
A Power Reduction Technique with Object Code Merging for
Application Specific Embedded Processors

Tohru Ishihara Hiroto Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 Japan

Abstract— In this paper, a power reduction technique
which merges frequently executed sequences of object codes
into a set of single instructions is proposed. The merged se-
quence of object codes is restored by an instruction decom-
pressor before decoding the object codes. The decompressor
is implemented by a ROM. In many programs, only a few
sequences of object codes are frequently executed. There-
fore, merging these frequently executed sequences into a
single instructions leads to a significant energy reduction.
Our experiments with actual read only memory(ROM)
modules and some benchmark program demonstrate signif-
icant energy reductions up to more than 65% at best case
over a instruction memory without the object code merging.

1 Introduction
An important class of digital systems includes ap-

plications, such as video image processing and speech
recognition, which are extremely memory-intensive.
In such systems, a much power is consumed by mem-
ory accesses. In most of today’s microprocessors, an
instruction memory including a cache memory is one
of the main power consumer. The on-chip caches of
the 21164 DEC Alpha chip dissipate 25% of the total
power of the processor. The StrongARM SA-110 pro-
cessor from DEC, which specifically targets low power
applications, dissipate about 27% of the power in the
instruction cache[1]. Thus, utilizing low-power mem-
ory organizations can greatly reduce the overall power
consumption in the system. In addition, it is a note-
worthy that the power consumed by memory accesses
certainly increases as memory size is increased[2, 3, 4].
Therefore, low power techniques which reduce power
consumed by memory accesses become more impor-
tant for prospective memory-intensive applications.

Especially for embedded systems, these low power
oriented applications also require design flexibility,
which results in the need for implementation on pro-
grammable hardware platform. Current semiconduc-
tor technology allows the integration of processor cores
and memory modules on a single die, which enables
the implementation of a system on a single chip. Con-
sequently, the design productivity along with the tra-
ditional synthesis process has not followed the expo-
nential growth of both applications and implemen-
tation technology. The shrinked time-to-market has
made this situation worse. There is a wide consen-

sus that only a reuse of highly optimized cores can
match the demands of the pending applications and
the potential ultra large scale integration. Therefore,
a low power core-based system-on-chip, consisting of
easily reconfigurable cores attracts much interest of all
silicon vendors.

In this paper, we propose an application specific
power optimization technique utilizing object code
merging. Frequently executed sequences of object
codes are merged into a single instruction. A decom-
pressor is use to restore the merged object codes and
implemented by a small ROM. Our technique targets
a typical application specific system-on-chip, consist-
ing of a simple processor core and reconfigurable two
instruction memories : a main program memory and
a decompressor. A major premise of the target sys-
tem is that the programs are stored into embedded
ROMs because the programs need not to be modified
after system design is completed. We assume that a
compiler optimizes size of the two memories and de-
termines which sequences of object codes should be
merged into a set of the single instructions so as to
minimize total read energy consumption.

The rest of the paper is organized in the following
way. In Section 2, we discuss the motivations for our
work and present our concept to optimize the instruc-
tion memory. A novel power optimization technique
with the code merging technique is proposed in sec-
tion 3. Section 4 presents experimental results and
discussion on the effectiveness of the approach. The
paper is concluded in Section 5.

2 Motivations and Our Approach
Our memory optimization technique is based on the

following two facts.

• The bigger memory size becomes, the more en-
ergy will be consumed.

• Most of parts of the program is rarely executed.

2.1 Area-Power Correlation
A curve labeled Divided Array in Figure 1 shows

energy consumption in ROM modules whose array
part is divided so as to minimize energy consump-
tion. The basic idea of the divided array is to divide

the memory in different blocks and powered-up only
a subset of them for any one access[5, 6, 7, 8]. This
curve is approximated using information of load ca-
pacitance of sense amplifiers, bit lines, word lines, and
address decoders of actual ROMs. The 32 bits ROMs
ranging in words from 64 to 4, 096 are generated by Al-
liance CAD System Ver. 3.0 with 0.5µm double metal
CMOS technology. The curve demonstrates that the
energy consumption in ROMs strongly depends on the
number of words. We can approximate Divided Ar-
ray curve as (1). Experimental results shown in Sec-
tion 4 are derived using (1).

