
Automating RT-Level Operand Isolation to Minimize Power Consumption in
Datapaths

M. Münch1 , B. Wurth2 , R. Mehra3 , J. Sproch3 , and N. Wehn1

1 University of Kaiserslautern 2 Infineon Technologies AG 3 Synopsys, Inc.
Erwin-Schroedinger-Strasse P.O.Box 800949 700 East Middlefield Rd.

D-67663 Kaiserslautern, Germany D-81609 Munich Mountain View, CA 94043
fmichaelm, wehng@eit.uni-kl.de bernd.wurth@infineon.com frenu, jimsg@synopsys.com

Abstract

Designs which do not fully utilize their arithmetic dat-
apath components typically exhibit a significant overhead
in power consumption. Whenever a module performs an
operation whose result is not used in the downstream cir-
cuit, power is being consumed for an otherwiseredundant
computation. Operand isolation [3] is a technique to mini-
mize the power overhead incurred by redundant operations
by selectively blocking the propagation of switching activity
through the circuit.

This paper discusses how redundant operations can be
identified concurrently to normal circuit operation, and
presents a model to estimate the power savings that can be
obtained by isolation of selected modules at the register-
transfer (RT) level. Based on this model, an algorithm is
presented to iteratively isolate modules while minimizing
the cost incurred by RTL operand isolation. Experimental
results with power reductions of up to30%demonstrate the
effectiveness of the approach.

1 Introduction

In certain classes of designs, arithmetic datapath compo-
nents are used only occasionally and spend a large amount
of time in an idle state. The most prominent examples
are control-dominated designs with arithmetic operations
that are used only in a few states, precluding their full uti-
lization. Other examples include re-used designs of which
only part of the functionality is being used. These designs
are often characterized by a significant overhead in power
consumption. Whenever a module performs an operation
whose result is not used in the downstream circuit, it unnec-
essarily consumes power. We will call such an operation
redundant.

The idea ofoperand isolationis to identify redundant

operations and, using special isolation circuitry, prevent
switching activity from propagating into a module when-
ever it is about to perform a redundant operation. There-
fore, the transition activity of the internal nodes of the mod-
ule and, to a certain extent, its transitive fanout is reduced
significantly, resulting in lower power consumption [2].

To illustrate the concept of operand isolation, let us con-
sider a small example. Figure 1 shows a part of a design in
which the result of an operation performed by addera0 is
evaluated conditionally in its transitive fanout. For certain
configurations of the multiplexor select signalsS0;S1, and
S2 and the register load enable signalsG0 andG1, the out-
put of a0 is not used to compute the values to be stored in
registersr0 andr1. However,a0 will continue to compute a
new output whenever there is switching activity at its inputs
A andB, therefore consuming power by executingredun-
dant computations. For long periods in which the output is
not used, this power overhead can be substantial.

+
+

A

B S2

S0

S1

m0

m1

m2

G0

r0

G1

r1
a0

a1

0

1

0

1

0

1 A

B

C

Figure 1: Design without operand isolation.

Suppose now that there is anactivation signal ASa0

whose logic value indicates ifa0 performs a computation

1

that is not redundant. We can useASa0 to control blocking
logic, e.g. transparent latches that “freeze” the inputs ofa0,
effectively preventing the propagation of switching activity
into the module. The module will therefore only perform
non-redundant computations. The lower transition proba-
bility at the internal nodes of the module will then result in
lower power consumption. Figure 2 shows the same circuit
where the inputs of the two adders have been isolated using
latches. Assuming thatASa0 evaluates logic ‘0’ whenever
a0 is performing a redundant computation, inputsA0 andB0

maintain their previous values and do not transition when
the operation to be performed bya0 is redundant.

+
+

G1

r1a1

Q
G
D

Q
G
D

Q
G
D

Q
G
D

ASa1

S2

S0

S1

m0

m1

m2

G0

r0

a0

0

1

0

1

0

1

ASa0

C

B0

A

B

A0A

B

Figure 2: Design with operand isolation.

An algorithm to automate the application of operand iso-
lation to a given RTL circuit will have to solve the following
two key problems:

� Select a set of modules for which operand isolation re-
sults in the largest reduction in power consumption for
the overall circuit, and

� for each of these modules, obtain an activation signal
which indicates that the module is performing a com-
putation that is not redundant.

