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Abstract

Smulation is still one of the most important subtasks
when designing a VLS circuit. However, more and more el-
ements on a chip increase simulation runtimes. Especially
on transistor level with highly accurate element modelling,
long simulation runtimes of typically several hours delay
the design process. One possibility to reduce these runtimes
is to divide the circuit into several partitions and to simu-
late the partitionsin parallel. But the success of such a par-
allel simulation is heavily depending on the quality of the
partitioning. This paper presents a new approach for parti-
tioning VLS circuits on transistor level and gives runtimes
of parallel simulations of large industrial circuits. The
resulting runtimes show considerable improvement com
pared to a known partitioning method, the Node Tearing
method [10].

1. Introduction

Integratedcircuitsbelongto themostimportantproducts
of today’s industry addressing hugemarket. Therefore,
the competitoramakegreatefforts to producethe bestchip
with thelowestcostin the shortespossibletime. All three
objectivesare addressedtby high quality designtools. For
achieving high quality, the tools perform more and more
work on eachdesigntask.

Oneof themosttime consuminglesigntasksis simula-
tion on transistorlevel, but often thesesimulationsarein-
evitablefor designvalidation.Simulationruntimesincrease
both becausef the permanenincreasdén numberof tran-
sistorsper chip andthe shrinkingdimensionsnsidea chip,
which requiremoreaccurateandmorecomplex modelling.
Simulationof comparablysmall designsof about20,000
transistordor a simulatedtime of about200 nanoseconds
lastsabout10 hourson a high performancesingleprocessor
workstation.

Onepossibility to reducesimulationruntimeis to split
the circuit into several piecesand to simulatethe pieces
in parallelone pieceper processaor Our cooperatiorpart-
ner Infineon Technologiesthe former semiconductoudi-
vision of Siemens,usesthis approachand developedthe
inhousetool TITAN [4] for parallel simulationon transis-
tor level. This simulatoris basedon a parallel multilevel
Newton methodandshows excellentspeedupgor circuits
which canbe dividedin fairly independenpieces.But in
typical VLSI circuitstheelementsarehighly connectednd
a partitioning usually shawvs a lot of connectiondetween
the partitionscausingsignificantdependencieg-or achie/-
ing relevantspeedupsit is inevitableto find a partitioning
with asfew connectionsispossiblebetweerthe partitions.
Secondlyfor equalusageof eachprocessothe partitions
shouldhave aboutthe samesize.

At Infineon Technologiesalso the partitioning tool
TIPART (Tltan PARTIitioning) [12] has been developed.
This tool usesthe Node Tearing algorithm [10], whichwas
oneof thefirst publishedalgorithmsfor partitioningontran-
sistorlevel.

Startingfrom aninputvoltagesource adjacenelements
aregathereduntil a specifiedpartition sizeis reached.Se-
lectionof the next adjacenelementto gatheris performed
by a contour table. If thereareseveral possibilitiesfor the
selectionthe nodeis taken,which causedessconnections
to otherclusters.

Furtherapproachedor partitioning on transistorlevel
are some clustering algorithms as building DC/Chan-
nel/Strongly Connected Components [6, 11] or Diagonal
Dominance Norton Partitioning [2]. Some hierarchical
methods useclusteringor exploit thesubcircuitinformation
containedn thecircuit descriptiorasfirst stepandrun clas-
sicalFiduccia-Mattheyses[3] like methoddor postprocess-
ing [1, 7, 9]. Most of theseapproacheareonly applicable
to MOS-technologyircuits,othersarehighly dependentn
thesimulationtool they have beendevelopedfor.

