
at theenda partition.

Most clusteringapproachesoperatelocally, whereasin
COPART theselectionof thenext edgeis alwaysperformed
regardingall edgesof the graph. This ensuresthe global
view of thealgorithm.

3.2. Modelling the Circuit

In relatedpublicationscircuits are often modelledby
a hypergraphH ��� Ve � E ��� with nodesVe representingthe
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Figure 1. Signal Representations

elementsandhyperedgesE � (Figure1a) representingsig-
nals. Hyperedgesconnectingmorethantwo nodescanbe
mappedinto a setof binaryedges,i.e. a cliquemodel(Fig-
ure1b), or canbemodelledby additionalnodes,thesignal
nodesVs, with binaryedgesto eachconnectedelement(Fig-
ure1c). COPART’s goodperformanceis heavily basedon
following thenew approachof usingbothmethodssimulta-
neouslyfor transformingthe hypergraphto the undirected
graphG �	� V � E � with V � Ve 
 Vs. Largesignalsconnected
to a lot of elementsarewidely distributedover the circuit,
i.e. thesearevery likely to becut. Therefore,a partitioning
tool shouldnot takemucheffort on largesignals,but focus
onsmallsignalsto avoid cuttingthem.In COPART, signals
with few connectedelementsare representedby a clique
modelandthusbecomehighly connectedpartsof thegraph,
which reducesthepossibilityfor theseto becut. Largesig-
nalsaremodelledby additionalsignalnodesresultingin a
weakconnectionstructure,which favorscuttingthem.The
tradeoff valuebetweenclique or signalnodemodellingis
an optimizationparameterfor COPART. Our experiments
showed goodresultsfor a tradeoff valuearoundnine ele-
mentsconnectedto asignal.

If two nodesareconnectedby severaledges,theseedges
aremergedinto oneedgewith a higherweight.

3.3. Node and Edge Weights

The graphhasassignedweightswV for the nodesand
weight wE for the edges.wV representsthe computational
effort neededto simulatethe elementrepresentedby the
node.Signalnodesrepresentnoelements,thereforewV � 0
for v � Vs. Thesizeof a partitionPi in a partitioninginto k
partitionsPk �� P1 � P2 ��������� Pk � is determinedby thesumof
its nodeweightssize � Pi ��� ∑vi � Pi wVi .

Edgesof signalsconnectingr elementsare weighted
with wE � 1

r . Both the modellingand the weight assign-
mentcauselowersignificancefor largersignals.

Signalsconnectedto groundedvoltagesourceshave a
givenpotentialall over thesimulationrun. Thus,theparal-
lel simulatorputsa groundedvoltagesourcein eachparti-
tion connectedto this source,i.e. it causesno extra simu-
lationcostif signalsconnectedto groundedvoltagesources
arecut. The zerocut costof theseedgesis consideredby
assigningtheweightwE � 0.

The edgeweightsarestoredin an � nV � nV � adjacency

eb1 ec1

eb �eb2

v1 v2ea

ec2ec1

v �
ec2

Figure 2. Node merging

matrixA ���wEi j � , wherenV ���V � andwEi j is theweightbe-
tweennodei and j. A is hugebut symmetricandextremely
sparse,asonenodeis typically connectedonly to aboutfive
othernodesfor graphsof VLSI circuitsdescribedon tran-
sistorlevel. Therefore,anefficient matrix representationis
possible.

3.4. Node Merging

As eachedgeis only connectedto two nodes,merging
is alwaysperformedon two nodes.Merging the nodesv1

andv2 in Figure2 yields the new nodev � with the weight
wV � � wV1 � wV2. For consideringthe edges,threecases
have to bedistinguished:� Nodesto be mergedareselectedby their connecting

edgeea. This edgebecomesaninneredgeof v � andis
removedfrom thegraph.� The edgeseb1 and eb2 are connectedto a common
neighborof v1 and v2. Theseare combinedto one
singleedgeeb � with weight wEb � � wEb1 � wEb2

. The
weightsareupdatedby row andcolumnadditionsin
theadjacency matrix.� Edgesec1 andec2 becomeedgesof v � andkeeptheir
weights.