This paper makes contributions in both areas to obtain
the first comprehensive approach that automates operand
isolation on RT level. After discussing related research in
Section 2, we will present a method to derive an activa-
tion signal for a module in Section 3. In Section 4 we will
present a model to estimate the power savings that can be
obtained by isolating a module. This model is the basis of
the iterative algorithm presented in Section 5. While trad-
ing off power savings vs. the cost in terms of power, area,
and timing associated with isolation logic, the algorithm it-
eratively isolates modules to obtain a power-optimized RTL
circuit with least overhead. Results which demonstrate the
efficiency of the approach are presented in Section 6.

2 Related Work

Previous work as well as our approach exploitobserv-
ability don’t careconditions to temporarily stop the propa-
gation of switching activity through logic blocks. The var-
ious approaches differ w.r.t. the circuit’s abstraction level
(gate or RTL), the activation signal, and the circuitry block-
ing the propagation of switching activity.

To the best of our knowledge, operand isolation was first
presented in literature in [3]. It was successfully used to
minimize power in the datapath of the IBM PowerPC 4xx
family of embedded controllers. However, the technique
was applied manually and with only a local scope: the pa-
per describes the isolation of modules feeding multiplexors,
where the multiplexor select signal is used as the activation
signal.

TIWARI et al. use the term “guarded evaluation” for
what is essentially operand isolation on the gate level [9].
While guarded evaluation can isolate arbitrary combina-
tional logic blocks, this also means that it must identify ap-
propriate points at which guard logic can be inserted. In an
RTL operand isolation approach as proposed in this paper,
these points are naturally given by the inputs of arithmetic
modules. Working at the RT level provides the additional
advantage that RTL structural information can be used to ef-
ficiently generate activation signals and the computationally
expensive implication checking used to implementguarded
evaluationis not required. Moreover, guarded evaluation
uses an existing signal from the circuit as activation signal.
The existence of such a signal, however, cannot be guaran-
teed.

In [4], K APADIA et al. present a technique to reduce
power consumption on datapath busses by stopping the
propagation of switching activity through bus-driver mod-
ules, which is effectively an RTL operand isolation tech-
nique. As in our approach, gating signals (activation sig-
nals) are constructed from existing control signals, which
provides broad isolation coverage. A key idea in [4] is to
avoid the insertion of activity-blocking transparent latches;
switching activity is blocked by gating enable signals of
registers. As a consequence, modules driven by multiple-
fanout registers cannot be optimally isolated (Fig. 7 in [4]).
Also, no power savings are possible in combinational logic
that is directly fed by primary inputs. No models to estimate
potential power savings are presented.

3 Identifying Redundant Computations

As stated in Section 1, one of the key issues in operand
isolation is the availability of a signal to indicate that a mod-
ule is performing a computation that is not redundant. In [9]
such a signal is extracted from the logic description of the
circuit based on theobservability don’t careconditions of

2

the module to be isolated. Unfortunately, we cannot guar-
antee the existence of such a signal which covers all relevant
isolation cases in the circuit. Moreover, even if it exists in
the logic description of the circuit, it might not be visible
in an RT structure since it might be hidden in a complex
RT module. Therefore, rather than using an existing signal,
we will compute anactivation function, f , which indicates
an isolation case. This computation is done by a structural
analysis of the transitive fanout of a module. This function
is implemented by theactivation logicwhich is either a di-
rect implementation or an optimized version thereof. The
activation logic generates theactivation signal, AS, used to
control theisolation banks, i.e., the set of gates used at the
module inputs to block input transitions during redundant
operations.

