
Parallel and Distributed VHDL Simulation�

Dragos Lungeanu C.J. Richard Shi
Deptartment of Computer Science Department of Electrical Engineering

University of Iowa University of Washington

Abstract

This paper presents a methodology for parallel and dis-
tributed simulation of VHDL using the PDES (parallel
discrete-event simulation) paradigm. To achieve better fea-
tures and performance, some PDES protocols assume that
simultaneous events may be processed in arbitrary order.
We describe a solution of how to apply these algorithms
to have a correct simulation of the distributed VHDL cy-
cle, including the delta cycle. The solution is based on tie-
breaking the simultaneous events using Lamport’s logical
clocks to causally order them according to the VHDL simu-
lation cycle, and defining the VHDL virtual time as a pair of
simulation physical time and cycle/phase logical time. The
paper also shows how to use this method with a PDES pro-
tocol that relaxes the simulation of simultaneous events to
arbitrary order, allowing the LPs to self-adapt to optimistic
or conservative mode, without the lookahead requirement.
The lookahead is application-dependent and for some sys-
tems may be zero or unknown. The parallel simulation of
VHDL designs ranging from 5531 to 14704 LPs using these
methods obtained a promising, almost linear speedup.

1. Introduction

Modern digital system design relies heavily on simu-
lation to ensure design correctness and to maximize sys-
tem performance. Simulation of very large scale integrated
(VLSI) digital systems containing hundreds of millions of
logic gates is time consuming, and has become a bottleneck
in the design process [1].

In this paper, we present a new approach and its im-
plementation to distributed and parallel simulation of dig-
ital VLSI systems described in VHDL [6]. Our approach
is based on the parallel discrete-event simulation (PDES)
paradigm. The foundation of our work is a general and
novel lookahead-free self-adaptive optimistic and conserva-
tive synchronization protocol that allows maximal utiliza-
tion of the inherent concurrency in digital systems [11]. In

�This work was sponsored by DARPA under grant No. F33615-96-1-5601

this paper, we describe how this protocol can be applied
to digital VHDL simulation. More specifically, we present
how VHDL signals and processes can be mapped to a PDES
model as a distributed VHDL kernel. We propose to order
simultaneous events based on Lamport’s logical clocks [9],
and define VHDL virtual time as a pair of simulation phys-
ical time and cycle/phase logical time. This leads to a dis-
tributed VHDL simulation cycle, which can handle VHDL
delta cycles. A parallel VHDL compiler and simulator have
been constructed and achieved almost linear speedup.

Previous research on parallel VHDL simulation was re-
ported by [10, 13] based on optimized conservative syn-
chronization. However, the method in [13] still relies on
lookahead to avoid deadlock, and [10] assumes known static
delays on each signal, and cannot handle delta cycles.

2. Parallel Discrete Event Simulation

We provide a brief overview of parallel discrete-event
simulation (PDES). Excellent surveys can be found in [3, 4,
5]. The physical system under simulation is partitioned into
entities that communicate via message passing. Each entity
is modeled by a logical process(LP). The model of dis-
tributed simulation is a graph of logical processes exchang-
ing timestamped events(event@time) over channels. Each
LP has a stateand a simulate()function. A simulation step
of an LP calls the simulate() function with the next input
event and current state, modifies the state and sends output
events. The distributed simulation is correct if each LP pro-
cesses its input events in chronological order of their times-
tamps (local causality constraintor lcc). The two major
ways to ensure the lcc are: optimistic and conservative.

In the conservativemethods [2], an LP blocks until it
has a safeevent to process. An event is safe if the LP will
never receive another event with a lower timestamp. Block-
ing may cause deadlock, avoided or detected and recovered
by global synchronization.

The optimisticmethods [7] assume that all the events are
safe. If there is a later event with a lower timestamp (strag-
gler), it rollbacks by time warping. During the rollback the
LP restores the state previous to the straggler and sends neg-
ative eventsto cancel all of the events sent during the wrong



simulation. These negative events may cause rollback at
their destinations. Rollback involves states and events sav-
ing and restoring, which may cause memory overflow. Fos-
sil collectionis the process in which unneeded memory cells
are freed. Again, global synchronization is used to establish
if a memory cell is old enough to be reused.

