Retargeting of Compiled Simulators for Digital Signal Processors

Using a Machine Description Language

Stefan Pees, Andreas Hoffmann, Heinrich Meyr
Integrated Signal Processing Systems, RWTH Aachen
pees|hoffmann,meyr|@ert.rwth-aachen.de

Abstract

This paper presents a methodology to retarget the tech-
nique of compiled simulation for Digital Signal Proces-
sors (DSPs) using the modeling language LISA. In the
past, the principle of compiled simulation as means for
speeding up simulators has only been implemented for
specific DSP architectures. The new approach presented
here discusses methods of integrating compiled simula-
tion techniques to retargetable simulation tools. The
principle and the implementation are discussed in this
paper and results for the TI TMS320C6201 DSP are
presented.

1 Introduction

Integrating complete systems consisting of hardware and
software components on a single chip raises new chal-
lenges in the area of verification. Because target hard-
ware is typically available only late in the design cycle,
the complete system must be verified by means of cycle-
accurate simulation. At the same time, simulation speed
is critical for the verification of such systems and thus
an important issue in simulator design [1, 2].

The principle of compiled simulation is to take advan-
tage of a priori knowledge and move frequent operations
from simulation run-time to compile-time with the goal
of providing the highest possible simulation speed. Com-
piled simulation of programmable DSP architectures was
introduced to speed up the instruction set simulation of
programmable DSP architectures [3] and was extended
to cycle-accurate models of pipelined processors [4]. So
far, the approaches addressing the particular require-
ments of compiled simulation of DSPs are targeted to a
specific processor architecture using a handwritten simu-
lation compiler. However, the task of building a custom
simulator for new architectures is extremely error-prone
and tedious. It is a very lengthy process of matching
the simulator to an abstract model of the processor ar-
chitecture. These efforts can be reduced significantly by

using a retargetable simulator which is generated from
machine descriptions [5, 6].

This paper explores the general principles of compiled
simulation that can be applied when using a language-
based approach. Furthermore, an implementation based
on the machine description language LISA [7, 8] is pre-
sented. From this description, efficient simulation tools
are generated.

2 Related Work

Hardware description languages (HDLs) like VHDL or
Verilog are widely used to model and simulate proces-
sors, but mainly with the goal of developing hardware.
Using these models for instruction-level processor simu-
lation has a number of disadvantages. They cover hard-
ware implementation details which are not needed for
performance evaluation and software verification. More-
over, the description of detailed hardware structures has
a significant impact on simulation speed [2].

The machine description language nML was developed
at TU Berlin [9] and adopted in several projects [1].
While retargetable assemblers and disassemblers can be
generated for some DSP processors, it is not possible
to produce cycle-accurate simulators for pipelined pro-
cessor architectures. The main reason is the simple un-
derlying instruction sequencer which does not support
pipeline operations like e.g. flushes. Processors with
more complex execution schemes like the Texas Instru-
ments TMS320C6x cannot be described, even at the
instruction-set level, because of the numerous combi-
nations of parallel and sequential instructions within a
fetch packet. These restrictions also apply to the ap-
proach of ISDL [10] which is very similar to nML. How-
ever, cycle-accurate models of pipelined processor archi-
tectures require a pipeline-accurate behavioral descrip-
tion beyond pure semantics. The approach based on
the language EXPRESSION [11] incorporates particular
mechanisms for the description of memory hierarchies.

However, no results are published that indicate the ap-
plicability for cycle-accurate simulation purposes.

The language RADL [12] is derived from earlier work
on LISA [7] and extended to support multiple pipelines.
But no results are provided on realized simulators based
on this language.

To summarize the review, none of the approaches above
does support cycle-accurate simulation or fast processor
simulators that are based on compiled techniques [4].
Our interest in supporting this technique and the issue
of realizing cycle-accurate processor models motivated
the introduction of the language LISA which is used in
our approach [7, 8].

3 Compiled Simulation

The objective of compiled simulation is to reduce the
simulation time. In general, efficient run-time reduction
is achieved by accelerating frequent operations. Here,
the technique for accelerating operations is to use a priori
knowledge during the translation of target program code
into simulation code for the host.

