System Level Online Power Management Algorithms *

Dinesh Ramanathan

Rajesh Gupta

Center for Embedded Computer Systems
Department of Information and Computer Science
University of California
Irvine, CA 92697

{dinesh,rgupta}@ics.uci.edu

Abstract

The problem of power management for an embedded system is
to reduce system level power dissipation by shutting off parts
of the system when they are not being used and turning them
back on when they are required. Algorithms for this problem
are online in nature where the algorithm must operate with-
out access to the complete data set or its characteristics. In
this paper, we present online algorithms to manage power for
embedded systems and provide experimental analysis to back
up the theoretical results.

Specifically, this paper makes four contributions. We pro-
pose an optimal online algorithm for power management. We
present an analysis of algorithmic efficiency using a tech-
nique called competitive analysis which is particularly suitable
for online algorithms. Using this analysis technique, we de-
velop a lower bound for the non-adaptive version of the power
management problem and show that our algorithm achieves
this lower bound. Next, we explore adaptive algorithms that
try to shut down the system based on historical data. We
provide a lower bound for any algorithm that uses adaptive
methods to manage power. We also propose an algorithm
that is independent of the input data distribution, practical
and usable in both hardware and software systems with guar-
anteed performance. Finally, we compare these algorithms
with previously proposed heuristics both theoretically and ez-
perimentally. For the experiments, we model the disk drive
of a laptop computer as an embedded system. The results
show that the proposed algorithms perform well in practice
with guaranteed bounds on their performance. Further, this
paper conclusively demonstrates that to implement aggressive
power management techniques for power critical subsystems,
designers will have to commit greater resources such as ded-
icated registers and ALU units.

1 Introduction

Power dissipation in a VLSI system is a primary design con-
sideration. In the design of portable computing devices,
greater attention has to be paid to power estimation and
management techniques. Over the past few years, methods
to estimate and minimize power in the design of circuits have
been reported. Several excellent reviews of power minimiza-
tion techniques are presented by Pedram [6], Devadas and
Malik [7] and Najm [8].

*The authors would like to acknowledge support from National
Science Foundation award numbers MIP 95-01615 (CAREER) and
CCR-9806898, and from DARPA grant DABT63-98-C-0045.

TParts of this work was done while this author was working for
CynApps Inc., Santa Clara, CA 94043.

Low power VLSI design can be achieved at various levels
of abstractions during the design process. These include the
system level, behavioral level, the RTL level, and the gate
level. Most the techniques in the literature are focused at
the RTL level. This paper focuses on the system level where
little prior work has been done. The notion of system level
design is described next.

An embedded system (the system for short) is typically
reactive and real-time in nature: it continually reacts to the
stimuli coming from its environment and performs this in-
teraction under timing constraints. This interaction causes
the system to dissipate power in order to service the request.
The inter-arrival time between requests is unknown and does
not fall into any pattern. The requests typically arrive unpre-
dictably and are not drawn from any well known probability
distribution. Therefore a good power management strategy
would selectively turn on and turn off the system to mini-
mize the overall power consumption based on the arrival of
the requests. In particular, the optimal power dissipation
will be by an algorithm that knows the inter-arrival times
ahead of time. During system level design, the internals of
the system under consideration are not known. In order to
determine an effective power management strategy for such
a system, we assume that at least one power metric of the
system is known: the ratio of the idle and the startup power
dissipation. In this paper, we discuss the strategies that se-
lectively shutdown subsystems and turn them back on when
needed.

1.1 Background and Previous Work

There are essentially two kinds of power management strate-
gies: non-adaptive and adaptive. Typically, power manage-
ment creates sleep states with various levels of power savings
and delay overheads which can be externally controlled. The
sleep states are statically computed based on the properties
of the system and do not change when the requests are re-
ceived. In non-adaptive power management, the length of
idle periods after which the system shuts off is statically de-
termined. In adaptive power management, the system au-
tomatically detects idle periods, which change dynamically,
and disables the system.

Typically, power management algorithms are carried out
based on the following strategy: go to sleep after the system
has been idle for a period of time. In non-adaptive algo-
rithms, the idle period after which the system shuts down is
predetermined. In adaptive algorithms, the time after which
the system shuts down is determined dynamically as the sys-
tem is servicing requests. Intuitively, we would expect adap-
tive algorithms to perform better than non-adaptive ones.
Using heuristic algorithms, all previous works have experi-
mentally shown that this intuition holds.

