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Abstract

Accounting for the clustering effect is fundamental
to increase the accuracy of Defect Level (DL) model-
ing. This result has long been known in yield modeling
but, as far as known, only one DL model directly ac-
counts for it. In this paper we improve this model,
reducing its number of parameters from three to two
by noticing that multiple faults caused by a single de-
fect can also be modeled as additional clustering. Our
result is supported by test data from a real production
line.

Nomenclature

a: defect clustering parameter.

A: average number of defects per chip.

Q: defect coverage.

DL: defect level or reject ratio.

R;: number of new chips rejected by vector i.
T': single fault coverage.

Y: true yield.

Y,: apparent yield.

Y,n: measured yield.

Vishwani D. Agrawal

Bell Labs
Lucent Technologies
Murray Hill, NJ 07974, USA

va@research.bell-labs.com

1 Introduction

Defect level, also known as reject ratio, is the frac-
tion of faulty chips among the chips that pass the
production test. These chips are taken as good de-
vices and shipped to customers. They can later fail in
the field, causing the manufacturer significant expense
and adversely influencing important invisible parame-
ters such as customer satisfaction, company prestige,
etc. The economical importance of defect level hardly
needs to be highlighted. The problem is how to predict
and control its value.

The causes of field rejects are faults caused by man-
ufacturing defects; the same defects that are respon-
sible for reducing the yield. To cope with the com-
plexities of physical defect phenomena, sophisticated
yield models have been developed. It is important
that these models account for the defect clustering
phenomenon, for significantly more accurate yield es-
timates can be produced by doing so.

Despite the relevance of the clustering effect, it is
rarely considered in defect level modeling. An ear-
lier attempt to model clustering that uses the aver-
age number of faults in a faulty chip was made in [1].
About the same time, a theory of defect clustering us-
ing a negative binomial formulation for the number
of defects in a chip was also developed in the context
of yield modeling [2]. The negative binomial formula-
tion was adapted to the testable-fault level modeling
in the model proposed in [3], which provides the start-
ing point for the present work.

The assumptions in this work are the same as in
current yield theories — defects of random size and lo-
cation, governed by specific probability distributions.
Unlike the model in [3], we dispense with the parame-
ter that models the number faults per defect, and let
the remaining two parameters, the average number



of defects per chip and clustering parameter, repre-
sent the tester yield. We observe that if one defect
produces multiple faults, that simply corresponds to
a higher degree of clustering. Consequently, the new
DL model is simpler, and is able to produce a better
fit to test data.

This paper is organized as follows. In Section 2 we
discuss existing DL models, and provide the motiva-
tion for the new model. In Section 3 the new model
is introduced and analyzed. In Section 4 an optimiza-
tion procedure to find the parameters of the models is
explained. Experimental results are reported in Sec-
tion 5. Section 6 concludes the paper and gives direc-
tions for future developments.

2 Background

DL is the probability that a chip is faulty given it
passed the test. This can be written as

P(chip good)

DL=1-
P(chip passed the test)

1)

The probability that a chip is good is the true yield Y.
The chip is good if the defect coverage Q0 of the test
applied to it is 2 = 1. Defect coverage is the ratio
between the tested chip area and the total chip area.
However, defect coverage is difficult to evaluate; what
is normally used, is the single fault coverage T, which
is defined as the fraction of faults from a given single
fault model (e.g., the single stuck-at model) that can
be detected by a given test set.

In defect level modeling one fundamental assump-
tion must be made: that there exists a transformation
between T and 2, with the restriction that T = 1
implies 2 = 1. We recognize that 100% fault cover-
age may not mean 100% defect coverage. Research
on fault modeling should continue to ensure that this
assumption is accurate. Nevertheless, this work is not
on fault modeling and we must assume that satisfac-
tory fault models are being used. If our fault models
are not good enough, and we are getting too many
field rejects, it is possible that the real value of DL
is higher than what is predicted by the methodology
described in this paper.