Anotherapproachsimply splits the ASCII file contain-



ing the circuit descriptionand improves this initial parti-
tioning by shifting component$8]. Theparallelsimulation
speedugor this simple partitioningis only 9 for 49 pro-
cessoron a distributedmemorymessagegpassingparallel
computer

Thework presentedh thefollowingis focusedonanew
partitioningmethodfor the parallelsimulationtool TITAN.
After a specialcircuit preparationfor respectinghe con-
straintsof the simulationtool, elementsare clusteredby
evaluatingthelevel of couplingbetweeradjacentelements.
The algorithmis probabilistic,constructve, andvery fast.
As it outperformgheotherpartitioningmethodT I PART de-
velopedfor TITAN, it is now usedin combinationwith the
parallel TITAN, which is appliedintenselyin industry be-
causeof its excellentperformancelt provedto speeduphe
simulationby a factor closeto the ideal speedugpof 8 for
8 processorsppliedon fairly independentircuits[4] and
alsoprovedto be ableto simulatevery large circuits of up
to 3 million transistoron transistodevel.

Therestof the papergivesa detaileddescriptionof the
new partitioningmethodCoPART (COuplePARTItiong) [5]
andshowvssimulationresultsfor large state-of-the-aiihdus-
trial circuits.

2. Partitioning for Parallel Simulation

2.1. Partitioning Obj ectives

The main objective of partitioningfor parallel simula-
tion is to reducethe parallel simulationruntime. For low
simulationruntimesit is crucial to achiere a low number
of signals connecting the partitions: Firstly, eachconnec-
tion signal causedime consumingcommunication. Sec-
ondly, the parallelsimulationby TITAN [4] is synchronized
by a masterprocesswhich calculateghe connectionnet-
work while the parallelsimulationon the slave processors
is stopped.Theconnectiometworkcalculationis verytime
critical and increasesubically with eachadditionalcon-
nectingsignal.

Besidesa low numberof connectingsignalsthe second
main issuefor partitioningis an equalworkloadfor each
slave processari.e. simulationeffort shouldbe distributed
optimally. To be ableto estimateworkload, eachelement
is assigned weightaccordingto the computationakffort
neededor its simulation. Thus, similar workloadfor each
slave processolis given, if the the element weight sums
aresimilar for all partitions.

2.2. Preparing the Circuit for Partitioning

Inputfor TITAN simulationsis a circuit descriptionin a
SPICE-likeformat. Beforepartitioningthis descriptiorhas
to be parsedandthe structureof the circuit to be extracted.
The parallelsimulationrequiressomeconstraintsE.g., no

pathsareallowedfrom a pin of apartitionto ground,which
containonly voltagesourcesand inductors,as this would
leadto unsohableequations.Also controlling elementof
controlledsourcediave to bepackednto thesamepartition,
becausehe controlledsourcemeedinformationaboutthe
statusof the controlling elements.Someflexibility for se-
lectionof the partitioningalgorithmis achieved by mapping
the structureof the circuit to an undirectedgraph, where
the nodesrepresenthe circuit elementsandthe edgesare
the signalsconnectingthem. The parallel simulationcon-
straintsare met by a specialpackingof critical elements
into a singlegraphnode[4]. Thus,thepartitioningoperates
onanundirectedgraph.

As describedin [4] we useda graph partitioning tool
originally developedfor layoutsynthesisTheachiezedpar
titioning quality outperformedTIPART in termsof fewer
signalsbetweerthe partitionsandin lower simulationrun-
times, but the partitioningitself took about4 hoursfor a
40,000transistorcircuit design,whereasl' 1 PART partition-
ing lastedjust a few minutes. To reducepartitioningrun-
times, COPART hasbeendevelopedwhich also hasrun-
times of just a few minutes. Partitioning resultsshoved
even fewer connectingsignalsasthe layout synthesigar
titioning tool [5]. As COPART is fasterby magnitudesnd
achieves betterresults,we dismissedhe layout synthesis
partitioningtool andconcentratedn COPART.

Anotherbig advantageof COPART is its muchsmaller
programcode,which makest easierto fine-tunethe parti-
tioning algorithmto the application. Experienceshows us,
thata goodpartitioningquality canonly be achiezed by an
applicationspecifictool.