This paper builds upon earlier works on power manage-
ment strategies [3, 1, 2, 13]. Srivastava et al. [3] conducted an
extensive analysis on different system shutdown approaches.
They have proposed an adaptive shutdown algorithm for
power saving of event-driven systems. They first collected
sample traces of on-off activity on an X-server, then they pro-
posed two adaptive shutdown formulas based on the analysis
of the sample traces: one using a general regression-analysis
technique to correlate the length of the upcoming idle period
and the second based on on-off activity behavior. These re-
sults demonstrated ezperimentally that adaptive shutdowns
can reduce power dissipation in systems.

This result was followed up by Hwang and Wu [1]. Their
analysis adapted the exponential-average approach [9] used
in the CPU scheduling problem for the prediction of idle
periods. They proposed an algorithm using two new strate-
gies: prediction-miss correlation and pre-wakeup. The most
significant contribution of this work is that these methods
were independent of the traces obtained for the system un-
der consideration. However, in the absence of analysis of the
algorithm, it is not clear how close their results are to the op-
timal solution. Further, their algorithm may not be adapted
to hardware systems since it requires expensive computation
resources that may not be available.

More recently, Paleologo et al. [2] proposed adaptive power
management algorithms for embedded systems by modeling
the problem as a stochastic optimization problem. They use
a laptop’s disk drive as an embedded system [16] and using
the Auspex file traces [14] they generate a Markov model
using an exponential distribution as the base distribution.
However, their assumption that the inputs are exponentially
distributed is not fully justified and may not always hold
in view of significant correlation between accesses. As a re-
sult, their model is only as good as (a) the distribution they
assume the traces to fall into and (b) the traces themselves.

1.2 Contributions

One of the problems with existing heuristics is the lack of
indicators on how close these heuristics are to the optimal
solutions, whether an optimal solution exists and an under-
standing of why some heuristics perform better than others.
Another problem is that these heuristics are dependent on
the input distributions: they have been arrived at by exam-
ining trace patterns of several experimental examples. In this
paper, we attempt to develop a yardstick within which these
heuristics can be analyzed and propose algorithms that are
independent of the input distribution.

Competitive analysis has been used earlier as a technique
to analyze problems similar to the power management prob-
lem in the theoretical computer science community. The
algorithms and proofs presented in this paper have been
adapted for the power management problems from the works
of [4] and [5]. In [4], the authors solve the spin-block prob-
lem which is similar to the power management problem and
as a result the proofs and algorithms for both problems are
almost the same.

This paper has four major contributions. The first con-
tribution is the introduction of a formal analysis technique
called competitive analysis to the power management prob-
lem. Competitive analysis as applied to power management
does not depend on trace patterns and can be used to for-
mally analyze existing heuristics. Using this technique, we
can prove bounds on the power dissipation achieved by a
power management algorithm. The second contribution is
the presentation of an optimal non-adaptive online algo-

rithm. The third contribution is a lower bound for any adap-
tive online algorithm. We show that no adaptive online algo-
rithm can dissipate less than about 1.6 times the power dissi-
pated by the optimal offline algorithm in the worst case. We
also show that in order for any online algorithm to achieve
this lower bound, it has to maintain a complete history of
the inter-arrival times of the requests in the input sequence.
Since this is not practical, we present a simple algorithm that
needs only the last inter-arrival time. We show that this al-
gorithm performs as well as the heuristics, but we can bound
its performance in the worst case.

To test the performance of these algorithms, we use the
disk drive [16] of a laptop as an embedded system. We com-
pared our algorithms with Hwang and Wu’s heuristic algo-
rithm [1] which is the most comprehensive algorithm and
does not depend on the input sequence patterns. Our results
show that the algorithms presented in this paper perform as
well as the heuristics, are simpler to implement and their
performance is guaranteed.

2 Competitive Analysis

Consider decisions that depend on future events of which
the decision maker has only partial knowledge. As there is
no certain method to determine the future, such decisions are
taken online. A common approach to solve an online problem
is to assume that the future events are distributed according
to some, known or unknown, probability distribution and
to devise a decision mechanism whose expected (average)
performance is maximized subject to these assumptions. The
following are some examples of online problems: (a) replace
algorithms for maintaining a cache, (b) load balancing in a
distributed environment, (c¢) buying and selling stock in the
stock market to maximize gains.

