
1

Logic Simulation Using Networks of State Machines*

Peter M. Maurer

Abstract
This paper shows how to simulate a circuit as an
interlocked collection of state machines. Separate state-
machines are used to represent nets and gates. The
technique permits intermixing of logic models, direct
simulation of higher-level functions, and optimization
techniques for fanout free circuits. These techniques are
an extension of techniques that have been used to achieve
high-performance event-driven simulations. New, more
efficient state-machine implementations are presented,
and experimental data is presented that show the
efficiency of the new techniques.

1. Introduction
It convenient to view a digital circuit as a network of

components with signals flowing from primary inputs to
primary outputs. This concept has proven quite useful,
and is the basis of many existing simulation algorithms,
including unit- and multi-delay simulation[1,2], levelized
compiled code simulation [3], and other less conventional
algorithms[4]. Regardless of the scheduling algorithms
used by a simulator, the ultimate objective is to perform a
set of gate simulations and produce a set of observable
outputs. For simulators that support a large number of
gate types, a substantial body of run-time code must be
provided to support the gate simulations.

Although the concept of signal flows has proven useful
in many areas of design automation, it does not reflect
reality. Electrical components have internal states that
change in response to purely local conditions. The state
of a gate changes in response to changes in its inputs,
while the state of a wire changes in response to changes in
its driving gate. One approach to simulation that has
adopted this alternative point of view is the Inversion
Algorithm[5], which models both gates and wires using a
collection of internal states. All simulation operations are
performed on local states, with no signal flows between
devices.

In the Inversion Algorithm the approach was largely
intuitive, and based on certain well-known concepts such
as counting dominant inputs. This paper will approach the
state-change model from a more theoretical point of view,
and will extend the model to a wider class of problems,
such as direct simulation of LUT-based FPGA circuits,
and direct simulation of complex Boolean equations.

* This research was supported in part by the National
Science Foundation under grant MIP-9403414.

Although the approach taken in this paper is quite
different from those taken in earlier published works, the
inspiration came from the Schuler counting algorithm [8],
from work in state-machine based simulation [9] and
efficient Boolean function evaluation [10].

2. The State-Machine Approach
As shown in [5], it is possible to compute the state of a

multiple-input gate using unary operations. This leads to
highly efficient simulation, and permits a number of
useful optimizations. The use of unary operations is made
possible by maintaining a state-variable for each gate.
Any change in an input causes a state-change in the gate
which can be computed without referring to other inputs.
Figure 1 gives the state-machine structure for a three-
input AND gate.

C 1/I

C 1/D

C 2/I

C 2/D

C 3/I

C 3/D

I/C 4

I/x

I/x

D /C 4

D /x

D /x

Figure 1. A Sample Network.

In Figure 1, each rectangle represents a single state
machine. The symbols on the arcs represent the input and
output values. The symbol C1/I indicates that on input C1,
the state machine will change state and produce output I.
In the Inversion Algorithm, the I and D outputs will cause
Increment and Decrement operations to be performed, but
the state-machine structure will function correctly
regardless of the mechanism used to implement the
outputs. The inputs C1, C2, and C3 are modeled as
events on the inputs of the gate, while C4 is modeled as
an event on the output of the gate. The symbol x is used
to indicate no output. The state machine on the right is
implemented as a simple counter which is incremented
and decremented by the I and D inputs.

In some cases it is convenient to associate an additional
output with each state. Outputs associated with transitions
are called Mealy outputs, while those associated with
states are called Moore outputs. State machines interact

2

via their Mealy outputs. All computations are local and
done on single states. Unlike more typical simulations,
adding an input does not increase the amount of work that
must be done to process existing inputs.

In the three leftmost state machines of Figure 1, it is
not specified which state corresponds to zero. This
structure represents an AND gate, so the rightmost state
of each machine corresponds to zero. If we were to
designate the leftmost state as the zero state, the structure
would then correspond to an OR gate instead of an AND.
Because the association between states and values is not
maintained by the simulator, the same structure can be
used for either AND or OR gates. Still other functions can
be implemented by mixing and matching the associations
between right and left.

3. Basic State Machines.
The most fundamental state machines are those used to

represent nets. A state machine for a two-valued net is
illustrated in Figure 2. This state machine has a single
input called “Change.” More complex state machines,
such as that illustrated in Figure 3, can be used to
represent more complex logic models. Since a state
machine is a local entity, it is possible to use different
logic models for different nets[6]. To simplify the
discussion, this paper will assume that all nets are binary.

0 1

C 1 /I

C 1 /D

Figure 2. A Binary State Machine.