The principle of compiled simulation for DSPs corre-
sponds to the ideas that are already successfully imple-
mented in the simulation of synchronous VLSI circuits
[13]. Such compiled simulators for DSPs have been re-
alized for specific processor architectures [4]. Re-using
the efforts for the implementation of the compiled tech-
niques is extremely difficult since the techniques are im-
plemented in the so-called simulation compiler which is
highly architecture dependent.

e The step of instruction decoding determines the
instructions, operands and modes from the respec-
tive instruction word. The pipeline structures found
in modern DSPs make it obvious that the simulation
of these operations consumes a significant amount of
simulation time. If we take for example the Texas
Instruments TMS320C62x DSP, most instructions
actually execute within only one pipeline stage (or
cycle), whereas fetching, dispatching, and decoding
require six pipeline stages (or cycles).

e The step of operation sequencing determines the
sequence of operations to be executed for each in-
struction of the application program. This step can
be implemented in a compiled simulator by gener-
ating a two dimensional table (see figure 1). One
dimension of this table represents the instructions
of the DSP program, the other contains pointers
to functions that contribute to the transition func-
tion which drives the simulator into the next control
step.

i lator
function function function
80561 ! &sim_func_11: &sim_func_12: &sim_func_13:

_function

address

Figure 1: Simulation Table.

e Operation instantiation and simulation loop
unfolding unfolds the simulation loop that drives
the simulation into the next state and instantiates
the respective simulation code for each instruction
of the application program. This is implemented
in the compiled simulator by generating individual
behavioral code for each instruction of the DSP pro-
gram.

Between the two extremes of fully compiled and fully
interpretive simulation, partial implementation of the
compiled principle is possible by implementing only
some of these steps. Higher levels of compiled simu-
lation can be achieved by investing substantially more
design effort and exploiting highly architecture-specific
properties. There are two levels of compiled simulation
which are of particular interest — the levels which we
call static scheduling and dynamic scheduling of the sim-
ulation. In case of the dynamic scheduling, the task
of selecting operations from overlapping instructions in
the pipeline are scheduled at run-time of the simulation.
The static scheduling already schedules the operations
at compile-time.

4 Model Requirements of the
Simulation Compiler

Beyond the general requirements of retargetable simula-
tors that are generated from machine descriptions, com-
piled simulation requires specific information on the tar-
get processor architecture to perform the above steps of
the simulation compiler.

4.1 Decoding

During the decoding step, the instruction type, the
operands and execution modes are determined. The
operands may come from different sources (registers file,
immediate, indirect) and they can have different types
(signed, unsigned, fixed-point, floating point) and word
lengths. Execution modes and condition codes may fur-
ther specify the operation. Decoding is performed by
extracting this information from the respective instruc-
tion word.

DSPs typically feature extensive non-orthogonal instruc-
tion set coding which makes decoding complex and rises
considerable issues in the formal capture of the decod-
ing mechanisms using a machine description language.
Most, approaches such as nML avoid this problem by
capturing the non-orthogonal coding in the behavioral
model. However, this is no representation which hardly
allows to distinguish (simulation) run-time operations
from compile-time operations — those operations that al-
ready can be performed during simulation compilation.
In LISA, the distinction between these two types of op-
erations is made by means of particular IF-ELSE and
SWITCH-CASE statements which are discussed later.

4.2 Operation Sequencing

In order to perform operation sequencing, the prece-
dence of operations composing one instruction and the
inter-instruction precedence must be determined. The
complexity of this task rapidly grows with the depth
and mechanisms of the instruction pipeline.

The processor model must provide detailed information
on the pipeline structure and its mechanisms in order to
enable this step. The LISA language with its detailed
pipeline model enables the description of all pipeline
structures and the intra-instruction precedence of oper-
ations. Figure 2 shows the intra-instruction precedence
relations of operations for a simple four-stage pipeline
(with the stages IF, ID, EX, WB).

‘ IF H ID H EX HWB‘ instruction k

Figure 2: Intra-instruction precedence.

4.3 Operation Instantiation

The inter-instruction precedence of operations can be de-
rived from the overlapping of instructions in the pipeline
for the case that no control hazards occur. Figure 3 de-
picts both, the intra- and inter-instruction precedence
relations of operations. The simulation compiler has
to compose operations from overlapping instructions to
form the transition function that drives the simulation
into the next state. Such operations are shown in verti-
cal columns in figure 3.

Due to control hazards such as jumps, branches and
exceptions, the program execution may follow different
paths which causes multiple possible combinations of op-
erations in the pipeline. For this reason, the simulation
compiler has to generate code for all these possible com-
binations. During run-time of the simulation, the ap-
propriate path is selected.

‘ IF H ID HEX HWB‘ instruction k
‘ IF H ID H EX HWB‘ instruction k+1

‘ IF H ID H EX HWB‘ instruction k+2

‘IFHIDHEXHWB

instruction k+3

t

Figure 3: Precedence of instructions in the pipeline.