Global synchronization may be performed using null
messageor global virtual time (gvt) protocols. gvt is the
smallest timestamp of an unprocessed event in the entire
system. It is monotonically increasing over the simulation.
A null message is an empty event with a timestamp. It is
sent by an LP on the output channels to inform those LPs
about the smallest timestamp of a future real event. This
promise involves the knowledge of lookahead, a kind of
delay from inputs to outputs. Lookahead is application-
dependent and is sometimes zero, too expensive or impossi-
ble to compute. Without it, the null messages may not avoid
deadlock.

2.1. Simultaneous Events in PDES

In a PDES model, events with the same timestamp can
be generated. This may be a benefit if they are destined to
different LPs. The order in which simultaneous events are
processed by one LP may be irrelevant for some applica-
tions or may change dramatically the semantics for others.
There are two main tie-breaking mechanisms for the simul-
taneous events used in PDES protocols: arbitrary in which
an LP may process them in any order, and user-consistent
in which the algorithm collects them all and passes the set
to be ordered by the application. The second mechanism is
more general, but requires overhead, which in many cases
is unnecessary since some simultaneous events are still in-
dependent and may be processed in any order.

For optimistic protocols the overhead is extra rollback
for events with equal timestamp. Rollback is already a big
overhead needed to be reduced [12]. The conservative algo-
rithms will block more until they are sure they will receive
only events with strictly greater timestamps. This may lead
to unavoidable deadlock for zero-delay cycles. For mixed
protocols that combine optimistic and conservative meth-
ods, the user-consistent ordering cannot be guaranteed with-
out a known lookahead [8].

Relaxing the assumption about simultaneous events to
the arbitrary mechanism, we designed a mixed protocol that
allows the LPs to dynamically self-adapt to optimistic or
conservative behavior to find the best configuration. The
protocol not only eliminates the user-consistent model over-
head, but it is also lookahead-free. If the lookahead is avail-
able, it may be used to improve performance. When a con-
servative LP may receive events from an optimistic LP, it
must be able to handle them without rollback. The protocol
is described in detail in [11].

3. Distributed VHDL Kernel

After elaboration, the VHDL hierarchy is flattened into a
graph of processes interconnected by signals [6]. This sec-
tion describes how to map a post-elaboration VHDL model
into a PDES model.

3.1. VHDL Signal

VHDL signals are not just simple channels. Complex se-
mantics are associated with them. Signals may have multi-
ple sources and multiple destinations. For each source there
is a driver that holds a waveform on which transactions may
be scheduled. In case of multiple drivers, a resolution func-
tion is defined to resolve the effective value of the signal.

In a distributed system the communication is based on
message passing and there is no shared memory to store the
signals. Since many VHDL processes may use the value of
the same signal, we face a distributed memory problem.

Proc In 1

Proc In p

Proc Out 1

Proc Out q

Signal

resolutionProcess Execution
Signal Assignment

Signal Update

simulate()state

Driving
ValueWave

1

p

Figure 1. VHDL Signal LP.

Our solution is to map each signal as a PDES LP (Fig. 1).
The signal LP will hold in the state one driver for each
source and will broadcast the new effective value to each
VHDL process that uses it. This value is computed by ap-
plying the resolution function on the driving values of each
input driver. The simulate() function also takes care of
updating the waveforms and of scheduling transactions for
future driving values.

3.2. VHDL Process

The basic computational block of a VHDL design is the
process statement which models the behavior in terms of
sequential statements. VHDL processes map naturally into
PDES LPs (Fig. 2).

Sig In m

Sig In 1 Sig Out 1

Sig Out n

behaviour Process Execution
Signal Assignment

Signal Update ValueLocal

1

m

Process

simulate()state

Figure 2. VHDL Process LP.



The state contains the process variables and local copies
of the effective values for each input signal used in sensitiv-
ity lists or in any expression.

The simulate() function is called each time there is an
event for the LP. The event may be external from an input
signal that changed its effective value, or may be internal
from the LP itself to trigger the execution of the sequential
statement part of the VHDL process.