The probability that a chip passes the test for a
given value of T' will be denoted Y, (T') and called the
apparent yield for fault coverage T. Therefore, from
Equation (1), the definition of DL as a function of the
fault coverage T' becomes

Y
DL=1- 2)

In a lot containing N chips, if R; new chips are
rejected after application of test vector ¢, which cor-
responds to a fault coverage T', then a sample value
Y (T) for Yo (T') can be experimentally evaluated by

V(1) = Yo T Q

To find a model for DL we need to find a model for
Y, (T). We will require that a good Y,(T") model is
such that it can fit the experimental points Y,,(T) as
accurately as possible. Note that N must be large so
that the sample values become close to the real pop-
ulation values. Once a good Y,(T) model is found
we can predict yield as Y = Y, (1) and DL by Equa-
tion (2). For T close to 1, experimentally observed
Y, (T) is approximately linear. Thus, the derivative of
Y,(T) at T =1 is proportional to DL.

If, hypothetically, the relationship between Q2 and
T was known, we would be able to talk about the
apparent yield Y, (Q) for defect coverage 2. The key
to any Y,(2) model is the distribution P(r) for the
number r of defects in a chip, which we will call the
underlying defect model:

o0
Ya () =) (1-92)"P(r) (4)
r=0
Note that the (1 — Q)" is the probability that none of
the r defects is detected. No transformation 2 — T is
being considered as yet.
With a set of assumptions equivalent to considering
a Poisson distribution for the number of defects in a
chip, Williams and Brown [5] derived a DL model,
which implied the following apparent yield model

Y, (Q) = (5)

where A is the average number of defects per chip. At-
tempts to confirm the Williams-Brown model experi-
mentally have not been very successful for two possible
reasons. First, Q = T is often assumed, while us-
ing the stuck-at fault model to determine 7T'. Second,
the model totally disregards defect clustering, which
causes the distribution of the number of defects to be
negative binomial rather than Poisson.

Considering a defect model with two parameters,
the yield Y and the average number ng of faults (as-
sumed a Poisson random variable) in a faulty chip,
Agrawal, Seth and Agrawal [1] proposed the model:

V() =Y +(1-Q)(1-Y)e (- (g)

The fact that ng can be greater than 1 is a possi-
ble way of modeling the clustering effect. As a re-
sult Equation (6) proved much more accurate than



the Williams-Brown formula. Even assuming Q = T,
specific relationships between T and Q are implicitly
accounted for when clustering is modeled. This idea
is central to this paper and will be fully exploited in
the new model. However, as we will show, this model
has some difficulties in fitting the experimental data,
which indicates that its underlying defect model may
be inadequate.

De Sousa et al. [6] proposed a DL model based on
the Williams-Brown formula of Equation (5), where Q
is substituted by the following function of T':

Q=1-(1-T)F (7)

where R is parameter that was called the fault-to-
defect susceptibility ratio. This model recognized that
fault coverage must be mapped to defect coverage be-
fore it can be used in the Williams-Brown formulation.
Compared to the Williams-Brown model it produces
a substantially lower fitting error. However, its fatal
flaw is that it predicts a zero DL derivative at T =1,
and consequently an erroneously low DL. This also
disagrees with experimental data which tend to have
a non zero derivative, even at high fault coverage T.

The clustering effect was finally given its due impor-
tance by Seth and Agrawal in their negative binomial
model [3]. This model is derived from a formulation
that also enables characterizing the yield equation us-
ing wafer test data. The resulting model is:

A1—e)] *

YT) = 14 5 s ®)
where A and a are the average number of defects in
the chip and the defect clustering parameter, respec-
tively, and c is the average number of faults per defect,
assumed to be Poisson distributed. The three parame-
ters are positive real numbers. Note that, according to
the negative binomial formulation, o — 0 corresponds
to strong clustering and a — oo corresponds to weak
clustering. Also note that 7', and not (2, appears in
the model as the parameter ¢ takes care of mapping
defects to faults.