100

1000

10000

1 10 100 1k 10k 100k 1M 10M

E
nergy [pJ/cycle]

The number of words NW

32bit RISC Prosessor

Divided Array
Energy = C0 + C1 NW

Figure 1: The number of words VS. read energy con-
sumption

Emodel = 190 + 4.8 ·
√
NW [pJ/cycle] (1)

2.2 Memory Reference Locality
It is well known fact that only a few parts of pro-

grams are frequently executed in many application
programs, and therefore, reducing energy for such a
frequently executed instructions is effective way for en-
ergy reduction[9]. To demonstrate this fact, we mea-
sured access locality of instruction memory with three
kinds of programs: Arithmetic calculator, MPEG2 de-
coder, and MPEG2 encoder. The measured results are
shown in Fig. 2. Vertical axis of a line chart in Fig.
2 represents the number of execution cycles produced
by a few basic blocks whose total size(the number of
words) is only 1% of total program size. In the bench-
mark programs, only a few basic blocks whose total
size is only 1% of total program size produce more
than 50% of execution cycles. Reducing the energy
dissipation of frequently accessed memory blocks is
effective way to reduce total energy consumption in
memory.

0

60

80

100

Arithmetic Calculator MPEG2 decode MPEG2 encode

R
ate of execution count of

frequently used basic blocks [%
]

Data1
Data2 Data3

Im
age 150

70

90

Im
age 2

Im
age 3

Im
age 1

Im
age 2

Im
age 3

Figure 2: Memory reference locality for sample pro-
grams

2.3 Our Approach
Merging frequently executed sequences of object

codes into a set of single instructions reduces energy of
memory, because the number of memory access to the
main program memory is extremely reduced. How-
ever, merging too many sequences into single instruc-
tions leads to an increase of energy consumption in
the decompressor. Our power optimization technique
finds optimal point of this trade-off where total energy
consumption is minimized.

In many embedded systems, object code of the ap-
plication programs need not to be modified after sys-
tem design is completed. Therefore, the object code of
the programs are stored into ROM. In this paper, we
also target systems which assume that the object code
is stored into ROM and is not modified after the sys-
tem organization is fixed. The optimization technique
targets systems which assume the following.

• Instruction memories are organized by two on-
chip ROMs, a main program memory and an in-
struction decompressor.

• A compiler determines which sequences of the ob-
ject codes should be merged into single instruc-
tions so as to minimize total read energy con-
sumption.

It is also possible to develop the decompressor with
the wired logic. However, developing the decompres-
sor with the wired logic requires much more turn
around time than the decompressor design with ROMs
does. The most important merit of utilizing ROMs for
the decompressor are design flexibility and suitability
for IP-base system design. Our code merging tech-
nique is well-suited for systems employing IP cores
whose internal architecture can not be modified, be-
cause our technique requires no modification to the
processor architecture.

Main program
ROM

Decompressor
(Smaller ROM)

CPU core

Instruction
fetch

Instruction
memory

System on a chip

Data
memory

Instruction
decode

Figure 3: Power reduction considering memory refer-
ence locality

3 Memory Power Optimization with
Object Code Merging

At first, we present a power optimization technique
based on the object code merging. Next, we formulate

a memory optimization problem as a 0-1 integer pro-
gramming problem. The memory optimization prob-
lem is a problem to determine which sequences of ob-
ject codes should be merged into a set of single in-
structions.
3.1 Optimization Flow

The procedure of our power optimization technique
is described below.

1. Given the object codes of the target program.

2. Measure the execution count of each basic block
using some sample data.

3. Formulate energy dissipation of ROM modules as
the function of memory size. The energy dissipa-
tion model must be made considering circuit and
process technologies applied to ROM modules. In
this paper we use (1) as the ROM power model.