3.5. Coupling Measure

A clusteringalgorithmselectingthenext nodesto merge
only by the maximumedgeweight favors the growth of
a singlebig clusterasshown in Figure3a, wherea graph
shouldbepartitionedinto threepartitions.

To avoid this, a sizelimitation for the clustersis intro-
ducedin Figure3b. Now thestrongestconnectionsareex-
ploited to grow one clusteruntil the limit is reached,as
shown by the dark grey clustersin Figure3b. This is re-
peatedwith severalclusters,but usuallytherearemoreclus-
tersleft thanthedesiredk partitionsasin the third picture
of Figure 3b. The remainingclustersare combinedin a
postprocessingstep,yielding partitionsweakly connected
inside. Not using the maximumedgeweight, but a cou-
pling measureenforcesthe clustersto grow moresimulta-
neouslycausingto reachthe size limit later as shown in
Figure3c. This yields clusterswith lots of inner connec-
tions and,therefore,the partitioningyields few cut edges.
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Figure 3. Growing of Clusters

If therearestill moreclustersthank, thesearecombinedin
a postprocessingstep,which is describedin Section3.7.

The new couplingmeasureci j of COPART is the edge
weightbetweennodei and j dividedby theminimalsumof
theedgeweightsof bothnodesconnectedto theedge.

ci j � wEi j

min � ∑nV
l � 1� l  � i wEil � ∑nV

l � 1� l  � j wE jl !
Theadvantageof this new measureis thatnodesconnected
to only a few edgesget a high ci j andarepreferablycom-
bined. Thus, a situationas shown in the third picture of
Figure3b is avoided,whereremainingpartswith no direct
connectionhave to begroupedtogether. After postprocess-
ing, theseunconnectedpartswould causemostlikely poor
partitionswith many cutsignals.

Especiallywhen the algorithmstarts,thereareusually
several edgeswith the samemaximal couplingmeasures.
From thesevaluesoneis randomlyselected,causingCO-
PART to be a probabilisticalgorithm. The randomnessis
reasonablereducedby thenew signalmodelling,which re-
ducessignificantlythe numberof equalmaximalcoupling
measures.

3.6. Limitation of Cluster Size

To achieve equalsizedpartitions,a size limit for clus-
ter growth is necessary. An optimal solutionwould be to
control clustergrowth in a way, that the size limit is first
reachednearthe end of the clusteringand thus exactly k
clustersremainafterclustering.

0

1
g " wr

V #

wr
Vwopt

V

cGi j $ ci j % g & wr
V '

Figure 4. Ramp Function

Extensive experimentalinvestigationsshowedpoorper-
formancefor restrictingclustergrowth below the desired
clustersizein any way. The bestresulthasbeenachieved
by multiplying thecouplingmeasurewith therampfunction
g � wr

V � of Figure4 yieldingcGi j , wherewr
V wouldbethere-

sulting nodeweight after merging andwopt
V is the optimal

clustersize.
Thus, COPART begins restricting cluster growth

smoothlyabove the optimal clustersize and increasesre-
striction up to a hard limit, which can be selectedby the
user. Typically, a 10% rampis reasonable.

3.7. Assigning Clusters to Partitions

After clusteringby nodemerging there may be more
clustersthanthe desiredk partitions. The reasonsfor that
aretwo restrictionswhile clustering:First, only connected
nodescan be merged, andsecond,a merging is rejected,
if the resultingnodewould violate the sizelimit. Thus,a
deadlocksituationarises,if two neighboringnodesaretoo
big for merging, or if two nodessmall enoughfor merg-
ing are not directly connected. In a postprocessingstep,
theremainingclustersarecombinedregardlessof theircon-
nections.The clustersarefirst orderedby sizeandsecond
the clusterwith the k � th largestsize is combinedwith the� k � 1�(� th largestone. Both stepsare repeateduntil there
areonly k clusters,i.e. partitions,left.