Under the assumption that there is some underlying prob-
ability distribution which governs future events, one might
try to “learn” these distributions so as to improve the deci-
sions, as time goes by. This approach assumes that the real-
life problems fall into some distribution that can be learnt.
An alternative approach to analyzing online problems, called
competitive analysis has been considered by computer scien-
tists in recent years. Sleator and Tarjan [12] introduced it
while dealing with dynamic data structures. The competi-
tive analysis approach assumes that the input to the problem
is generated by an adversary. The performance of the online
strategy (algorithm), which has no knowledge of the future
events, is compared with that of an optimal offline strategy
(adversary) which has complete knowledge of the future and
operates optimally based on this information. Since its intro-
duction, competitive analysis has been successfully used to
analyze online algorithms in various areas of computer sci-
ence: scheduling, graph coloring, matching, k—server, and
file access and allocation in distributed systems. In this pa-
per, we adapt competitive analysis to estimate the power
dissipation in embedded systems.

Consider a fixed sequence, o, of inputs to an embedded
system. Let Copi(0) denote the minimum power that an off-
line algorithm (adversary) can dissipate on this sequence, and
let Cs(o) denote the power dissipated by an online algorithm
S on the same sequence. The algorithm, S is said to achieve
the competitive ratio r, if for all values of inputs, Cs(o) <
T- Copt(O')

We are interested in picking the algorithm S that mini-
mizes the competitive ratio. Competitive ratio as a measure
for omline algorithms was first introduced in [12]. We as-
sume that the adversary generates the input sequence to the

Algorithm NONADAPTIVE:
(1) if (idle_state) then

(2) idle_intervals = idle_intervals + 1;
(3) if (idle_interval > k) then
(4) shutdown

Figure 1: The optimal non-adaptive online algorithm.

algorithm S, based only on the description of the problem.
Intuitively, for our application, if an algorithm S that mea-
sures power dissipation is said to be r-competitive against an
oblivious adversary, it means that in the worst case the algo-
rithm would dissipate r times as much power as the optimal
offline algorithm.

2.1 Online Power Management

Consider a system that is interacting with its environment by
servicing requests. A power management strategy for such
a system dictates when to shutdown after the requests from
the environment cease to arrive. The arrival of requests is on-
line and the problem of determining when the system should
shut itself down is an online problem. Further, after a system
shutdown, it may takes a time interval called revival time, L,
to come back to its normal operating mode. The power dis-
sipated during revival is called revival power and is denoted
by P,. The power dissipated by the system when it is idle is
called idle power and is denoted by P;.

3 An Optimal Non-Adaptive Power Man-
agement Algorithm

In this section, we present a non-adaptive online algorithm
for power management. We also establish a lower bound on
any non-adaptive online algorithm, thereby proving that our
algorithm is optimal. We note that this problem is identical
to the ski-rental problem discussed in [10] and its solution
is typically presented as an introduction to online algorithms
and competitive analysis.

3.1 The Algorithm

To simplify the analysis, we normalize the revival power so
that P, is dissipated in a single time unit. Hence, P, is
the power as well as the energy dissipated during revival.
Now, let us assume that P, = k - P; for some integer k > 1.
As a result, we have discretized time has into integer units.
Now, the shut off strategy is simple: wait for £ — 1 idle time
units and then shut down the system. If a service request
arrives before k — 1 time units, the system is not shut down,
otherwise it is shut down after £k — 1 time units. Let us
denote this deterministic online strategy by NONADAPTIVE
as shown in Figure 1. It says, when the system is in the idle
state (variable idle_state is true), it counts the number of
idle intervals. When the number of idle-intervals is greater
than k, the system shuts off.

Figure 2 shows the behavior of the algorithm NONADAP-
TIVE as well as the behavior of the optimal offline adversary
on a sequence of input requests.