3. ThePartitioning Method COPART

3.1. Outline of CoPART

CoPART createslusterdoy meging adjacennhodes For
nodemeiging anedgeof thegraphis selectedrom all edges
following a suitableobjective (Section3.5). Thetwo nodes
connectedo theselectecddgearemegedinto onenodeand
the edgeis absorbedSection3.4). Continuouslyselecting
edges,meging nodesand absorbingedgesdecreaseshe
numberof nodesuntil it equalghenumberof desiredparti-
tions. Eachgrown noderepresents partof the circuit and
attheenda partition.

Most clusteringapproachesperatelocally, whereasn
CoPaRT theselectiorof the next edgeis alwaysperformed
regardingall edgesof the graph. This ensureghe global
view of thealgorithm.

3.2. Modelling the Circuit

In relatedpublicationscircuits are often modelled by
a hypegraphH = (Ve, E') with nodesV. representinghe
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Figure 1. Signal Representations

elementsand hyperedge€’ (Figure 1a) representingig-
nals. Hyperedgesonnectingmorethantwo nodescanbe
mappednto a setof binaryedgesij.e. a clique model(Fig-
ure 1b), or canbe modelledby additionalnodes the signal
nodes/s, with binaryedgedo eachconnecteélemeni{Fig-
ure 1c). CoPART's goodperformances heavily basedon
followingthenew approachof usingbothmethodssimulta-
neouslyfor transformingthe hypegraphto the undirected
graphG = (V, E) with V = Ve UVs. Largesignalsconnected
to alot of elementsaarewidely distributedover the circuit,
i.e. thesearevery likely to be cut. Thereforea partitioning
tool shouldnot takemucheffort onlarge signals but focus
onsmallsignalsto avoid cuttingthem.In COPART, signals
with few connectedelementsare representedby a clique
modelandthusbecoméhighly connectegbartsof thegraph,
which reduceghe possibilityfor theseto be cut. Large sig-
nalsaremodelledby additionalsignalnodesresultingin a
weakconnectiorstructurewhich favorscuttingthem. The
tradeof value betweenclique or signalnodemodellingis
an optimizationparameterfor COPART. Our experiments
shaved good resultsfor a tradeof value aroundnine ele-
mentsconnectedo asignal.

If two nodesareconnectedy severaledgestheseedges
aremegedinto oneedgewith a higherweight.

3.3. Node and Edge Weights

The graphhasassignedwveightswy for the nodesand
weightwg for the edges.wy representshe computational
effort neededto simulatethe elementrepresentedy the
node.Signalnodesepresenho elementsthereforamy =0
for v € Vs. Thesizeof apartitionB, in apartitioninginto k
partitionsPX = {Py, P, ..., R} is determinecby the sumof
its nodeweightssize(R) = S y.cp W -

Edgesof signalsconnectingr elementsare weighted
with wg = % Both the modellingand the weight assign-
mentcausdower significancdor largersignals.

Signalsconnectedo groundedvoltage sourceshave a
givenpotentialall over the simulationrun. Thus,theparal-
lel simulatorputsa groundedvoltagesourcein eachparti-
tion connectedo this sourceji.e. it causeso extra simu-
lation costif signhalsconnectedo groundedroltagesources
arecut. The zerocut costof theseedgess consideredy
assigningheweightwg = 0.

The edgeweightsare storedin an (ny x ny) adjaceng

Figure 2. Node merging

matrix A = [wg;, |, whereny = [V| andwg; is theweightbe-
tweennodei andj. A is hugebut symmetricandextremely
sparseasonenodeis typically connecteanly to aboutfive
othernodesfor graphsof VLSI circuits describedon tran-
sistorlevel. Therefore anefficient matrix representatiorns
possible.