4. For a given set of basic blocks with the informa-
tion of the execution count of each basic block and
a given energy dissipation model of ROM mod-
ules, optimize memory organization so as to min-
imize average of energy consumption. We give a
detailed explanation about the memory optimiza-
tion problem in section 3.3.

5. Adjust the physical size of both the main program
memory and the instruction decompressor to the
minimum required area.

0x000010d0: add r30,r0,r29
0x000010d4: sw -8(r29),r31
0x000010d8: addi r8,r8,#1
0x000010dc: jal _main
0x000010e0: nop

Basic Block : 00101

CISC inst.

add r30,r0,r29
sw -8(r29),r31
addi r8,r8,#1
jal _main
nop

Decompressor

addi r29,r29,#-8
addi r20,r0,#0
jal _exit
sw (r29),r200x000010e4: addi r29,r29,#-8

0x000010e8: addi r20,r0,#0
0x000010ec: jal _exit
0x000010f0: sw (r29),r20

Basic Block : 00110

Main ProgramOriginal Object Code

Marged instructions

CISC inst.

original inst.

original inst.

original inst.

original inst.

original inst.

Figure 4: Power reduction based on the object code
merging

3.2 Architecture
The frequently executed basic blocks are replaced

with a special instruction, named CISC instruction
and this instruction is allocated into main program
memory as shown in Fig. 4. The CISC means a com-
plex instruction set computer. When the CISC in-
struction is executed, the decompressor is activated
and merged object codes are restored to the original
object codes, otherwise, the fetched instruction is di-
rectly executed without activating the decompressor.
The decompressor is also implemented by ROM cir-
cuit. The key point of this power optimization method
is that only a few parts of object code are replaced

with the CISC instruction at compiling phase, so as
to keep energy consumption in the instruction decom-
pressor very small. Access time for the decompressor
is also much smaller than the access time for the main
program memory.

Address FieldOP Code

Figure 5: CISC instruction

As shown in Fig. 5, the CISC instruction consists
of an operation code field and an address field. The
original object codes are read out from this address of
the decompressor.

Our optimization technique targets a system as
shown in Fig. 6. In this system, an instruction is
fetched from main program memory, at first. When
the CISC instruction is fetched, main program mem-
ory is powered-down until a branch instruction is read
out from the decompressor. If branch instructions are
read out from the decompressor, the decompressor is
powered-down and main program memory is powered-
up. The instruction next to the branch instruction
is always fetched from main program memory. De-
tailed discussion of interruption processing is our fu-
ture work.

decoder

pc1+
+

M
ain Program

D
ecom

pressor

pc2+
+

Figure 6: Memory architecture for power optimization

3.3 Problem Formulation
In this section, we present a problem formulation

for the memory optimization problem. Firstly, we give
notations used in the formulation. Next, we present
a problem formulation as a 0-1 integer programming
problem.

• N : The number of basic blocks appeared in a
given program.

• B : A set of basic blocks

• bi : The ith basic block. bi = (Si, Xi, ai) ∈ B
• Si : The number of instructions included in ith

basic block.

• Xi : The execution count of ith basic block.

• E(S) : The average of read energy consumption
in ROM module whose size is S bit.

• ai : 0-1 integer variables associated with bi.
ai = 1 if bi is merged into the CISC instruction;
otherwise, ai = 0.

• Main : The average of read energy consumption
of the main program memory.

• Dec : The average of read energy consumption of
the decompressor.