5 LISA Language

LISA descriptions are composed of resource declara-
tions on the one hand and of operations on the other
hand. The declared resources build the storage objects
of the hardware architecture (e.g. registers, memories,
pipelines) which capture the state of the system and
which can be used to model the limited availability of
resources for operation access.

Operations are the basic objects in LISA. They repre-
sent the designer’s view of the behavior, the structure,
and the instruction set of the programmable architec-
ture. Operation definitions collect the description of dif-
ferent properties in several sections, such as the opera-
tion behavior (in the BEHAVIOR section), instruction
set information, and timing.

Operations are formed by a header line and the oper-
ation body. The header line consists of the keyword
OPERATION and its identifying name:

OPERATION name_of_operation
{

sections. . .

3

For more details on the LISA language, please refer to

[8).

5.1 Formal Description of Non-

orthogonal Coding Fields

In LISA, non-orthogonal coding is expressed by addi-
tional conditional statements that can be used to struc-
ture the processor model. The purpose of these new
conditional statements is to express the coding depen-
dencies between different operations. Following the syn-
tax of programming languages, they have the form of
IF-ELSE and SWITCH-CASE statements.

We will now discuss an example. Figure 4 displays the
coding of a simplified instruction word. There are three
instructions add, sub, and mul whose execution is also
controlled by the coding field mode which selects between

instruction word

instruction H condition H mode H dest-reg H src-reg1 H src-reg2 ‘

NN

[aa] sub [mut 10 [st0

instruction mode

Figure 4: Non-orthogonal coding fields.

short and long operands and their specific arithmetic.
However, the other instructions 1d and sto use the mode
field for a different purpose. Possible LISA code for the
add instruction is shown in example 1.

OPERATION add
{
DECLARE { REFERENCE mode; }
IF (mode == short) {
BEHAVIOR { dest_lo = srcl_lo + src2_lo; }
}
ELSE {
BEHAVIOR {
dest_lo = srcl_lo + src2_lo;
carry = dest_lo >> 16;
dest_lo &= OxFFFF;
dest_hi = srcl_hi + src2_hi + carry;

Example 1: Formal expression of non-orthogonality.

Here, the IF-THEN-ELSE statement encloses two alter-
native sections with their respective behavioral descrip-
tion of the operation add. This formal representation
lets the simulation compiler distinguish these two cases
and generate specific simulation code.

6 Implementation Results

In order to evaluate the applicability and efficiency of
compiled simulation in a retargetable environment, we
implemented the first two steps of section 3 — compile-
time decoding and operation sequencing — in our exper-
imental tool suite. As shown in Figure 5, a LISA com-
piler takes the processor model and translates in into a
data base. The information in this data base is accessi-
ble for the simulation compiler generator which produces
source code in C++ for a processor-specific simulation-
compiler. This simulation compiler translates applica-
tion of the target processor into a simulation table which
becomes a part of the final simulator.

We have chosen the Texas Instruments TMS320C6201
DSP as reference processor for our experimental analysis
of the obtainable simulation speed. The TMS320C6201
was described in LISA as a cycle-based model. Although

LISA
processor
model

LISA compiler

processor model
data base

simulation
library

simulation compiler generator

v

application processor specific compiled
program simulation compiler simulation

Figure 5: Retargetable, compiled simulation tools.

the architecture of this processor with two pipelines con-
sisting of eleven pipeline stages is very complex, the
LISA description including the memory interface was re-
alized by one designer in 6 weeks. The complete transla-
tion of this model with the LISA compiler and the simu-
lation compiler generator takes less than 35 seconds on a
Sparc Ultra 10 workstation. As a comparison, a custom
compiled simulator for the less complex TMS320C54x
(six-stage pipeline) the same designer has spent more
than 12 months.

6.1 Simulator Benchmarks

In order to evaluate the simulation speed of our gener-
ated, compiled simulator of the TI C6201 we used the
sim62x, version 2.0 which is part of the TI’s software
development tools for our reference. The benchmarks
are based on three typical DSP algorithms, a FIR filter,
the ADPCM G.721 codec, and the GSM speech encoder.
All measurements were made on a Sparc Ultra 10.

Compilation time of object code into a compiled simula-
tion was measured on three reference applications. The
required time and respective application size is shown in
figure 6. The compilation speed is calculated by relat-
ing the number of compiled instructions to compilation
time.

Application FIR ADPCM GSM

code size [kByte] 2112 3072 58592
compilation time [s] 0.97 1.38 27.31
compilation speed [instructions/s] 544 557 536

Figure 6: Simulation Compilation Speed.