To illustrate the derivation of the activation function, let
us again consider the circuit in Figure 1. For both addersa0

anda1 we are looking for activation functionsfa0 and fa1,
respectively, which evaluate ‘0’ whenever the adder is per-
forming a redundant computation. Addera1 is performing a
non-redundant computation if its output is stored in register
r1 (i.e.G1 = ‘1’) andthe value stored inr1 will be evaluated
in the transitive fanout ofr1 in thesubsequentclock cycle.
Activation function fa1 therefore depends on the valuef+r1
of the activation functionfr1 of registerr1 in the following
clock cycle (as indicated by the superscript ‘+’):

fa1 = G1 f+r1
:

Likewise,a0 performs a non-redundant computation when-
ever its output is stored inr0 and the value inr0 will be
evaluated in its transitive fanout in the subsequent clock cy-
cle or is being used as input toa1 and a1 is performing a
non-redundant computation. Whether or not the output of
a0 is observable at the inputs ofa1 andr0 depends on the
values of the select inputs tom0;m1; andm2. We can now
formulate fa0 as follows:

fa0 = S2G0 f+r0
+S0S1 fa1

= S2G0 f+r0
+S0S1G1 f+r1

:

A similar strategy can be used for RT structures which
use arbitrary logic in conjunction with modules, multiplex-
ors and registers. Any gate can be interpreted as a degener-
ated multiplexor, where the Boolean function which speci-
fies when a change at an input to the gate is observable at its
output can be derived based upon itscontrolling value[1].

The example shows that by using a breadth-first traver-
sal starting at the primary outputs of a circuit, we can com-
pute in O(jVj+ jEj) time an activation function for each
arithmetic module, whereV is the set of nodes representing
modules andE the set of edges representing nets in the RT
network graph. Two problems arise when computing activa-
tion functions based on the entire transitive fanout of a mod-
ule. With increasing depth of a module’s transitive fanout,

the corresponding activation function will grow more com-
plex. An implementation of such a function will therefore
incur a large area, timing, and power overhead. This may
even offset the reduction in power dissipation obtained by
operand isolation. Moreover, some of the signals originat-
ing “deep” in the transitive fanout may only occasionally
cause the activation funtion to evaluate ‘0’, therefore caus-
ing more overhead than benefit.

A more difficult problem is that the above strategy re-
quires a “look-ahead” to pre-compute signal values in sub-
sequent clock cycles when traversing sequential elements.
Suppose, for instance, that the output ofr1 is connected to
a 2:1 multiplexor with select signalS3. The activation func-
tion of r1 will therefore depend onS3. However, only the
value ofS3 as evaluated during the lifetime ofr1 starting in
the following clock cycle will determine whether the out-
put of a1 will be propagated through the multiplexor. To
computefa1 we therefore have to be able to pre-compute
the value ofS3 one clock cycle in advance. There are es-
sentially two ways to do so: Either by a structural analysis
of the fanin ofS3 or by analyzing the corresponding FSM
which computes the value ofS3. In practice, however, the
resulting logic can also depend on primary inputs to the cir-
cuit, whose values obviously cannot be predicted. To make
sure that an activation function canalwaysbe derived and
to avoid the computational complexity associated with an
FSM analysis, we define the activation function of a regis-
ter to be constant ‘1’. By doing so, we effectively exclude
isolation cases stemming from the fanout of sequential ele-
ments, but considerably reduce the computational complex-
ity of deriving the activation functions as well as the com-
plexity of the resulting circuitry to generate the activation
signal. For the example in Figure 2, we therefore obtain the
following simplified activation signals:

ASa1 = G1

ASa0 = S2G0+S0S1G1:

The assumptionf+r = 1 for a registerr allows us to compute
the activation functions locally in each combinational logic
block bounded by sequential elements and primary inputs
and outputs using the above-mentioned breadth-first tech-
nique.

4 Estimating Power Savings

In the following, we assume that for a given set of mod-
ulesC calledisolation candidatesthe corresponding activa-
tion functions have been computed based on the technique
outlined in the preceding section. The isolation candidates
are complex arithmetic operators for which operand isola-
tion is expected to have a significant impact on the overall
power consumption. To simplify the following discussion,
we will generally consider two-input isolation candidates

3

with inputs A and B and a single outputC—the models,
however, are equally valid for multi-input and multi-output
modules with a straightforward extension. Before deriving
a model to estimate the power reduction obtained by isolat-
ing a candidate, we shall discuss what parameters affect the
power reduction.

4.1 Parameters Affecting Power Reduction

The power consumption of a module can be character-
ized as a function of the toggle rates at its inputs using so-
calledmacro power models[5, 7]. The toggle rate of a sig-
nal is the average number of toggles per clock cycle mea-
sured during a simulation of “real-life” test vectors. We as-
sume that for eachci 2 C such a macro power modelpi(Tr)
as a function of a vectorTr of input toggle rates is available.
For an isolation candidateci the power consumptionP(ci)

is therefore

P(ci) = pi(TrA(ci);TrB(ci));

where TrA(ci) and TrB(ci) are the average toggle rates at
inputsA andB, respectively.