An external event will update the local copy of the input
signal and will schedule an internal event if the process is
sensitive to the signal or if the wait condition (if any) be-
comes true. In this case, any pending timeout event will be
canceled.

An internal event will cause the process execution until
the next wait statement. If there is a timeout clause, another
internal event is scheduled. During the execution, the pro-
cess may send events to output signals as a result of signal
assignment statements.

3.3. Distributed VHDL Simulation Cycle

In a PDES model each LP executes in an asynchronous,
independent manner with different local simulation times.
Various protocols are used to synchronize them and to en-
sure a correct simulation. The synchronization is based on
using timestamps for the events, and on each LP to process
its events in chronological order of the timestamps (lcc). To
achieve better features and performance, some PDES algo-
rithms assume that simultaneous events may be simulated
in arbitrary order. This assumption may modify the seman-
tics of the VHDL simulation, leading to incorrect results in
cases of delta cycles, timeouts, signals with multiple simul-
taneous transactions or processes with multiple simultane-
ous input signals updates.

We propose a tie-breaking scheme for the problematic
simultaneous events to conform to the VHDL simulation
cycle. The solution is based on appending an extra field
to the VHDL simulation time, which specifies the VHDL
cycle/phase number. So the virtual time is a pair of physical
simulation time and logical cycle/phase number:

vt = (pt; lt)

with the order relation vt1 < vt2 true if and only if:
vt1:pt < vt2:pt or (vt1:pt = vt2:pt and vt1:lt < vt2:lt)

This solution is similar to Lamport’s logical clocks [9] in
the sense that it defines an ordering on the events based on
their causality. Using this notion of simulation virtual time,
the distributed simulation cycle has the following phases
(Fig. 3):

Signal: Signal Assign: vt = (pt = now; lt = 3k) Due
to signal assignments in the Process: Process Execution
phase, the process LP may send events to output signals.
The signal will update the corresponding waveform con-
form to the delay mechanism, will add new transactions,

+0 +0

+1 +1

+1
+3

Signal
Signal Assign

3k+3 / 3k

Signal
Driving Value

3k+1

Signal
Signal Update

3k+2

Process
Signal Update

3k+2

Process
Process Execution

3k+3

+1

Figure 3. Distributed VHDL Cycle.

and for each transaction will schedule an internal event
for the next Signal: Driving Value phase with timestamp
ts = (now; lt+1) if after = 0, or ts = (now+ after; 1)

if after > 0.

Signal: Driving Value: vt = (pt = now; lt = 3k + 1)

The next transaction in any input waveform is performed.
It will update the corresponding driving value and sched-
ule an internal event for the next Signal: Signal Update
phase with timestamp ts = (now; lt + 1) if the signal is
resolved. The reason is that another driver may have pend-
ing a transaction at the same time, so the resolution function
must be applied after all these simultaneous transactions. If
the signal has only one source, then the driving value be-
comes the effective value and if changed, it is broadcasted
to all fan-out processes by sending events with timestamp
ts = (now; lt+ 1).

Signal: Signal Update: vt = (pt = now; lt = 3k + 2)

If the signal is resolved, the resolution function is applied
for all driving values to compute the effective value, which
is sent to all output processes through events with times-
tamp ts = (now; lt).

Process: Signal Update: vt = (pt = now; lt = 3k+2)

The VHDL process LP receives new effective values for the
input signals and updates the corresponding local values.
If the process is sensitive to the signal, or if the wait con-
dition becomes true, then an internal event is scheduled for
the next Process: Process Execution phase with timestamp
ts = (now; lt+1), and the pending (if any) internal timeout
event is canceled. The reason for incrementing the logical
time for the next phase is to be sure that all simultaneous
signal updates take place before process execution. How-
ever, the order of simultaneous signal updates is irrelevant.

Process: Process Execution: vt = (pt = now; lt =

3k + 3) The VHDL process loop is resumed due to either
signal change or timeout event by calling a run() virtual
method. The process may send events to output signals as
a result of signal assignments and will suspend on the next
wait statement. If a timeout is specified in the wait call, an
internal event is scheduled for this phase in the next cycle
with timestamp ts = (now; lt + 3) if timeout = 0, or
ts = (now + timeout; 3) if timeout > 0.