3.2 Analysis and Proof of Optimality

We will now show that algorithm NONADAPTIVE is 2 — 1

competitive. Let us assume that n time units expire between
two adjacent requests. This information is not known to

adversary powers adversary powers
down down
Y

N
idle period >= 4 idle period <4 \\ idle period >= 4
| N

/|

job k arrives algorithm powers
down

J \ job k+3 arrives l

job k+2 arrives algorithm powers
job k+1 arrives down

Figure 2: The behavior of the algorithm and the optimal ad-
versary on an input sequence. Since the adversary knows
the input sequence ahead of time, the adversary can power
down immediately when the next request is at least k (in this
case we have chosen k = 4) units away. The algorithm on the
other hand, has to wait in the idle state till it becomes advan-
tageous to power down. We assume for the sake of simplicity
that jobs are serviced instantaneously.

algorithm NONADAPTIVE. We merely use it for the analysis.
However, since the adversary controls the sequence of inter-
arrival times, n is determined by the adversary. If the system
is not shut down (n < k — 1), then the off-line algorithm and
the online algorithm dissipate the same amount of power
since they both remain idle till the arrival of the next request.

If the system is shut down (n > k — 1), then the algorithm
NonAdaptive dissipates

(k=1)-B)+ P,

energy.
The first term comes from the fact that the system was
idle for (k — 1) time units and dissipated P; units of power
in each time unit. The second term comes from the fact that
the system was shut down and will have to be restarted to
service requests (revival power).
Now,

(k—=1) - P)+ P, =(k—1)-P)+k P, = (2k— 1)P;

If the system is shut down (n > k—1), the offline adversary
has two choices:

1. The adversary shuts the system down after some k' < n
units of time. In this case, k' might as well be 1 since any
value of k' > 1 will imply that the adversary dissipates
more power than required. Therefore, the adversary
shuts down the system as soon as the first idle period
has been encountered provided that adversary knows
that this idle period will be greater than k time units.
Note that the adversary knows when the next request
will arrive and can therefore make this choice when it
is advantageous to do so. In this case, the adversary
dissipates

P, =k-P

units of energy.

2. The adversary does not shut down the system at all. It
remains idle till the arrival of the next request, in which
case it dissipates

n- Pi

units of energy.
The adversarial strategy depends on the value of n, the
inter-arrival time between the two requests. Since the adver-

sary picks the input sequence, the adversary has control over
n. The adversary chooses n such that it causes the online

algorithm to power down, forcing it to incur the additional
power dissipated in powering up. Hence the adversary picks
n to be k. This implies that the adversary picks a sequence
where the requests come to the algorithm as soon as it has
powered down forcing it to dissipate the extra energy in pow-
ering up. On this sequence, the adversary shuts off as soon
as an idle sequence is encountered. Therefore the adversary
picks n to be k and dissipates k - P; units of energy.
Alternatively, the adversary tries to maximize the compet-
itive ratio: it maximizes the algorithms power dissipation,
and minimizes its power dissipation. The adversary dissi-
pates minimum power only when the power dissipated by
the two choices it has are equal, which gives us n = k.
Thus, algorithm NONADAPTIVE attains competitive ratio

(k—1)-P)+P _ ((k—1)-P)+k-P, _ 1

k-P; k- P; Z_E

The factor % is a consequence of the quantization of time.
It is easy to see that if we assume that time is continuous, the
competitive ratio will tend to 2 since k will tend to infinity.
Based on the kind of embedded system, hardware or software,
we can make some assumptions about the discreteness of time
which will effect the competitive ratio. In this paper, we
do not consider the increase in latency of the system whose
power we were are trying to manage in the analysis: we use
the experimental results to reach our conclusions. We refer
the reader to [11] for a detailed analytical discussion of the
effects of power management on latency of the system.

Next, we will show that algorithm NONADAPTIVE is opti-
mal. This involves proving a lower bound for competitive ra-
tio of the problem. First, notice that any deterministic strat-
egy for this problem is a “threshold” strategy. A solution can
be completely characterized by specifying a threshold after
which the system shuts down. Let S; be any arbitrary de-
terministic strategy where the “threshold” t # k. There are
two possible cases for analysis:

1. t < k: S; attains a competitive ratio of

(t—1)-P,+ P, k—1
=1 >2
t-P; + t -

2. t > k: S; attains a competitive ratio of

(t-1)-Pi+P _ (k=1)-Pi+P _

2 —
P, P,

x| =

Therefore, S; consumes more power than P,. This proves
that under the assumption that time has been discretized,
strategy NONADAPTIVE is optimal. The same analysis ap-
plies under the assumption that time is continuous.