The toggle rate at an inputA is determined by the fanin
logic feeding the input, consisting of combinational logic,
and bounded by sequential elements, primary inputs and
outputs, and other isolation candidates. We denote this fanin
logic network asLA(ci). In an RT structure such as the one
in Figure 1, the fanin logic is a logic network made up of
multiplexors and generic logic gates. This logic network
is in turn fed by other isolation candidates, registers or pri-
mary inputs of the circuit. We call the set of isolation candi-
dates which are connected to an inputA of ci via a combina-
tional logic network, thefanin candidatesof A and denote
this set byC�

A (ci). In Figure 1, addera0 is a fanin candidate
of input A of a1, i.e. a0 2 C�

A (a1). Likewise, we define a
set afanout candidatesC+C (ci). For the example we have
a1 2 C+C (a0).

Apparently, the toggle rate TrA(ci) measured forA is a
function of the toggle rates at the outputs of the fanin can-
didatesC�

A (ci) (for the sake of simplicity, we will neglect
primary inputs). However, TrA(ci) will not be identical to
the toggle rate at the output of exactly one fanin candidate,
since the logic networkLA(ci) will connect different fanin
candidates toA depending on the signals controlling the
configuration ofLA(ci)

1. For eachck 2 C�

A (ci), we there-
fore define a Booleanmultiplexing function gki;A(x) which
evaluates ‘1’ if and only ifLA(ci) is configured such thatck

is connected to inputA of ci . The Boolean vectorx is the
vector of signals controlling the configuration ofLA(ci)—
the multiplexing function can be derived via a traversal of

1We assume that the additional toggling induced byLA(ci) is negligi-
ble.

LA(ci). In our example, we obtainga0
a1;A = S0S1. It is now

easy to see that TrA(ci) is also a function ofgk
i;A(x).

To summarize, the following parameters determine the
power consumption of an isolation candidate

1. The set of fanin candidatesC�

A (ci) andC�

B (ci) for both
inputsA andB as well as the toggle rates at the outputs
of the fanin candidates.

2. The multiplexing functionsgk
i;A(x) andgj

i;B(x) which
represent the behavior of the input logic networks
LA(ci) andLB(ci), respectively.

Going back to Figure 2 with the observations above we
note that isolatinga0 not only saves power by reducing the
transition probability inside ofa0 itself, but also by reducing
the toggle rate at inputA of a1. Since the output ofa0 is held
quiescent wheneverASa0 = 0, the toggle rate at inputA is
zero if ga0

a1;A = 1, reducing the power consumption ofa1

accordingly. We therefore distinguish two types of power
savings:

� Primary savingsis the power saved in the isolation
candidateci itself.

� Secondary savingsis the power saved in the fanout
candidatesC+C (ci).

We will now discuss the general ideas that underly a
model to estimate primary and secondary savings sepa-
rately. Rather than presenting the model for the general
case, we illustrate the concepts via the example in Figure
1. A detailed discussion of the general case can be found in
[6].

4.2 Primary Power Savings

In a first approximation assuming an even distribution of
the toggle rate over the entire simulation interval, the pri-
mary power savings∆Pp(ci) obtained by isolating an iso-
lation candidateci is proportional to the amount of time it
spends performing redundant computations and the power
used per computation, i.e.

∆Pp(ci) = Pr(fci) � pi(TrA(ci);TrB(ci)); (1)

where Pr(fci) is the probability that the activation function
fci of ci evaluates ‘0’. This probability is also computed
during simulation.

The model errs when the input toggle rates are in fact
not evenly distributed over the simulation interval. This is
typically the case whenever the isolation of a module affects
the toggle rate at the input of another module. For instance,
in Figure 2 isolation ofa0 affects the toggle rate of inputA
of a1. The output toggle rate TrC(a0) is zero during intervals
whereASa0 = 0. Since the toggle rateaveragesover the

4

entire simulation period, this means that the actual toggle
rate whenASa0 = 1 is higher than the one measured.