3.4. Remarks

Mapping both VHDL processes and signals to PDES
LPs will create a bi-partite graph. Partitioning this graph
for balancing the load and minimizing the communication
may take advantage of this particular topology, leading to a
faster and better solution.

A possible alternative to single-source signals is to map
them in the same LP as the driving VHDL process to reduce
the overall number of LPs. However, this will complicate
the VHDL process LP simulate() function and will destroy
the bi-partite property of the graph.

4. Implementation and Results

The lookahead-free, dynamic, mixed PDES protocol was
implemented in C++, using MPI or TCP/IP sockets for com-
munication. We have also developed a VHDL to C++ trans-
lator, and a VHDL kernel library to support signals, pro-
cesses and VHDL statements not directly translatable to
C++, like signal assignment and wait. Both VHDL pro-
cess LP and VHDL signal LP classes are derived from the
LP class, and implement the above distributed simulation
cycle in the virtual simulate()method. For each VHDL pro-
cess there is a C++ class derived from a VHDL process LP
whose run() virtual function is given by the VHDL process
sequential statement part and called in the Process Execu-
tion phase.

The circuits in Figs. 5, 7, and 9 were described in VHDL
at the behavioral and gate level, and simulated on an SGI
Challenge parallel machine with 16 processors, using 4 dif-
ferent configurations: all LPs optimistic, all conservative,
registers conservative and combinational part optimistic, all
dynamic. All simulations were verified to be correct. The
sizes of the circuits and the speedups relative to the 1 pro-
cessor execution (improved for sequential simulation) are
illustrated in Figs. 6, 8, 10. Despite the naive partitioning
used (equal number of LPs to each processor), which caused
occasional dips in the curves, the speedups are linear and
show a good potential for parallel VHDL simulation.

We observe that in general the optimistic configuration
is very suitable for digital simulation. Unfortunately, it de-
mands huge amounts of memory, proportional to the num-
ber of processors. Heavy-state processes cannot save their
state, so they must run conservatively. The conservative
configuration is better when there is a large number of si-
multaneous events (Fig. 6). Since we did not use the looka-
head, the overhead of null messages was disabled.

The mixed configuration in which synchronous compo-
nents are mapped as conservative and asynchronous ones
as optimistic worked very well for most of the cases, better
than all optimistic or all conservative configurations. We
based our heuristic on the fact that the clock signal is very

persistent and in most of the cases ready before other inputs
are stable. On the other hand, asynchronous events follow a
data-flow path, and are usually safe.

The most impressive results come from the dynamic syn-
chronization, which is able to follow closely the best con-
figuration (out of 4 tried) or find it automatically. For the
gate level simulation of DCT processor, the speedup for the
self-adapting dynamic configuration is twice the speedup of
other configurations (Fig. 10).

To compare the arbitrary and the user-consistent mod-
els, we modified the protocol to support the second one
for all LPs conservative or all LPs optimistic. We also had
to turn on the lookahead support, since the user-consistent
model for conservative configuration will block without it.
The running times in seconds on 4 processors are shown in
Fig. 4. The overhead of user model itself is small, but for
light VHDL LPs, the main overhead is the need of looka-
head (+la) and the null messages to propagate it.

Conservative Optimistic
Circuit arbitrary user arbitrary user

-la +la +la -la -la -la
FSM 17.1 27.2 27.6 1 20.8 22.0
IIR 22.6 43.5 46.4 1 21.4 22.6

DCT 49.2 250 289 1 38.4 41.4

Figure 4. Arbitrary vs. User-Consistent.

5. Conclusion

This paper presented a methodology for distributed
VHDL simulation, with solutions for signals distributed
memory problem and distributed VHDL cycle, by introduc-
ing a tie-breaking mechanism for problematic simultaneous
events, based on extending the VHDL physical simulation
time with the cycle/phase logical number to causally order
them. This method avoids the overhead of user-consistent
PDES protocols that rollback or block too much to order
even independent simultaneous events. With this method
we could use a PDES protocol that relaxes the assump-
tion about simultaneous events to arbitrary order, achiev-
ing features that were otherwise impossible with the user-
consistent model. The protocol is application-independent,
working without knowing the lookahead, allowing the LPs
to self-adapt to either optimistic or conservative mode for
the best configuration. This combination works for any
VHDL circuit, including delta cycles, making it very con-
venient and a strong candidate for automatic translation
for parallel simulation of VHDL. The results of the simu-
lation of large real VHDL circuits have shown promising
speedups.