Compared to the other models, this model produces
the best fit to experimental data. However, modeling
the clustering effect by means of the parameter o and
again the number of logical faults per defect with ¢
seems somewhat redundant. From a functional point
of view it does not matter if multiple faults are being
produced by a single defect or by a cluster of defects.
This suggests that we do not need two clustering pa-
rameters. In other words, the questions we attempt
to answer in the present work are: Can we use a sin-
gle clustering formalism to also encapsulate multiple

faults produced by a single defect? Could the over-
all fitting error be maintained or decreased if we did
that? Also, if we can produce a model with two pa-
rameters this would show that the three parameters in
the Seth-Agrawal model are possibly correlated. We
find that the Seth-Agrawal model is undecisive about
the relative values of the defect density and the faults
per defect. Besides, nonlinear curve fitting is a compu-
tationally hard problem that explodes with the num-
ber of parameters. Hence, it is important to keep the
number of parameters as low as possible.

3 The new defect level model

This section introduces the new DL model. Its key
feature is the realization that defects causing multiple
faults can be modeled by simply using the clustering
effect. In this way, we do not model the number of
faults produced by a single defect. We substitute each
defect with a cluster of as many defects as the faults
it produces. We assume a negative binomial distribu-
tion for P(r) with parameters A and a. Compared to
the Seth-Agrawal model we expect a higher average
number of defects per chip A and a stronger clustering
parameter «, since we no longer have the the average
number of faults per defect c. We start by deriving
the new model following the steps of [3].

The probability generating function (p.g.f.) G(s)
of a probability distribution P(r) is defined as

G(s) =) s"P(r) 9)

The p.g.f. of the negative binomial distribution is
known to be

6= [1+2a-9] (10)

We can safely substitute Q with T since we assumed a
one to one correspondence between faults and defects.
Also, we assumed that P(r) is a negative binomial dis-
tribution with parameters A and a. Thus Equation (4)
can be rewritten as

Y, (T)=G(1—-T) = (1 + gT) S

Hence, we have obtained a two parameter model,
which incorporates both clustering and an implicit
mapping of defects to faults, obtained by artificially
assuming a one-to-one correspondence between faults
and defects. As any apparent yield model, Y, (0) = 1.



For T = 1 we get the negative binomial yield for-

mula [2]:
y = (1 4 g) B (12)

Also, Equation (11) converges to Equation (5) as a —
00, i.e., for low clustering it becomes the Williams-
Brown model provided we replace T back to 2 again.

4 Optimization procedure

Having presented the most representative Y, mod-
els, we must now address the problem of finding their
parameters that best fit the given experimental data.

Our data consists of the results of applying a set
of test vectors to a set of fabricated chips. For each
applied test vector ¢ we have the number of rejected
chips R;, and the cumulative stuck-at fault coverage
T;. We will use the stuck-at fault model to determine
our fault coverage T'. Again, it is not the objective
of this paper to question the accuracy of the stuck-at
fault model. The methodology is applicable to any
fault model that is deemed appropriate. The exper-
imental measured yield Y;,(T) can be computed by
Equation (3). Then, given a Y,(T') model we will de-
termine its parameters so that the least square error
with respect to the experimental points Y, (T') is min-
imized. Since, all our Y,(T") models are nonlinear, we
have a nonlinear fitting problem. It is well known that
the solution space for a nonlinear fit is far from being
smooth, with multiple local minima. This forces us
to use global search in a subspace where we know the
solution exists. Lower complexity methods such as
the steepest descent are not acceptable. Also, we are
limited by a finite resolution when varying the param-
eters. We first consider the subproblem of finding a
good starting point for the parameters and then the
subproblem of optimizing from that point.

To determine starting points for the parameters we
will use the new model as an example. The derivative
of Y, (T) at T =0 is —\, according to Equation (11).
Thus, by roughly measuring this derivative from the
data we can determine a starting point A\g for A. We
can use the number of chips that pass all vectors and
divide it by the total number of chips N to get a rough
yield estimate Yp. Using Yy and A9 we solve the non-
linear Equation (12) numerically and we get a starting
point ag for a. Next, given this starting point (Ag, ap),
we choose a vicinity beyond which local minima do
not occur (e.g., ap =1 and A\g £ 2), and fine enough
resolution (e.g., 0.05 for both parameters). Then, for
every point (A, ) in the vicinity, we compute the fit-
ting error which is the summation of the square error
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Figure 1: Logarithm of the squared fitting error as a
function of o and A for SEMATECH test data.

for every data point. The point with the least fitting
error determines the best values for A and «a. To illus-
trate the procedure, we plot the square fitting error as
function of A and « for the new model in Figure 1.
The complexity of this method is related to the size
of the grid that represents the solution subspace. Con-
sidering a square grid with n X n points the complex-
ity of the algorithm is O(n?). Clearly, one more pa-
rameter, such as the parameter ¢ in the Seth-Agrawal
method, will increase the complexity to O(n?).