1

U

0

C1/I

C1/D

EA1/A
EB 1/B

EC1/C
ED 1/D

Figure 3. A Trinary State Machine.

The Moore outputs, 0 and 1, illustrated in Figure 2 are
virtual and used only during the initialization phase of the
simulation. The assignment of ones and zeros can be
switched whenever it is convenient to do so. This will
alter the function computed by the state machines without
changing their structure.

Figure 4 illustrates the functions that can be computed
by changing the Moore outputs of the AND gate. The A,
B, and C columns indicate the Moore output of the
leftmost state. It is possible to implement even more

functions by altering the Mealy outputs of the Gate state
machine, as illustrated in Figure 5.

The Hyperactive machine can be used to simulate the
XOR and XNOR functions, while the Insensitive machine
can be used to simulate constant one and constant zero.
These functions can also be simulated by less elaborate
mechanisms.

A B C Function
0 0 0 A AND B
0 0 1 A NAND B
0 1 0 A AND Not B
0 1 1 Not A OR B
1 0 0 Not A AND B
1 0 1 A OR Not B
1 1 0 A NOR B
1 1 1 A OR B

Figure 4. Linear State Machine Functions.
D /x D /C C

I/x I/C C

O rig inal:

D /C C D /C C

I/C C I/C C

D /x D /x

I/x I/x

Hyperactive:

Insensitive:

Figure 5. Three Types of Gate State Machine.

Most state machines used by the Inversion Algorithm
are linear in shape, because they correspond to a count of
dominant inputs. Although limited in structure, these
machines can be quite powerful, especially for functions
with more than two inputs.

As with 2-input gates, the input and output state
machines can be modified, to simulate many different
functions. However, because there are more than two
transition points, the structure of the Mealy outputs can be
correspondingly more complex. Figure 6 gives the
variations of the 3-input linear state machine.

Despite the wide variety of functions that can be
simulated using linear state machines, for n>2, it is
impossible to implement all n-input functions as linear
state machines. A simple argument shows that this is
true. For n inputs, the linear state machine will have n+1
states, and n links. Altering the input and output state
machines will give no more than 2n+1 different functions,
while altering the Mealy outputs of the gate state machine
will yield no more than 2n different machines, for a total

of 22n+1. However, there
n22 are different n-input

functions. This implies that direct simulation of certain

3

functions will require a wider variety of state machines.
One method of creating more complex machines is to
form the cross product of linear state machines, as
illustrated in Figure 7.

D /C D

I/x I/C D

D /x

I/x

D /C D D /C D

I/C D I/C D

D /x

I/x

D /C D D /x

I/C D I/x

D /x

I/x

D /x D /C D

I/x I/C D

D /C D

I/C D

D /C D D /C D

I/C D I/C D

D /C D

I/C D

D /x D /x

I/x I/x

D /x

I/x

O rig inal:

Th reshhold :

End Pairs:

Cen ter Pair:

Hyperactive:

Insensitive:

Figure 6. Types of 3-Input Gate State Machines.

D D

D D

I

II

I

T TT T T T

D D

II

T

T

X =
Figure 7. Cross Product of Linear Machines.

4. Systematic Generation of State Machines
A state machine for a complex function can be derived

from the basic state machine of Figure 2. The general
procedure is to create a cross-product machine, assign
Moore outputs based on the function, and then reduce the
machine using standard techniques. To illustrate the
procedure, we will demonstrate how to create a state-
machine for a two-input AND. We start with the
fundamental state machines for the inputs, and take the
cross-product of these machines as shown in Figure 8.

The Moore outputs of each state are computed by
applying the AND function to the Moore outputs of the
original machine. The Mealy outputs are computed by
identifying the transitions that cause the Moore output of
the machine to change. For more complex functions, the

computation of the Moore outputs would use the function
itself, and the computation of the Mealy outputs would
proceed as before by identifying transitions where the
Moore output changes.

C A D

C A I

C B D

C B I

1

10

0

C A D

C A I

C B D C B I

10

0

C A I

C A D

X Y

U V

C B D C B I

0
(X,U)

(X,V)

(Y ,U)

(Y ,V)

Figure 8. Developing a Gate State Machine.

To simplify the resulting state machine, it is necessary
to combine symmetric inputs, leading to some
linearization of the machine. In Figure 8, the symmetric
inputs A and B can be collapsed by replacing the inputs
CAI and CBI with a single input I, and the inputs CAD
and CBD with a single input D. This will yield the non-
deterministic state machine illustrated in Figure 9. The
general procedure for handling symmetric input nets is to
combine the associated state machine inputs with a single
input representing a change in any of the input nets.