The term % occurs in the competitive ratio since we have
assumed that time is discrete. If we assume that time is con-
tinuous, it is easy to see that the algorithm NONADAPTIVE
will be 2-competitive. The discreteness of time has imple-
mentation implications for hardware and software systems.
We refer the reader to [11] for a comprehensive discussion of
these issues..

4 Adaptive Power Management Algorithms

Adaptive power management algorithms change the length of
the interval after which shutdown occurs dynamically based
on past performance. Such algorithms typically have im-
proved performance due to their ability to base decisions on

the nature of the data and dynamic system behavior. We
can also show analytically that the lower bound on the com-
petitive ratio for adaptive algorithms is better than the com-
petitive ratio for non-adaptive algorithms. Let us assume
that each inter-arrival time is independently chosen from
the same distribution and adaptive algorithms attempt to
“learn” this distribution. In practice, for any adaptive algo-
rithm to achieve the lower bound, it would have to keep track
of the entire history of input sequences in order to estimate
the distribution from which the input sequences arise. Since
this is not practical, we present an algorithm that uses the
last input sequence to predict the next event. We also show
that this algorithm is 3-competitive against an oblivious ad-
versary. The analysis in this section builds upon the work
of Karlin, Manasse, Rudolph and Sleator [5], and specifically
their formulation of the spin block problem [4]. We augment
their theoretical work with experimental results.

4.1 Lower Bound for any Adaptive Algorithm

In the case of adaptive algorithms, assume that each inter-
arrival time is independently chosen from some distribution,
say II(t). Then, technically it is just a matter of “learning”
this distribution and being able to pick the shutdown time
using the estimator distribution. Let o denote an arbitrary
inter-arrival time from an arbitrary sequence of requests. Let
algorithm S use 7(t) as an estimation function for the true
distribution. Now, let algorithm S shut down the system
after 7 units of time in interval o. Note that 7 is generated
by S using 7 (t) to estimate it for the interval o. Now, we
prove the lower bound by showing that algorithm S that
uses an estimation function m(t) to estimate II(¢) will be
—Z;-competitive. Then, we show that any algorithm that
deviates from the correct estimation of the II(t).

Intuitively, if II(¢) was: there are only 2 inter-arrival
lengths of time to pick from, say 2 and 100. As a result,
there is a 50% probability of getting an inter-arrival time of
2 units and 50% of getting one of 100 units. As a result, S
would try to learn II(t). When it has learnt II(¢) completely,
it will shut the system down after it has been idle for 2 units
of time since it now has learnt that the inter-arrival can be
only 2 or 100. B

Let k be a real number such that kK = &*. Let us assume

that the system dissipated power proportioﬁal to the time for
which it is servicing the request and power proportional to k
when it is waking up from a shutdown. Then the expected
power dissipated by S is

E[Cs(a)] = /T t-mw(t)dt + /°° (k+ 1) w(t)dt.
0 T

Algorithm S has to choose values for 7 based on w(t) such
that the expected energy dissipated is minimized.

k oo
E[Copt(0)] = / t-w(t)dt +/ k- m(t)dt.
0 k
The optimal off-line algorithm (adversary) has
t
t

E[Copt()] = { Poish

In other words,

k oo
E[Copt(o)]=/ t-w(t)dt+/c k- m(t)dt.
0

Power dissipation in watts Latency in milliseconds
Algorithm Algorithm
Traces | @ |) | © | @ @ 0 [© [@
t6.H1062 || 0.8504 | 0.0802 | 0.0424 | 0.0409 0.449 | 0.590 | 0.630 | 0.647
t6.H1074 || 0.8503 | 0.3381 | 0.3121 | 0.3248 0.209 | 0.576 | 0.912 | 0.884
t6.H2012 || 0.8505 | 0.2005 | 0.0897 | 0.1083 0.265 | 0.688 | 0.843 | 0.887
t6.H2014 || 0.8500 | 0.0753 | 0.0491 | 0.0430 0.001 | 0.905 | 1.330 | 2.311
t6.H2149 || 0.8501 | 0.0613 | 0.0419 | 0.0278 0.144 | 0.603 | 0.849 | 1.075
t6.H3069 || 0.8503 | 0.2807 | 0.2334 | 0.2197 0.095 | 0.376 | 0.594 | 0.615
t6.H3073 || 0.8502 | 0.0509 | 0.0363 | 0.0230 1.256 | 2.138 | 2.670 | 3.434
t6.H3113 || 0.8508 | 0.1739 | 0.1173 | 0.0723 0.661 | 0.932 | 1.074 | 1.106
t6.H4060 || 0.8500 | 0.0626 | 0.0586 | 0.0197 0.026 | 0.552 | 1.059 | 1.712
t6.H4119 || 0.8501 | 0.2148 | 0.1092 | 0.0761 0.058 | 1.165 | 1.639 | 1.942
t6.H4127 || 0.8505 | 0.0628 | 0.0611 | 0.0341 1.167 | 1.456 | 1.804 | 1.888
t6.H4181 || 0.8501 | 0.0627 | 0.0197 | 0.0178 0.185 | 0.565 | 0.650 | 0.663