5 Experimental results

Our new model has been tested using the well
known data provided by the SEMATECH consortium,
also used in [4]. The contents of the data is as de-
scribed in the previous section. Results were obtained
for the 5 models featured in this paper: Williams-
Brown, Agrawal et al., Seth-Agrawal, de Sousa et al.,
and the new de Sousa-Agrawal model. The optimiza-
tion procedure was run to determine the parameters of
the models. In Table 1 we give the minimized error,
the estimate for Y, and DL for the maximum fault
coverage achieved: 99.39%. We plot the yield Y,,(T)
data points in Figure 2, where the five fitted models
are superimposed. The models can be differentiated
by matching the corresponding yields from Table 1
with the value at 7' = 1. Williams-Brown (dotted
straight line) has an yield of 73.48%. Next, a higher
yield of 76.15% for de Sousa-Agrawal (solid curve) al-
most matches the experimental data. Seth-Agrawal
(dotted curve) has the yield of 76.45%. Agrawal et al.
(dot-dash curve) and de Sousa et al. (dashed curve)
have slightly above 77% yields.



Table 1: Yield and DL from SEMATECH test data

| Model | Fit Error | Y(%) | DL(ppm) |
Williams Brown [5] | 493 | 7348 | 1900
de Sousa et al. [6] 0.34 77.11 3
Agrawal et al. [1] 0.25 77.01 245
Seth-Agrawal [3] 0.10 76.45 488
de Sousa-Agrawal 0.06 76.15 615
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Figure 2: Fitting models to SEMATECH test data.

As we can see the Williams-Brown model with just
one parameter cannot follow the data well. Its fitting
error is the largest, and its predictions of Y and DL
are the least accurate. The accuracy of the Y and DL
predictions depend on the ability to follow the data
at T close to T = 1. The de Sousa et al. model pro-
duces a much better fit, but the its zero derivative at
T =1 kills the accuracy of the Y and DL predictions.
The three models that account for clustering produce
the best fits and the most accurate predictions. The
Agrawal et al. model is the worst of the three, and
we suppose it is because its underlying Poisson defect
model is not as good as the negative binomial formu-
lation used in the other two. Finally, we can see that
the new model performs better than the Seth-Agrawal
model, both in terms of fitting error and accuracy of
the Y and DL predictions. The logical explanation for
this must be that modeling multiple faults via cluster-
ing is better than modeling the number of faults per
defect with a Poisson distribution. The optimizations
took about a few seconds, a few minutes and several
minutes for 1, 2 and 3 parameters, respectively, using
a MATLAB script, running on a Linux PC.

6 Conclusion

We have modeled the VLSI tester yield with two
parameters, the average number of faults per chip A
and a fault clustering parameter ¢. This model is sim-
pler than some of the previous models and yet closely
represents the behavior of experimental data. As the
results show, we can conveniently analyze the actual
tester data to estimate the two parameters and predict
the yield Y and defect level DL. For the recent SE-
MATECH data, we determine a yield of 76.15% and
a DL of 615 parts per million. A strong assumption
in this work, which is also implicit in many previous
analyses, is that DL drops to zero when the stuck-at
fault coverage is 100%. To be precise, we should mean
the coverage of the “realistic” (i.e., those that actually
occur) faults. The justification for this assumption lies
in the fact that the measured tester yield depends on
the capability of the tests for detecting the actual, so-
called realistic, faults. This argument needs further
investigation. The paper only presents data on one
chip and the applicability of the new model should be
examined for a wide variety of chips.
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