In Section 3 we have already made the assumption that
isolation of candidates across sequential boundaries does
not affect each other. The number of isolation candidates
within a combinational region bounded by sequential cells
and/or primary inputs and outputs is typically very small;
moreover secondary power savings are likely to be signifi-
cant. This means that it is reasonable to isolate one isolation
candidate in each combinational block at a time in an iter-
ative fashion (cf. Section 5). This also makes the problem
of modeling inter-dependencies between different isolation
candidates much easier to solve, since the toggle rate at the
output of a candidateafter isolation can be measured by
simulation in the following iteration. The actual toggle rate,
i.e. the toggle rate at the output of the isolated module dur-
ing non-redundant computation cycles can then be derived
from the measured toggle rate by simply scaling with re-
spect to the actual number of cycles the candidate has been
performing non-redundant operations.

For our example, we therefore obtain the actual toggle
rate Tr0C(a0) observed at the outputC of a0 during non-
redundant cycles as follows:

Tr0C(a0) =
TrC(a0)

Pr(ASa0)
: (2)

This has proven to be a good approximation of the actual
toggle rate measured only during non-redundant computa-
tions. Taking into account the configuration of the two mul-
tiplexorsm0 andm1 the share of power consumption ofa1

caused by the output toggle rate ofa0 is

Pr(ASa1ASa0ga0
a1;A) � pa1(Tr0C(a0); �)

+Pr(ASa1ASa0ga0
a1;A) � pa1(0; �); (3)

when neglecting the toggle rate at inputB (as indicated
by the dot ‘�’). The first term is the power consumption
due to the output toggle rate ofa0 whena0 is performing
a non-redundant computation, the second term the power
consumption due toa0 when it is performing a redundant
computation. Note that the probabilities cannot further be
simplified, since we cannot assume statistical independence
of the various activation and multiplexing signals.

To obtain a general expression for the primary power
savings∆Pp(ci), we have to consider each pair(cj ;ck) 2

C�

A (ci)�C�

B (ci) of fanin candidates and its probability to be
connected to the inputs ofci . This results in a formula simi-
lar to Eq. (3), where∆Pp(ci) includes four terms for each
pair of fanin candidates, one for each situation in which
cj andck perform redundant and non-redundant computa-
tions, respectively. The complete, general formulation can
be found in [6].

4.3 Secondary Power Savings

To estimate the impact that isolation of a moduleci has
on its fanout candidates inC+C (ci), let us first consider an
isolation candidateci whose output is directly connected to
the inputA of a fanout candidatecj (Figure 3). By isolating
ci , the following power is saved incj wheneverci is inac-
tive:

∆Ps(ci) = Pr(fci) �
�
pj(TrA(cj);TrB(cj))� pj(0;TrB(cj))

�
;

(4)

where ∆Ps(ci) denotes the secondary power savings ob-
tained by isolatingci . Eq. (4) models the fact that whenever
ci is inactive the toggle rate at its output—and therefore at
inputA of cj—is reduced to zero.

BA

ci ck

cj

Figure 3: Scenario in which isolation ofci reduces the tog-
gle rate at the input of its fanout candidatecj .

However,cj in turn might have already been isolated, so
that wheneverci and cj are simultaneously performing non-
redundant computations, isolation ofci does not influence
power consumption incj . We model this fact through a
binary decision variablezj :

zj =

(
1 if cj has been isolated;

0 else:
(5)

Eq. (4) must hence be refined to

∆Ps(ci) =

h
Pr(fci fcj) ��

pj(Tr0A(cj);TrB(cj))� pj(0;TrB(cj))
�i

+h
(1�zj) �Pr(fci fcj) ��

pj(Tr0A(cj);TrB(cj))� pj(0;TrB(cj))
�i

;

where Tr0A(cj) is the scaled toggle rate according to Eq. (2)
if zj = 1, otherwise it is the toggle rate TrA(cj) measured
during simulation. The decision variablezj in the second
term guarantees that power savings induced incj by isolat-
ing ci are only taken into account ifcj itself has not been
isolated before.