OBJ = Main ·
N∑
i=0

{Si ·Xi · (1 − ai)}

+Main ·
N∑
i=0

(Xi · ai)

+Dec ·
N∑
i=0

(Si ·Xi · ai) (2)

Main = E

(
N∑
i=0

{Si · (1− ai)}+
N∑
i=0

ai

)
(3)

Dec = E

(
N∑
i=0

(Si · ai)
)

(4)

The memory optimization problem is formally defined
as follows. “ For a given set of basic blocks B,
find a set of ai which minimize OBJ”.
3.4 Algorithm

The worst case computation time to solve the mem-
ory optimization problem is O(2N), where N repre-
sents the number of basic blocks appeared in a pro-
gram. Therefore, if a naive algorithm is applied, the
problem can not be solved within feasible time. Ex-
perimental results shown in the succeeded section are
derived by the greedy algorithm shown in Fig. 7. The
complexity of this heuristic algorithm is O(N2).

The inputs to algorithm Memory optimization are
a set of basic blocks B, where each basic block bi ∈ B
is characterized by its execution count Xi, its size Si,
and its location ai. All the ai is set to zero at first step.
This means that all the basic blocks are allocated in
the main program memory. Next, the algorithm select
a basic block, and relocate the basic block from main
program memory to decompressor. After calculating
Cost = OBJ , the provisionally located basic block is
moved back to former location. This process is oper-
ated for each basic block. After that, the algorithm
selects a basic block which minimize the Cost, and the
selected basic block is merged into the CISC instruc-
tion. Basic blocks located in main program memory is
successively merged into the CISC instruction in this
manner while the Cost is reduced. If the Cost be-
comes not to be improved, the algorithm stops after
outputting the updated set of basic block B.

Given: a set of basic blocks B, where each basic block
bi ∈ B is characterized by its execution count Xi,
its size Si, and its location ai.
Algorithm Memory optimization

for each bi
ai=0;

end for
Emin = ∞;
while (the algorithm leads to reduction in Emin)

for (i = 0 . . .N − 1)
if (ai = 0)

bi = (Si, Xi, 1) ;
Cost = OBJ ;
if (Cost < Emin)

Emin = Cost ; m = i ;
end if
bi = (Si, Xi, 0) ;

end if
end for
bm = (Sm, Xm, 1) ;

end while
Output a set of basic blocks B ;

end Algorithm

Figure 7: Algorithm for the memory optimization

4 Experimental Results
We use five benchmark programs shown in Table 1,

in this experiments. The benchmark programs are
compiled by gcc-dlx compiler which is based on GNU
CC Ver. 2.7.2 for DLX architecture[10]. Table 2 shows
description of three kinds of sample video images used
as input to the MPEG2 program. Three kinds of sam-
ple input data were also used for Arithmetic calcula-
tor, TV remote controller, Espresso : a boolean func-
tion optimizer, and Fast Fourier Translator, respec-
tively.

The following two object code merging techniques
are evaluated in this section.

• A basic block packing approach
This approach packs a frequently executed basic

Table 1: Description of benchmark programs
Benchmark The number of basic blocks
Arithmetic Calculator 2,103
TV Remote Controller 2,994
Espresso 11,023
Fast Fourier Translator 2,875
MPEG2 Decoder 5,361

Table 2: Description of sample data
Data The number of frames The size of frames
Image1 50 416x386
Image2 26 352x224
Image3 14 704x480

block into the CISC instruction. Detailed discus-
sion will be done in succeeding subsection.

• A sequence merging approach
This approach merges together a few basic blocks
into the CISC instruction. Detailed discussion
will be done in the subsection 4.2.

4.1 Power Optimization with Basic Block
Packing Approach

We have evaluated our memory optimization tech-
nique by the following way.

1. Measure the number of execution count of each
basic block with a sample data.

2. Determine which basic blocks are merged into the
CISC instructions. Consequently, physical size of
the two memories and allocation of basic blocks
to the memories are decided.

3. Measure the total read energy consumption for
three kinds of input data with the previously op-
timized memory organization.