For all applications measured, the compilation speed
ranges between 530 and 560 instructions/s, even for our
GSM coder that nearly requires the whole internal mem-
ory space of the DSP.

Simulation speed was quantified by running an applica-
tion on the respective simulator and relating the sim-
ulation time to the processed number of cycles. The
reference simulator from TT achieved between 2k and 9k
cycles/s whereas our generated simulator runs at speeds
between 288k and 403k cycles/s at the same accuracy
level. This corresponds to factors of 47x to 170x faster
simulation as shown in figure 7.

speed-up

180x - 169,9x
160x -

140x -

120x -

100x -

80x 1 64,7x

60x 47,2x

40x

20x

0x
FIR ADPCM GSM

Figure 7: Speed-up: LISA simulator vs. TT sim62x.

7 Conclusion and Future Work

In this paper, we presented the new approach of applying
compiled simulation to retargetable processor simulation
environments. The compiled technique is a technology
that enables fast simulation of programmable DSP ar-
chitectures. Up to now, compiled simulation has only
been implemented for specific processor architectures.
Retargetable, compiled simulation based on a machine
description language puts specific requirements on the
instruction set model. The complete instruction cod-
ing must be described formally to enable a high degree
of compiled simulation. The processor description lan-
guage LISA is able to provide such models. In a case
study, compiled simulation techniques are implemented
for a model of the Texas Instruments TMS320C6201
DSP. Our generated, compiled simulator based on the
LISA description runs at 47-170 times higher simula-
tion speed than the commercially available instruction
set simulator from TT without any loss in accuracy.

Our future work will focus on modeling further real-life
processor architectures and retargetable compiled simu-
lators that provide the third step of compilation — oper-
ation instantiation. Another issue is the integration of
software simulators into HW/SW co-simulation environ-
ments. Furthermore, the goal of the ongoing language
design is to address retargetable compiler back-ends as
well.

References

[1] M. Hartoog, J. Rowson, et al., “Generation of software
tools from processor descriptions for hardware/software
codesign,” in Proc. of the Design Automation Con-
ference (DAC), Jun. 1997.

[2] J. Rowson, “Hardware/Software co-simulation,” in
Proc. of the ACM/IEEE Design Automation Con-
ference (DAC), 1994.

[3] V. Zivojnovié, S. Tjiang, and H. Meyr, “Compiled simu-
lation of programmable DSP architectures,” in Proc. of
IEEE Workshop on VLSI Signal Processing, (Sakai,
Osaka), pp. 187-196, Oct. 1995.

[4] S. Pees, V. Zivojnovié, A. Ropers, and H. Meyr, “Fast
Simulation of the TI TMS 320C54x DSP,” in Proc. Int.
Conf. on Signal Processing Application and Tech-
nology (ICSPAT), (San Diego), pp. 995-999, Sep. 1997.

[6] M. Barbacci, “Instruction set processor specifications
(ISPS): The notation and its application,” IEEE
Transactions on Computers, vol. C-30, pp. 24-40,
Jan. 1981.

[6] A. Fauth and A. Knoll, “Automatic generation of DSP
program development tools using a machine description
formalism,” in Proc. of the ICASSP - Minneapolis,
Minn., 1993.

[7] V. Zivojnovié, S. Pees, and H. Meyr, “LISA — ma-
chine description language and generic machine model
for HW/SW co-design,” in Proceedings of the IEEE
Workshop on VLSI Signal Processing, (San Fran-
cisco), Oct. 1996.

[8] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr,
“LISA — Machine Description Language for Cycle-
Accurate Models of Programmable DSP Architectures,”
in Proceedings of the Design Automation Conference
(DAC), (New Orleans), June 1999.

[9] A. Fauth, M. Freericks, and A. Knoll, “Generation of
hardware machine models from instruction set descrip-
tions,” in Proc. of the IEEE Workshop on VLSI Sig-
nal Processing, 1993.

G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL:
An instruction set description language for retargetabil-
ity,” in Proc. of the Design Automation Conference
(DAC), Jun. 1997.

A. Halambi, P. Grun, et al., “EXPRESSION: A
language for architecture exploration through com-
piler/simulator retargetability,” in Proc. of the Con-
ference on Design, Automation € Test in FEurope
(DATE), Mar. 1999.

[11]

[12] C. Siska, “A processor description language supporting
retargetable multi-pipeline DSP program development
tools,” in Proc. of the Int. Symposium on System

Synthesis (ISSS), Dec. 1998.

Z. Barzilai, et al., “HSS - A high speed simulator,”

IEEE Trans. on CAD, vol. CAD-6, pp. 601-616, July
1987. 1987.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