5

As in the previous section, we can generalize this idea to
include a logic networkLA(cj) that connectsci to cj . Let us
again consider Figure 2 to compute the secondary savings in
a1 when isolatinga0 assuming thata1 hasnot been isolated
before. We then obtain

∆Ps(a0) = Pr(ASa0ASa1S0S1) � pa1(TrA(a1);TrB(a1))+

Pr(ASa0 ASa1S0S1) � pa1(TrA(a1);TrB(a1));

sinceza1 = 0. If a1 has been isolated before (za1 = 1), the
equation simplifies to

∆Ps(a0) = Pr(ASa0ASa1S0S1) � pa1(
TrA(a1)

Pr(ASa1)
;TrB(a1)):

For a more detailed formulation of the model, the reader is
again referred to [6].

5 Automated RTL Operand Isolation

In this section we apply the concepts developed in Sec-
tions 3 and 4 in an algorithm for automatically performing
operand isolation at the RT level. The algorithm identifies
isolation candidates, derives activation functions for them,
predicts the impact on timing, power, and area, and isolates
the most promising ones.

In Section 5.1 we describe the cost model used to select
candidates to be isolated; in Section 5.2, we discuss differ-
ent isolation implementations, and in Section 5.3 we present
the overall iterative isolation algorithm.

5.1 Evaluating Isolation Candidates

Based on the model presented in Section 4, we can es-
timate the amount of power saved by isolating a module.
However, operand isolation also incurs a cost in terms of
area, power, and delay due to additional logic introduced
into the circuit. When isolating a module, we therefore trade
off the power savingsvs. theisolation cost. For analyzing
isolation cost, we distinguish two contributing components:
the isolation banksand theactivation logic.

Operand isolation affects the timing of an isolation can-
didate in three ways—the isolation banks increase the delay
on the respective paths into which they are inserted, the acti-
vation logic creates additional timing paths that merge with
the existing paths in the isolation banks, and the activation
logic provides increased capacitive loading on every signal
used in it. Isolation will therefore decrease theslackof the
isolated module accordingly. We can estimate the reduc-
tion in slack using the timing engine of a synthesis system.
Since timing is the most sensitive parameter in many syn-
thesized designs, we will for the time being reject any iso-
lation candidate if its slack drops below a given threshold
with isolation.

Both the isolation banks and the activation logic con-
tribute to increased area of the circuit. Thearea costof
the isolation banks is readily given by the number of in-
put bits to isolate. The area cost of the activation logic can
be approximated by the literal count of the activation func-
tion, which by construction is given in factored form. Let
us denote the cost when isolating an isolation candidateci

by A(ci). Given the total area estimateAt of the design, we
obtain the relative area increase∆rA(ci) by

∆rA(ci) =
A(ci)

At
:

Likewise, both the isolation banks and activation logic
also incur apower cost. The power cost of both these com-
ponents can readily be estimated since the toggle rates at
their input bits (non-isolated) are known after simulating
the circuit. LetPi(ci) be the power overhead incurred by
isolatingci . The relative change in power∆rP(ci) using the
model from Section 4 is then given by

∆rP(ci) =
∆Pp(ci)+∆Ps(ci)�Pi(ci)

Pt
;

wherePt is the estimated total power consumption of the
circuit.

We can combine∆rA(ci) and ∆rP(ci) in a single cost
function. As outlined in Section 4.2 we choose an itera-
tive approach which isolates one isolation candidate in each
combinational block at a time. The problem now is to find
a set of isolation candidates, at most one from each com-
binational block, such that a maximum decrease of power
consumption is obtained with a minimum increase in area.
The costh(ci) of isolating an isolation candidateci can be
stated as follows:

h(ci) = ωp �∆rP(ci)�ωa �∆rA(ci); (6)

whereωp 2 [0;1] andωa 2 [0;1] are weights used to trade
off area vs. power: the quotientωp

ωa
determines the decrease

in power consumption that must come with a certain in-
crease in area.