Table 3: The size of memory optimized with the basic-
block packing technique

Arithmetic Calculator
Optimized for Data1-1 Data1-2 Data1-3
Decompressor 271 308 272
Main program 10,682 10,645 10,679

TV Remote Controller
Optimized for Data2-1 Data2-2 Data2-3
Decompressor 1,067 357 1,083
Main program 14,151 14,777 14,135

Espresso
Optimized for Data3-1 Data3-2 Data3-3
Decompressor 1,461 1,884 2,101
Main program 60,877 60,550 60,342

Fast Fourier Translator
Optimized for Data4-1 Data4-2 Data4-3
Decompressor 1,630 1,483 1,562
Main program 13,701 13,842 13,764

MPEG2 decoder
Optimized for Image1 Image2 Image3
Decompressor 1,134 1,212 988
Main program 28,407 28,338 28,542

The optimized memory size are shown in Table 3.
Each value represents the number of words of two in-
struction memories which are optimized for each input
data. The results indicate that the size of the decom-
pressor are from 2% to 4% of main program memory
for benchmark programs, except TV remote controller
and FFT(Fast Fourier Translator). It is a key point
of our memory optimization technique that the size of
decompressor is restrained very small. This leads to a

drastic reduction in average of read energy consump-
tion. In addition, the access time for the decompressor
is also much smaller than that of the main program
memory, as is shown in Fig. 8. However, in FFT, the
size of the decompressor is more than 10% of the main
program memory. This result in a low energy reduc-
tion rate in FFT.

The energy reduction rates are shown in Table 4.
All the values appeared in Table 4 are calculated by
using (5).

Energy ofoptimized memory

Apploximated energy accouding to (1)
× 100(%) (5)

Table 4: The energy consumption of memory with the
basic-block packing technique

Arithmetic Calculator
Optimized for Data1-1 Data1-2 Data1-3

Executed data
Data1-1 58.45% 59.70% 58.82%
Data1-2 60.27% 59.72% 60.08%
Data1-3 59.78% 59.96% 59.69%

TV Remote Controller
Optimized for Data2-1 Data2-2 Data2-3

Executed data
Data2-1 64.84% 67.51% 66.39%
Data2-2 63.29% 61.57% 62.94%
Data2-3 64.32% 66.93% 65.83%

Espresso
Optimized for Data3-1 Data3-2 Data3-3

Executed data
Data3-1 45.55% 57.06% 64.32%
Data3-2 54.14% 48.14% 52.68%
Data3-3 61.33% 51.76% 49.18%

Fast Fourier Translator
Optimized for Data4-1 Data4-2 Data4-3

Executed data
Data4-1 65.85% 66.12% 65.99%
Data4-2 64.83% 64.70% 64.71%
Data4-3 64.97% 64.89% 64.88%

MPEG2 decoder
Optimized for Image1 Image2 Image3

Executed data
Image1 45.82% 46.11% 46.48%
Image2 46.81% 46.46% 48.80%
Image3 46.42% 46.23% 45.76%

The second column of Table 4 represents the in-
put data which are used for memory optimization.
The leftmost row of Table 4 represents the input data
which are used for evaluation of energy consumption.
We have used the divided bit and word lines structure
as memory models in this experiment. Therefore, read
energy consumption is approximately proportional to
the square root of memory size. The results show that

energy reductions strongly depend on the kinds of pro-
gram, but weakly depends on input data. The results
show that the energy can always be the smallest when
and only when the data used for the optimizations and
that for the evaluations are the same from each other.
An optimized memory organization with certain input
data can be almost optimal for the other input data.
Therefore, we can regard that the heuristic algorithm
described in Fig. 7 can find good solutions which are
very close to the optimal solutions.

Approximated access time in ROMs are shown in
Fig. 8. A target process technology is 1.2 micron
CMOS. A solid line represents the measured access
time of actual 32 bits ROMs ranging from 64 words to
4096 words. A broken line is approximated from the
measured values. The access time includes the time for
a precharge and evaluation. This figure demonstrates
that the access time of the decompressor is almost half
of that of the main program memory. For example in
the Espresso, the access time of the decompressor is
less than one third of that of the main program mem-
ory.