As thispostprocessingtakesonly theclusterweightsinto
accountandignorestheconnectingsignals,it canproduce
a suboptimalsolution.But nevertheless,this fastalgorithm
doestheclusterassignmentto partitionsquitewell.

3.8. Complexity

For complexity considerations,theworstcasewould be
a fully meshedgraph. Then merging two nodescauses� nV ) l � ) 2 edgeweightadditionsin theadjacency matrix
A (Figure5), wherenV �*�V � is thenumberof nodesandl

4



circuit industry1 industry2 industry3 industry4

numberof MOSFET’s 13852 14413 19995 34869
1 processor

simulationruntime 2:13:36 4:19:17 7:51:34 14:47:39
partitioningtool TIPART COPART TIPART COPART TIPART COPART TIPART COPART

4 processors
partitioningruntime 0:04:18 0:01:36 0:05:57 0:04:57 0:10:39 0:11:17 0:07:39 0:03:39
numberof cut signals 275 257 237 156 203 112 382 241
weightbalance(%) 7.3 4.8 10.9 4.7 3.8 4.6 4.3 4.1
simulationruntime 0:41:13 0:33:29 3:00:03 2:20:46 4:25:48 3:54:41 7:15:44 6:00:47
speedup 3.24 3.99 1.44 1.84 1.77 2.00 2.03 2.46

8 processors
partitioningruntime 0:06:27 0:01:31 0:05:51 0:04:42 0:08:24 0:10:54 0:07:27 0:03:37
numberof cut signals 314 284 415 177 343 193 455 255
weightbalance(%) 10.6 2.7 19.1 9.7 25.3 14.6 6.3 4.2
simulationruntime 0:24:05 0:25:38 1:48:57 1:27:21 2:37:47 2:13:53 5:24:49 3:44:23
speedup 5.96 5.21 2.37 2.96 2.98 3.52 2.73 3.95

Table 1. Partitioning and simulation results (times in h:m:s)

is thenumberof alreadyperformedmerges.A is symmetric
andthediagonalelementsarenotneeded.Thetotalnumber
of operationsin A is

nV + k + 1

∑
l � 0

�,� nV ) l � ) 2�-� 1
2
� nV

2 ) 3nV ) k2 � 3k � �
Thesamenumberof operationsis necessaryto computethe
couplingmeasures.Thus,the complexity for all the edge
weight operationsis O � n2

V � , assumingthat the numberof
partitionsk . nV .

2
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Figure 5. Matrix Additions

As thenumberof connectionsof a singleelementis in-
dependentfrom the circuit size,the adjacency matrix of a
circuit structureon transistorlevel is sparse.For the ini-
tial circuit grapha nodeusuallyrepresentsonecircuit ele-
mentandon averagetherearefive connectionsto a node,
i.e. five matrix entriesper row. This numberincreases
during clustering,but usuallyremainsunder15. Let b be
the averagenumberof entriesper row while clustering.
Now the numberof additionsper merge is 2b ) 2. There

arenV ) k nodemergesandthe numberof additionsin A
is equalto the numberof couplingmeasurecalculations.
Thus, the real total numberof all the edgeweight opera-
tionsis 2 � 2b ) 2�/� nV ) k � , yieldinga complexity O � bnV � .

The coupling measuresare storedsortedin a priority
queue with a complexity for changingor deletingan en-
try of O � ld m � , if therearem entries.At eachnV ) k node
merge2b ) 2 changesin thepriority queue areperformed,
which hasbnV entries.Thereare � 2b ) 2�0� nV ) k � ld � bnV �
operationsfor managingthecouplingmeasures,which is a
complexity of O � bnV ld � bnV �1� .