References

[1] R. D. Chamberlain. Parallel logic simulation of VLSI systems.
Proc. 32rd IEEE/ACM DAC, p. 139, Jun.1995.

[2] K. M. Chandy and J. Misra. Asynchronous distributed simu-
lation via a sequence of parallel computations. Comm. of the
ACM, Vol. 24, No. 11, p. 198, Nov.1981.

[3] A. Ferscha. Parallel and distributed simulation of discrete
event systems. Parallel and Distributed Computing Handbook,
McGraw-Hill, 1995.

[4] R. M. Fujimoto. Parallel discrete event simulation, Comm. of
the ACM, Vol. 33, No.10, p. 30, Oct.1990

[5] M. Bailey, J.V.Jr. Briner and R.D. Chamberlain. Parallel logic
simulation of VLSI systems, ACM Computing Surveys, Vol. 26,
No. 3, p. 255, Sep.1994

[6] IEEE. IEEE standard VHDL language reference manual,
IEEE Std. 1076-1993, 1994

[7] D. A. Jefferson. Virtual time. ACM TOPLAS, Vol. 7, No. 3,
p. 404, Jul.1985.

[8] V.Jha and R. Bagrodia. A unified framework for conservative
and optimistic distributed simulation. Proc. 8th. PADS, 1994

[9] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system, Comm. of the ACM, 21(7), p. 558, Jul.1978

[10] E. Naroska. Parallel VHDL simulation, Proc. DATE, p. 159,
1998

[11] D. Lungeanu and C.J. Richard Shi. Distributed simulation of
VLSI circuits via lookahead-free self-adaptive optimistic and
conservative synchronization, Proc. ICCAD, p. 500, 1999

[12] S. Schmerler et al. Advanced optimistic approaches in logic
simulation, Proc. DATE, p. 362, 1998

[13] P.A. Walker and S. Ghosh. Asynchronous, distributed event
driven simulation algorithm for execution of VHDL on parallel
processors, Proc. 32rd IEEE/ACM DAC, p. 144, Jun.1995.

D Q

clk

combinational

logic
D Q

clk

combinational

logic
D Q

clk

combinational

logic

Figure 5. Finite State Machine (FSM).

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14
Speedup for Finite State Machine 0 Delay

Number of processors

S
pe

ed
up

Optimistic
Conservative
Mixed
Dynamic

5531 LPs

Figure 6. Speedup for FSM (0 Delay).

+

+

z -1

+

+

+

z -1

+

+

+

z -1+

Figure 7. Gray-Markel Cascaded Lattice IIR
Filter.

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12
Speedup for Gray−Markel IIR 10 Gate−Level Filter

Number of processors
S

pe
ed

up

Optimistic
Conservative
Mixed
Dynamic

14704 LPs

Figure 8. Speedup for IIR Filter (Gate).

+

+

*

*

Ri

Ri(1)

Ri(8)

Ri(2)

c(j,1)

c(i,j)
Ro

Ro

(ac)(i,1)

(cac)(i,1)

+

+

*

*

Ri

Ri(1)

Ri(8)

Ri(2)

c(j,2)

c(i,j)
Ro

Ro

(ac)(i,2)

(cac)(i,2)

+

+

*

*

Ri

Ri(1)

Ri(8)

Ri(2)

c(j,8)

c(i,j)
Ro

Ro

(ac)(i,8)

(cac)(i,8)

a(i,j)

Figure 9. Discrete Cosine Transform Proces-
sor.

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8
Speedup for DCT

Number of processors

S
pe

ed
up

Optimistic
Conservative
Mixed
Dynamic

7962 LPs

Figure 10. Speedup for DCT Processor (Gate).


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