10

0 0
(X,U)

(X ,V)

(Y,U)

(Y,V)

D

D
D

D

I

I

II

Figure 9. Combined Inputs.

Before the state machine of Figure 9 can be
implemented, it is necessary to convert it into a
deterministic machine. This will eventually produce a
state of the form {(X,V),(Y,V),…}. The equivalent
deterministic state machine is given in Figure 10.

100

{(X ,U)}
{(X ,V),(Y ,U)} {(Y ,V)}

D D

I I

E

DI

I,D
{ }

Figure 10. The Equivalent Deterministic Machine.

In the remainder of the paper, we will omit the error
state when no transition into that state can occur.

Although a gate state machine for a function can
always be created from simple binary machines, it is
sometimes easier to treat the function as a collection of
simpler functions. This is particularly true when
collapsing homogeneous and heterogeneous connections
as described in [5]. For illustrative purposes, assume we

4

wish to find the gate function for a gate consisting of three
gates G, H, and K, connected as illustrated in Figure 11.

G

H

K

Figure 11. A Collection of Gates.

Suppose the function computed by gate K is z=f(x,y).
Taking the cross product of the state machines for G and
H creates the state machine for the combined gate. The
Moore output of the state (P,Q) is f(p,q), where p is the
Moore output of state P and q is the Moore output of state
Q. It may be possible to combine symmetric inputs in the
result. Figure 12 illustrates this process.

G

H

K

D g D g

Ig Ig
0 0 1

D h D h

Ih Ih
0 0 1

D g D g

Ig Ig
0 0

D g D g

Ig Ig
0 0 1

D g D g

Ig Ig
0 0

0

0X =
Dh

D hD h

D hDh

D hIh

IhIh

Ih

Ih

Ih

Figure 12. Collapsing Homogeneous Connections.

In Figure 12, it is possible to combine symmetric inputs
thus: Dh = Dg = D, and Ih = Ig = I. This will yield the
deterministic state machine of Figure 13.

D D

I I
0 0 1

D D

I I
0 0

Figure 13. The Deterministic Equivalent.

After constructing the combined state machine, and
possibly reducing it, it is necessary to assign the Mealy
inputs. Any transition between states with identical
Moore outputs is assigned a Mealy output of NULL. All
other transitions are assigned Mealy outputs of EvX,
where X is the output of the gate. Once the Mealy outputs
have been assigned, the Moore outputs can be dropped.

5. Applications
The primary applications of this work are collapsing

fanout free networks into a single simulation unit,

providing efficient simulations for library functions, and
direct simulation of FPGA look-up tables. In this section
we concentrate on efficient simulation of library cells. In
[5] the binary transitions of nets are modeled by
alternating two different event handlers. This model can
be extended to handle the more complex state machines
described in this paper.

State machine implementations are embedded in the
event-handlers for nets, eliminating the need for gate
simulations. The most obvious way to handle linear state
machines is to maintain a count, and use the I input to
increment the count and the D input to decrement the
count. Although this procedure has given good for results
for simple linear state machines, for more complex state
machines, more sophisticated procedures must be used.

Consider a state machine M, which is the cross product
of two linear state machines A and B. Assume that the
inputs to A are Ia and Da, and the inputs to B are Ib and Db.
Assume that machine A is implemented using a count,
and that k is the maximum value of that count. In the
machine M, the inputs Ia and Da are assigned the value 1,
and the inputs Ib and Db are assigned the value k+1. The
machine M will be implemented using a single count.
The input Ia will increment the count by 1, the input Da

will decrement the count by 1, the input Ib will increment
the count by k+1, and the Db input will decremented the
count by k+1.

0 0

1

0

1

1

11

0

-1 -1

+ 1 + 1

-1

+1

-1

+ 1

-1

+ 1

-1

+1

+3 -3

+3 -3+ 3 -3

+3

-3

+ 3 -3

+ 3

-3

Figure 14. Cross-Product Incr. and Decr.

Figure 14 also shows how to determine when to
propagate events. After an increment by 3, an event will
propagate if the new count is 4 or 5. After an increment
by 1, an event will propagate if the new count is 4 or 7.

Other cross-product machines can be implemented in a
similar way. A general counting machine is defined to be
either a linear state machine, or a cross-product of two
other general counting machines. All general counting
machines can be implemented using a single count, which
is incremented and decremented by different amounts
depending on the input. Suppose M is the cross product
of two general counting machines A and B. As in the
previous example, the inputs of A are assigned the same
value that they had in the implementation of the machine

5

A. If k is the maximum value of the count in the
implementation of machine A, then the inputs of B are
assigned the value (k+1)q where q is the value of the input
in the implementation of B. General counting machines,
so general counting machines are powerful enough to
simulate any Boolean function.