3.4. Node Merging

As eachedgeis only connectedo two nodes,meging
is alwaysperformedon two nodes. Merging the nodesv;
andv; in Figure2 yieldsthe new nodeV with the weight
W, = Wy, +W,,. For consideringthe edges,three cases
have to bedistinguished:

¢ Nodesto be meged are selectedby their connecting
edgee,. This edgebecomesninneredgeof V andis
removedfrom the graph.

e The edgese,, ande,, are connectedto a common
neighborof v1 andv,. Theseare combinedto one
singleedgeey with weighthb, = Wg, + W, - The
weightsare updatedby row and columnadditionsin
theadjaceng matrix.

o Edgese;, ande;, becomeedgesof V andkeeptheir
weights.

3.5. Coupling Measure

A clusteringalgorithmselectinghenext nodego mege
only by the maximumedgeweight favors the growth of
a singlebig clusterasshown in Figure 3a, wherea graph
shouldbe partitionedinto threepartitions.

To avoid this, a sizelimitation for the clustersis intro-
ducedin Figure3b. Now the strongestonnectionareex-
ploited to grow one cluster until the limit is reached,as
shavn by the dark grey clustersin Figure3b. This is re-
peatedvith severalclustershut usuallytherearemoreclus-
tersleft thanthe desiredk partitionsasin the third picture
of Figure3b. The remainingclustersare combinedin a
postprocessingtep, yielding partitionsweakly connected
inside. Not usingthe maximumedgeweight, but a cou-
pling measureenforceghe clustersto grow moresimulta-
neouslycausingto reachthe size limit later as shawvn in
Figure3c. This yields clusterswith lots of inner connec-
tions and, therefore the partitioningyields few cut edges.
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Figure 3. Growing of Clusters

If therearestill moreclustersthank, thesearecombinedn
apostprocessingtep,whichis describedn Section3.7.

The new coupling measuregj of COPART is the edge
weightbetweemodei and | dividedby theminimal sumof
theedgeweightsof bothnodesconnectedo theedge.

WEij

Y nv
min (ZI=1,I;éiWEiI’ ZI=1,I;éjWEJI)

Gj=

Theadwantageof this new measureés thatnodesconnected
to only afew edgesgeta high ¢;; andare preferablycom-
bined. Thus, a situationas shavn in the third picture of
Figure3bis avoided,whereremainingpartswith no direct
connectiorhave to be groupedogether After postprocess-
ing, theseunconnectegartswould causemostlikely poor
partitionswith mary cutsignals.

Especiallywhen the algorithm starts,thereare usually
several edgeswith the samemaximal coupling measures.
Fromthesevaluesoneis randomlyselectedcausingCo-
PART to be a probabilisticalgorithm. The randomnesss
reasonableeducedby the new signalmodelling,whichre-
ducessignificantly the numberof equalmaximal coupling
measures.

3.6. Limitation of Cluster Size

To achiee equalsizedpartitions,a sizelimit for clus-
ter growth is necessary An optimal solutionwould be to
control clustergrowth in a way, thatthe sizelimit is first
reachednearthe end of the clusteringand thus exactly k
clustersemainafterclustering.

9w

Cg; = Gij * g(W{/)

0 f
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Figure 4. Ramp Function

Extensve experimentalinvestigationshoved poor per
formancefor restricting clustergrowth below the desired
clustersizein ary way. The bestresulthasbeenachieved
by multiplying thecouplingmeasuravith therampfunction
g(W,) of Figure4 yielding c;;, wherew{, wouldbethere-
sulting nodeweight after meiging and W\C}pt is the optimal
clustersize.

Thus, COPART begins restricting cluster growth
smoothlyabove the optimal clustersize and increasese-
striction up to a hardlimit, which canbe selectedby the
user Typically, a 10 % rampis reasonable.

3.7. Assigning Clustersto Partitions

After clusteringby node meging there may be more
clustersthanthe desiredk partitions. The reasondor that
aretwo restrictionswhile clustering:First, only connected
nodescan be meiged, and second,a meging is rejected,
if the resultingnodewould violate the sizelimit. Thus,a
deadlocksituationarises,if two neighboringnodesaretoo
big for meging, or if two nodessmall enoughfor meg-
ing are not directly connected. In a postprocessingtep,
theremainingclustersarecombinedegardlesf their con-
nections.The clustersarefirst orderedby sizeand second
the clusterwith the K'th largestsizeis combinedwith the
(k+ 1)'th largestone. Both stepsare repeateduntil there
areonly k clustersj.e. partitions Jeft.