20

25

30

35

40

0 5k 10k 15k 20k 25k 30k

The number of words

Module Generator : Alliance CAD System ver. 3.0
Used Technology : ES2 1.2 micron CMOS

: Measured Value

: Approximated Value

T
m

ing =
 Preharge +

 E
valuation [ns] (w

orst case)

Figure 8: Approximated access time in ROMs

4.2 Power Optimization with a Sequence
Merging Approach

The issue for the basic block packing approach is
an increase of the energy dissipation for reading the
CISC instruction from the main program memory.
The CISC instructions are frequently read out from
main program memory and the energy for reading
the CISC instruction can not be neglected. There-
fore, merging a sequence of few basic blocks into the
single CISC instruction as shown in Fig.9 is more ef-
fective. The basic idea is to merge more than one
basic block, which is on the frequently executed loops,
into the CISC instruction. Of course, this technique
needs some more jump instructions to return to the
main program from the basic blocks allocated in the
decompressor. These jump instructions cause a per-
formance overhead. Evaluation of the worst case exe-
cution time considering these overheads is our future
work. We applied this sequence merging technique to
the benchmark programs. The environment for the
experiments are the same as the experiment of the

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

Basic
block

CISC
Inst.

CISC
Inst.

Basic
block

Basic
block

Decompressor

Figure 9: An example of the sequence merging ap-
proach

previous subsection. The optimized memory sizes and
energy consumptions of memories with the sequence
merging are shown in Table 5 and 6, respectively. We
can see the tables 5 and 6 in the same manner as the
tables 3 and 4, respectively.

The size of decompressor and main program mem-
ory shown in Table 5 are comparative with the size of
memories which are applied the basic block packing
approach. Therefore, access time of memories are al-
most same from the memories which are optimized by
the basic block packing approach. From 7% to 10%
improvements in energy consumption are achieved by
the sequence merging technique over the basic block
packing approach. This is because the number of ex-
ecuted CISC instructions are drastically reduced. In
Espresso, the energy consumption is reduced by 68%.

Table 5: The size of memory optimized with the se-
quence merging technique

Arithmetic Calculator
Optimized for Data1-1 Data1-2 Data1-3
Decompressor 312 296 327
Main program 10,620 10,626 10,596

TV Remote Controller
Optimized for Data2-1 Data2-2 Data2-3
Decompressor 1,534 401 1,504
Main program 13,827 14,935 13,863

Espresso
Optimized for Data3-1 Data3-2 Data3-3
Decompressor 1,654 2,075 2,353
Main program 60,502 60,081 59,803

Fast Fourier Translator
Optimized for Data4-1 Data4-2 Data4-3
Decompressor 1,752 1,677 1,677
Main program 13,439 13,514 13,514

MPEG2 decoder
Optimized for Image1 Image2 Image3
Decompressor 1,027 1,171 1350
Main program 28,483 28,337 28,165

Table 6: The energy consumption of memory with the
sequence merging technique

Arithmetic Calculator
Optimized for Data1-1 Data1-2 Data1-3

Executed data
Data1-1 47.00% 49.95% 47.65%
Data1-2 50.39% 47.86% 48.71%
Data1-3 49.23% 49.64% 48.66%

TV Remote Controller
Optimized for Data2-1 Data2-2 Data2-3

Executed data
Data2-1 53.35% 60.71% 52.98%
Data2-2 52.22% 51.56% 52.05%
Data2-3 52.20% 59.75% 51.97%

Espresso
Optimized for Data3-1 Data3-2 Data3-3

Executed data
Data3-1 31.65% 45.61% 54.19%
Data3-2 41.39% 34.77% 40.28%
Data3-3 47.16% 38.26% 35.16%

TV Remote Controller
Optimized for Data4-1 Data4-2 Data4-3

Executed data
Data4-1 53.35% 60.71% 52.98%
Data4-2 52.22% 51.56% 52.05%
Data4-3 52.20% 59.75% 51.97%

MPEG2 decoder
Optimized for Image1 Image2 Image3

Executed data
Image1 40.70% 41.32% 42.45%
Image2 41.41% 40.35% 42.14%
Image3 48.67% 48.15% 42.25%

5 Conclusion

In this paper, we have proposed an application spe-
cific power optimization technique for embedded sys-
tems utilizing the object code merging. We also have
presented a 0-1 integer programming problem for the
memory optimization problem.