For largecircuitsalgorithmruntimeis dominatedby the
couplingmeasurehandling.Experimentalresultsprovedan
overall complexity for COPART of O � bnV ld � bnV �2� .
4. Experimental Results

The performanceof our new partitioning approachon
transistorlevel hasbeenevaluatedon several large VLSI
circuits. Table1 shows partitioningandsimulationresults
of four industrialcircuits. The secondrow givesthe num-
berof MOSFET’sof eachcircuit, whichcharacterizestheir
size. The circuitsareall critical partsof largerCMOSde-
signs. Industry1 is a partof a Dual Port RAM. Industry2,
Industry3 and Industry4 are partsof a 16 and a 256 Mb
DRAM design.

TIPART is implementedin C, COPART in C++. All
partitioning runs and simulations are performed on a
R10000/195MhzSGIPowerChallengewith 12CPU’s.

In Table 1 results of COPART are comparedagainst
TIPART. It shows simulationruntimesfor a singleproces-
sor simulationand for parallel simulationsusing 4 and 8
processors.Theresultingspeedupsarealsopresented.For
the partitioningthe runtimesfor the partitioningitself, the
numberof cutsignalsanda measurefor theequalityof the
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partitionweightsaregiven. Theweightbalanceis therela-
tiveerrorin sizeof thelargestpartitionto theoptimalparti-
tion size.

The resultsshow that COPART producesfewer cut sig-
nals,whichresultin significantlylowersimulationruntimes
especiallyfor thelargestcircuit. As theconnectionnetwork
grows cubicallywith eachadditionalcut signal,theadvan-
tageof fewer cut signalsfor a shortersimulationruntimes
increasesfor largercircuits.Balanceof partitionweightsis
noproblemfor bothtools.Theruntimesfor thepartitioning
arevery low in contrastto the simulationruntimes. They
seemto be comparablefor both tools, but therearesome
advantagesfor COPART. As describedin Section3.5,CO-
PART is a probabilisticmethod. Experienceshowed, that
thereis a high probability to have at leastonevery good
partitioningresultwithin five runs. Thegivenruntimesin-
clude thesefive runs. TIPART is not probabilistic,but to
achievetherequestednumberof partitionswith similarsize,
thealgorithmhasto be run aboutthreeto five timeswhile
varyingsomeparameters.The presentedruntimesinclude
threeruns.Additionally, TIPART exploits thehierarchyin-
formationgivenin thecircuit description.It buildsclusters
containingsubcircuitsupto acertainsize,whichis assigned
byapartitioningparameter, whereasCOPART alwaysworks
onacircuit with all subcircuitsflattenedout.

We have conductedexperimentswith circuitsgenerated
from thelayoutmask,whichcontainnohierarchyinforma-
tion at all. Runtimesfor a COPART partitioninghave been
abouthalf anhourfor an150,000elementscircuits,whereas
TIPART partitioninglastedabout24 hours.Numberof cut
signalshave beenabout2,000by COPART againstabout
4,000by TIPART. We cannotpresentsimulationruntimes
for thesecircuits,as the 1.5 GB RAM of our parallelma-
chinehasnotbeensufficientto simulatethesecircuits.Soon
a biggerparallelmachinewill beavailablefor us. Thenwe
will be able to presenta full simulationdataset for these
circuits.

5. Conclusion

In this papera new approachfor partitioningVLSI cir-
cuitson transistorlevel hasbeenpresented.It is basedona
clusteringalgorithmwith anew signalmodelconceptanda
specialcouplingmeasure.Thisenablesaveryefficientclus-
ter growth. Selectionof the next clustermerge by consid-
eringthewholecircuit keepstheglobalview. Experimental
resultsapplyingthenew algorithmCOPART onstate-of-the-
artindustrialcircuitsshow asignificantreductionof parallel
simulationruntimesontransistorlevel comparedto another
partitioningmethod[12] basedon Node Tearing. Thus,the
new partitioningmethodreplacesthe Node Tearing parti-
tioning tool, which is actually usedin the currentdesign
flow at InfineonTechnologiescombinedwith theexcellent

transistorlevel parallelsimulationtool TITAN.
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