Asthispostprocessintakesonly theclusterweightsinto
accountandignoresthe connectingsignals,it canproduce
a suboptimakolution. But neverthelessthis fastalgorithm
doestheclusterassignmento partitionsquite well.

3.8. Complexity

For compleity considerationsthe worstcasewould be
a fully meshedgraph. Then meging two nodescauses
(nv —1) — 2 edgeweightadditionsin the adjaceng matrix
A (Figure5), whereny = |V| is thenumberof nodesandl



| circuit I industry1 I industry2 I industry3 I industry4 |
numberof MOSFETS 13852 14413 19995 34869
1 processor
simulationruntime 2:13:36 4:19:17 7:51:34 14:47:39
partitioningtool TIPART | COPART || TIPART | COPART || TIPART | COPART || TIPART | COPART
4 processors
partitioningruntime 0:04:18 | 0:01:36 || 0:05:57 | 0:04:57 || 0:10:39 | 0:11:17 || 0:07:39 | 0:03:39
numberof cutsignals 275 257 237 156 203 112 382 241
weightbalancg%) 7.3 4.8 10.9 4.7 3.8 4.6 43 41
simulationruntime 0:41:13 | 0:33:29 || 3:00:03 | 2:20:46 || 4:25:48 | 3:54:41 7:15:44 | 6:00:47
speedup 3.24 3.99 1.44 1.84 1.77 2.00 2.03 2.46
8 processors
partitioningruntime 0:06:27 | 0:01:31 || 0:05:51 | 0:04:42 || 0:08:24 | 0:10:54 || 0:07:27 | 0:03:37
numberof cutsignals 314 284 415 177 343 193 455 255
weightbalanceg%) 10.6 2.7 19.1 9.7 25.3 14.6 6.3 4.2
simulationruntime 0:24:.05 | 0:25:38 1:48:57 | 1:27:21 || 2:37:47 | 2:13:53 || 5:24:49 | 3:44:23
speedup 5.96 5.21 2.37 2.96 2.98 3.52 2.73 3.95

Table 1. Partitioning and simulation results (times in h:m:s)

is thenumberof alreadyperformedneiges.A is symmetric
andthediagonaklementsarenotneededThetotalnumber
of operationsn A is

VTt 1 2 2

3 ((v=D=-2 =30~ -+ 3.
Thesamenumberof operationss necessaryo computehe
couplingmeasures.Thus, the compleity for all the edge
weight operationss O(n), assuminghat the numberof
partitionsk < ny.
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Figure 5. Matrix Additions

As the numberof connection®f a singleelements in-
dependenirom the circuit size, the adjaceng matrix of a
circuit structureon transistorlevel is sparse. For the ini-
tial circuit grapha nodeusuallyrepresent®necircuit ele-
mentandon averagetherearefive connectiongo a node,
i.e. five matrix entriesper row. This numberincreases
during clustering,but usuallyremainsunder15. Let b be
the averagenumberof entriesper row while clustering.
Now the numberof additionsper mege is 2b — 2. There

areny — k nodemeggesandthe numberof additionsin A
is equalto the numberof coupling measurecalculations.
Thus, the real total numberof all the edgeweight opera-
tionsis 2(2b— 2)(ny — k), yieldingacompleity O(bny).

The coupling measuresare storedsortedin a priority
gueue with a compleity for changingor deletingan en-
try of O(Id m), if therearem entries. At eachny — k node
meige 2b — 2 changesn the priority queue are performed,
which hasbny entries.Thereare (2b— 2)(ny —kjld(bny)
operationgor managinghe couplingmeasuresyhichis a
compleity of O(bnyld(bny)).

For large circuitsalgorithmruntimeis dominatedy the
couplingmeasurdandling.Experimentatesultsprovedan
overallcompleity for COPART of O(bnyld(bny)).