5.2 Isolation Implementations

In addition to using transparent latches for isolating
module inputs, we considered implementing isolation using
only combinational logic gates, specifically, AND and OR
gates. In AND(OR)-based isolation, as opposed to latch-
based isolation, the module inputs do not retain their previ-
ous values. Instead the AND (OR) gates will force a logic
zero (one) at the module inputs during redundant opera-
tions. It is clear that AND(OR)-based isolation will result
in power savings only if the module is idle for several con-
secutive clock cycles, a limitation that does not apply to

6

latch-based isolation. However, AND(OR)-based isolation
has several advantages. Since no latches are introduced, the
circuit is more amenable for verification, testability, tim-
ing, and design-reuse. Additionally, AND/OR gates are less
expensive compared to latches in terms of area and power
overhead. The effectiveness of these combinational isola-
tion styles is demonstrated in Section 6.

5.3 Putting It All Together

The complete isolation algorithm is given by Algorithm
1. As mentioned in Section 3, we assume that isolation
candidates across sequential boundaries do not affect each
other. We therefore perform isolation locally in combina-
tional blocks bounded by sequential cells and primary in-
puts and outputs. The circuit is partitioned into these com-
binational blocks in line 1, lines 3–11 then identify the iso-
lation candidates in each block, rejecting those candidates
which violate the slack conditions discussed above.

Within each combinational block, the algorithm pro-
ceeds iteratively: In each iteration (line 13–30), the algo-
rithm estimates the power consumption of the circuit and
the signal probability Pr(�) required to compute the cost
functions (line 16). It then isolates the best candidate in
each combinational block (line 22). If none of the can-
didates in a block meet a minimum valuehmin of the cost
function (line 24), no candidate is isolated. The algorithm
terminates when no further improvement can be obtained.

6 Results

In the following, we shall summarize the results of ap-
plying our model to two industrial benchmark circuits. Both
designs were data path blocks extracted from more complex
designs.

A special characteristic of the first design (design1)
was that the activation signal of the isolation candidates in
the first combinational stage of the design could be con-
trolled from a primary input. Thus, the relationship be-
tween power savings and the statistics of the activation sig-
nal could be investigated by applying stimuli with different
signal statistics to the circuit. Power estimates were ob-
tained using DesignPower [8].

Table 1 summarizes the results fordesign1 for the
non-isolated design, the isolated design using different iso-
lation styles (i.e. AND-gates, OR-gates, and LATches for
isolation with the appropriate modifications in the construc-
tion of the activation function) for a representative set of
input stimuli. The table also lists the overhead in area and
slack induced by the isolation circuitry. We observed power
reductions between 12% and 18%, with area overhead as
low as 1.3%.

Sincedesign1 , as explained previously, allowed con-
trolling the activation signal directly from the testbench, we

Algorithm 1 Operand isolation on an RT structure

1: fG1;G2; : : : ;Gng partition RT structure
2: fidentify isolation candidates and construct auxiliary

logicg
3: for all Gj do
4: I j isolation candidates (Gj)

5: for all ci 2 I j do
6: estimate slack reduction (ci)

7: if ci violates slack conditionsthen
8: I j I j nfcig

9: end if
10: end for
11: end for
12: fmain loopg
13: repeat
14: isolation false
15: festimate power, compute signal statisticsg
16: estimate power (G)

17: for all I j do
18: fcompute cost function for each isolation candi-

dateg
19: for all ci 2 I j do
20: h(ci) ωp �∆rP(ci)�ωa �∆rA(ci)

21: end for
22: fisolate best candidateg
23: c maxci2I j h(ci)

24: if h(c)� hmin then
25: isolate (c)
26: isolation true
27: end if
28: I j I j nfcg
29: end for
30: until : isolation

have done an additional set of experiments over varying sig-
nal statistics of the activation signal. To study the effect of
signal statistics on power savings, we generated a set of test-
benches ranging between low and high static probabilities
and toggle rates of the activation signal. Average reduction
in power consumption varied between 9% and 13%; overall
the power reduction varied between approximately 5% in
the worst case and 17% in the best case.

Table 2 summarizes the results fordesign2 . Since
the statistics of the activation signal could not be controlled
from the design’s environment, we have again listed power
reduction for a typical set of stimuli vs. the overhead in area
and slack. In this case, the power reduction was subject to
considerably less variation; for all three isolation styles a
power reduction of approximately 32% was obtained. This
came at an average increase in area of 22%.

In most cases, the worst-case slack shrank considerably
for both AND- and OR-based isolation in both designs.