Experimental results demonstrated the following.
i) The energy consumption in the memories optimized
with the basic-block packing technique can be less
than 50% of energy in memories which are not applied
the code merging, ii) 7-10% improvements in energy
consumption are achieved by the sequence merging
technique over the basic-block packing approach, iii)
The energy reductions strongly depend on the kinds
of program, but weakly depends on the kinds of in-
put data. Therefore, optimizing memory organiza-
tions with appropriate input data can be almost op-
timal memory organizations for the other input data,
iv) The access time of the decompressor is almost half
of that of the main program memory.

Our future work will be devoted to extend the
proposed optimization technique considering the data
memory.

Acknowledgments
This work has been supported by Semiconductor Tech-

nology Academic Research Center (STARC) grant No. PJ-
No.987, and the Grant in Aid for Scientific Research of the
Ministry of Education, Science, Sports and Culture. We
are grateful for their support.

References
[1] Nikolaos Bellas, and Ibrahim Hajj,. “Architectural

and Compiler Support for Energy Reduction in the
Memory Hierarchy of High Performance Microproces-
sors”. In Proc. of International Symposium on Low
Power Electronics and Design, pages 70–75, 1998.

[2] C.-L. Su and A. M. Despain. “Cache Design Trade-
offs for Power and Performance Optimization: A
Case Study”. In Int’l Symp. on Low Power De-
sign(ISLPD’95), pages 282–286, 1995.

[3] Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I.
Shirakawa . “An Object Code Compression Approach
to Embedded Processors”. In Proc. of Int’l Sympo-
sium on Low Power Electronics and Design, pages
265–268, Aug. 1997.

[4] K. Ogawa. “PASTEL: A Parametrized Memory Char-
acterization System”. In Proc. of Design, Automation
and Test in Europe, March 1998.

[5] H. Shinohara T. Yoshihara H. Takagi S. Nagao
S. Kayano M. Yoshimoto, K. Anami and T. Nakano.
“A Divided Word-Line Structure in the Staticture in
the Static RAM and its Application to a 64K Full
CMOS RAM”. IEEE Journal of Solid-State Circuits,
pages 479–485, June 1983.

[6] M. Isobe, J. Matsunaga, T. Sakurai, T. Ohtani, K.
Sawada, H. Nozawa, T. Iszuka and S. Kohyama. “A
Low Power 46ns 256K bit CMOS Static RAM with
Dynamic Double Word Line”. IEEE Journal of Solid
State Circuits, SC-19(5):578–585, May 1984.

[7] Edwin de Angel and Jr. Earl E. Swartslander. “Sur-
vey of Low Power Techniques for ROMs”. In Proc. of
Int’l Symposium on Low Power Electronics and De-
sign, pages 7–11, 1997.

[8] T. Sakurai, and T. Iizuka. “Double Word Line and Bit
Line Structure for VLSI RAMs –Reduction of Word
Line and Bit Line Delay –”. In Extended Abstracts of
the 15th Conf. on Solid State Devices and Materials,
pages 269–272, 1983.

[9] L. Benini, A. Macii, E. Macii, and M. Pancino. “Selec-
tive Instruction Compression for Memory Energy Re-
duction in Embedded System”. In Proc. of Int’l Sym-
posium on Low Power Electronics and Design, pages
206–211, Aug. 1999.

[10] J. L. Hennessy and D. A. Patterson. “Computer Ar-
chitecture: A Quantitative Approach”. Morgan Kauf-
mann Publishers, Inc., 2nd edition, 1996.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