4. Experimental Results

The performanceof our new partitioning approachon
transistorlevel hasbeenevaluatedon several large VLSI
circuits. Table1 shaws partitioningand simulationresults
of four industrialcircuits. The secondrow givesthe num-
berof MOSFETS of eachcircuit, which characterizetheir
size. The circuitsareall critical partsof larger CMOS de-
signs. Industryl is a partof a Dual Port RAM. Industry2,
Industry3 and Industry4 are partsof a 16 and a 256 Mb
DRAM design.

TIPART is implementedin C, COPART in C++. All
partitioning runs and simulations are performed on a
R10000/195Mh&GI Paver Challengewith 12 CPU's.

In Table 1 results of COPART are comparedagainst
TIPART. It shavs simulationruntimesfor a singleproces-
sor simulationandfor parallel simulationsusing4 and 8
processorsTheresultingspeedupgarealsopresentedFor
the partitioningthe runtimesfor the partitioningitself, the
numberof cutsignalsanda measurdor the equalityof the



partitionweightsaregiven. Theweightbalances therela-
tiveerrorin sizeof thelargestpartitionto theoptimalparti-
tion size.

Theresultsshav that COPART producedewer cut sig-
nals,whichresultin significantlylowersimulationruntimes
especiallyfor thelargestcircuit. As theconnectiometwork
grows cubicallywith eachadditionalcut signal,the adwan-
tageof fewer cut signalsfor a shortersimulationruntimes
increasedor largercircuits. Balanceof partitionweightsis
no problemfor bothtools. Theruntimesfor the partitioning
arevery low in contrastto the simulationruntimes. They
seemto be comparablégor bothtools, but thereare some
adwantagedor COPART. As describedn Section3.5, Co-
PART is a probabilisticmethod. Experienceshowved, that
thereis a high probability to have at leastone very good
partitioningresultwithin five runs. The givenruntimesin-
cludethesefive runs. TIPART is not probabilistic,but to
achieve therequestediumberof partitionswith similarsize,
the algorithmhasto be run aboutthreeto five timeswhile
varying someparametersThe presenteduntimesinclude
threeruns. Additionally, TIPART exploits the hierarchyin-
formationgivenin thecircuit description.It builds clusters
containingsubcircuitaipto acertainsize,whichis assigned
by apartitioningparametemwhereasCoPART alwaysworks
onacircuit with all subcircuitslattenedout.

We have conductedxperimentswith circuits generated
from thelayoutmask,which containno hierarchyinforma-
tion at all. Runtimesfor a COPART partitioninghave been
abouthalfanhourfor an150,000elementgircuits,whereas
TIPART partitioninglastedabout24 hours. Numberof cut
signalshave beenabout2,000 by COPART againstabout
4,000by TIPART. We cannotpresentsimulationruntimes
for thesecircuits,asthe 1.5 GB RAM of our parallelma-
chinehasnotbeersuficientto simulatethesecircuits. Soon
abiggerparallelmachinewill beavailablefor us. Thenwe
will be ableto presenta full simulationdatasetfor these
circuits.

5. Conclusion

In this papera new approachor partitioningVVLSI cir-
cuitsontransistollevel hasbeenpresentedlt is basedna
clusteringalgorithmwith anew signalmodelconceptanda
speciakouplingmeasureThisenablesveryefficientclus-
ter growth. Selectionof the next clustermeige by consid-
eringthewholecircuit keepgheglobalview. Experimental
resultsapplyingthenew algorithmCoPART onstate-of-the-
artindustrialcircuitsshaw asignificantreductionof parallel
simulationruntimeson transistodevel comparedo another
partitioningmethod[12] basedn Node Tearing. Thus,the
new partitioning methodreplacesthe Node Tearing parti-
tioning tool, which is actually usedin the currentdesign
flow at InfineonTechnologiesombinedwith the excellent

transistolevel parallelsimulationtool TITAN.
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