7

Power Area Slack
[mW] %reduction [µm2] %increase [ns] %reduction

non-isolated 124.61 n/a 594,342 n/a 3.14 n/a
AND-isolated 107.46 13:76% 601,866 1:62% 3.18 �1:27%
OR-isolated 102.15 18:02% 601,956 1:28% 3.19 �1:59%
LAT-isolated 109.6 12:04% 637,686 7:29% 2.21 29:62%

Table 1: Power consumption and reduction vs. area and slack fordesign1 .

Power Area Slack
[mW] %reduction [µm2] %increase [ns] %reduction

non-isolated 16.3155 n/a 157,104 n/a 8.97 n/a
AND-isolated 11.1030 31:95% 190,674 21:37% 5.60 37:57%
OR-isolated 11.0932 32:01% 189,360 20:53% 5.15 42:59%
LAT-isolated 11.1052 31:93% 195,948 24:72% 4.54 49:39%

Table 2: Power consumption and reduction vs. area and slack fordesign2 .

This should be expected in the general case as operand iso-
lation adds logic to a circuit and therefore potentially de-
grades the delay on the critical path. Fordesign1 , how-
ever, AND- and OR-based isolation resulted in circuits with
a slightly improved slack—this can be attributed to the fact
that additional Boolean optimizations were made possible
during logic synthesis by the introduction of AND and OR
gates, respectively. It is important to note that both designs
could be synthesized to meet their constraints despite the
reduction in slack.

It is interesting to note that in both cases combina-
tional operand isolation performed as well as or better than
LATCH-based. Obviously, the power overhead induced by
the latches offset the gains obtained by eliminating the ex-
tra transitions in the first cycle of inactivity when choos-
ing gate-based isolation. This was also confirmed by other
benchmarks. From the experimental results, we can con-
clude that LATCH-based isolation does not offer any ben-
efits over gate-based isolation, which would justify the ad-
ditional constraints on timing and testability required after
insertion of latches.

7 Conclusion

In this paper, we have presented the first comprehensive
algorithm to automate operand isolation on RT-level. We
have discussed a constructive algorithm to derive a Boolean
function for each isolation candidate which exactly models
its activation condition. We have presented a model to esti-
mate the power savings which can be obtained by isolating a
particular module. The model is used to guide an algorithm
which iteratively isolates modules until no further improve-
ment can be obtained. We have also validated that contrary

to common understanding, operand isolation can and should
be performed using purecombinationalisolation circuitry
rather than latches at no loss in power reduction, and with
lower area penalty. Results on selected benchmarks demon-
strate the efficiency of the approach, with upto 30% reduc-
tion in power dissipation.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman.Digital
Systems Testing and Testable Design. IEEE Press, 1990.

[2] A. P. Chandrakasan and R. W. Brodersen.Low Power Digital
CMOS Design. Kluwer Academic Publishers, 1995.

[3] A. Correale. Overview of the Power Minimization Tech-
niques Employed in the IBM PowerPC 4xx Embedded Con-
trollers. InProceedings of the 1995 ACM/IEEE International
Symposium on Low Power Design, pages 75–80, Apr. 1995.

[4] H. Kapadia, L. Benini, and G. D. Micheli. Reducing Switch-
ing Activity on Datapath Buses with Control-Signal Gating.
IEEE Journal of Solid-State Circuits, 34(3):405–414, Mar.
1999.

[5] P. E. Landman.Low-Power Architectural Design Methodolo-
gies. PhD thesis, College of Engineering, University of Cali-
fornia, Berkeley, 1994.

[6] M. Münch.Synthesis and Optimization of Algorithmic Hard-
ware Descriptions. PhD thesis, University of Kaiserslautern,
1999.

[7] M. Pedram. Power Minimization in IC Design: Principles
and Architectures.ACM Transactions on Design Automation
of Electronic Systems, 1(1):1–66, Jan. 1996.

[8] Synopsys, Inc., Mountain View, CA.Synopsys Power Prod-
ucts Reference Manual, v1997.08 edition, 1997.

[9] V. Tiwari, S. Malik, and P. Ashar. Guarded Evaluation: Push-
ing Power Management to Logic Synthesis/Design.IEEE
Transactions on Computer Aided Design of Integrated Cir-
cuits and Systems, 17(10):1051–1060, Oct. 1998.

8

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