When testing a new count for event propagation, it may
be necessary to compare the count against a large list of
values. However, the testing process can be simplified by
using multiplication instead of addition as the state-
transition function. In this model one uses states of the
form 20, 21, 22, 23, … . To change state, the current count
is multiplied or divided by 2k. These operations are
performed only on positive numbers, so left and right
shifts can be used. Each bit position in the state counter
represents a different state. Masks can be ANDed with the
count to test for several states simultaneously. A non-zero
result will generate an output event.

6. Experimental Data
In our first experiment, we constructed one 64x64 array

multiplier special functions, and a second using individual
gates. XOR functions were used to compute sums, and a
custom function was used to compute carries. This
function can be computed using the “End Pairs” state
machine of Figure 6. To measure the performance of
these two circuits, they were simulated on a SUN
300MHz single processor Ultra SPARC-II with 128MB of
RAM, using 5000 randomly generated vectors. Figure 15
gives results CPU seconds. As expected, the
implementation using functions was significantly faster.

Implementation CPU Sec.
Gates 74.0
Functions 15.9

Figure 15. Simulation Times for 64x64 Multipliers.

We conducted a similar experiment using carry-
lookahead adders of various sizes. These circuits were
constructed from 4-bit carry-lookahead units arranged
hierarchically. To support the hierarchical structure, each
unit computes three carries, group propagate and group
generate functions. Each unit has four propagate and four
generate inputs, as well as a carry-in.

Several carry-lookahead adders were created using
these units. There were two different implementations,
one using AND and OR gates, and another using single-
function implementations of for carry and group outputs..
The results are reported in CPU seconds in Figure 16. The
performance gains, though substantial, are smaller than
those for the array multiplier.

7. Conclusion
The techniques of this paper can significantly increase

the power and speed of gate-level simulation. Many

different types of functions can be simulated as single
gates. Although the Inversion Algorithm was able to
collapse heterogeneous (AND-OR) connections, only a
portion of the could be eliminated. This paper presents a
much simpler method for handling such connections.

Size Gate
Implementation

Function
Implementation

4x4 0.3 0.2
8x8 0.6 0.5
16x16 1.2 0.9
32x32 3.0 2.0
64x64 7.3 5.3
128x128 16.1 13.6
256x256 31.8 24.4
512x512 85.8 57.4

Figure 16. Carry-Lookahead Adder Performance.

Although the current experimental work focused on the
zero delay timing model, it is clear from [7] that these
techniques are extensible to more detailed timing models.

8. References
E. G. Ulrich, "Event Manipulation for Discrete

Simulations Requiring Large Numbers of Events," J
ACM, Vol. 21, No. 9, Sept., 1978, pp. 777-85.

1. Szygenda, S., D. Rouse, E. Thompson, “A Model and
Implementation of a Universal Time-Delay Simulator
for Large Digital Nets,” Spring Joint Computer
Conference, 1970, pp. 491-496.

2. Chiang, M., and R. Palkovic, “LCC Simulators Speed
Development of Synchronous Hardware,” Computer
Design, Mar. 1, 1986, pp. 87-91.

3. P. Smith, M. R. Mercer, B. Brock, "Demand Driven
Simulation: BACKSIM", Proceedings of the 24th
Design Automation Conference, 1987, pp.181-87.

4. P. M. Maurer, “The Inversion Algorithm for Digital
Simulation,” Proceedings of ICCAD-94, pp. 259-61.

5. P. M. Maurer, W. J. Schilp, “The Three-Valued
Inversion Algorithm,” Submitted for Publication.
Available from the author (maurer@csee.usf.edu).

6. W. J. Schilp, P. M. Maurer, “Unit Delay Simulation
with the Inversion Algorithm,” Proceedings of
ICCAD-96, pp. 412-7.

7. D. Schuler “Simulation of NAND Logic,”
Proceedings of COMPCON 72, Sept 1972, pp. 243-5.

8. M. Heydemann, D. Dure, “The Logic Automation
Approach to Accurate Gate and Functional Level
Simulation,” Proceedings of ICCAD-88, pp. 250-253.

9. Sosic, R, J. Gu, R. Johnson, The Unison Algorithm,
Fast Evaluation of Boolean Expressions, TODAES
Vol 1, No. 4, Oct. 1996, pp. 456-477.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