Table 1:

The average power dissipation and latency for (a) no power management scheme,

(b) the simple non-adaptive

algorithm, (c) the simple adaptive 8-competitive algorithm and (d) Hwang and Wu’s adaptive algorithm where the shutoff

threshold is a cumulative average of all inter-arrival times.

The adversary picks the distribution, II(¢) and the expected
energy dissipated by the algorithm, S is maximized. There-
fore,

E[Cs(0)] < (1+ a)E[Copt(0)]

for some a > 0 and «a is minimized.

Setting the preceding inequality to equality and solving
the differential equations obtained by differentiating twice
with respect to 7, we obtain

1 t/k
w(t):{ wmEe/" 0<t<k
0 otherwise

Solving for a by setting fooo n(t)dt = 1, we get o = L.
Therefore, the algorithm S yields a competitive ratio of

l+a= Ll ~ 1.5819767 < 1.6

Since the choice of o was arbitrary, the analysis applies to
any interval in the request sequence. This shows that there is
an adaptive algorithm whose competitive ratio is -%;. Now,
we have estimated m(t) to the performance of the optimal
offline algorithm. Any estimator «(t) that does not estimate
the optimal offline exactly will not be as competitive as S.
Due to lack of space, we skip the details of this proof.

This shows that the optimal algorithm will have to main-
tain accurate statistics by keeping track of the entire history
of the inter-arrival times of requests. A practical alternative
to this algorithm is to keep track of the last few inter-arrival
times in order to determine what to do the next time after
a request has been serviced. Interestingly, a different version
of this algorithm is presented by Hwang and Wu [1]. The au-
thors arrive at their algorithm by examining trace patterns.

4.2 A 3-Competitive Adaptive Algorithm

Figure 3 outlines the algorithm. 7 is computed dynamically
and determines when the system will be shutdown.

We will now show that this algorithm is 3-competitive.
There are two cases to consider: (a) 7 < k: This case is
identical to the deterministic case and we have shown that
this approach achieves a competitive ratio of 2. (b) 7 > k:
In this case, the previous inter-arrival time was greater than
k, and as a result in the previous interval, the adversary

dissipated at least k- P; energy, whereas we dissipated P, (to
revive the system), since we shut down the system as soon
as it was idle. Hence, we can add the power dissipated in
this interval to the power dissipated by the adversary in the
previous interval, yielding an overall competitive ratio of 3.

This algorithm is similar to the one presented by Hwang
and Wu [1]. Their algorithm is used for software systems
and computes 7 as the cumulative weighted average of the
previous inter-arrival times. This computation uses signif-
icant hardware resources. Therefore, this strategy is not
suitable for implementation into hardware. Since they use
a larger history of inter-arrival times to compute their shut
down threshold, their algorithm will be more competitive
than ADAPTIVE, but only marginally so. The 3-competitive
algorithm, ADAPTIVE, is simple and can be used in both
in hardware and software systems. Also, the analysis allows
system designers to identify power critical subsystems and in-
corporate aggressive power management techniques for these
systems by committing to more resources upfront in the sys-
tem design process.

5 Experimental Results and Discussions

We use the disk drive [16] in a laptop as an embedded sys-
tem. We have obtained traces for the use of an Auspex File
Server [14] from Berkeley’s NOW project and apply these
traces as stimuli to the laptop’s disk drive. This drive and
the traces were also used in the experiments performed by [2].
The disk drive has the following power characteristics. Its
internal clock works at 10 microseconds. P; = 0.85 watts,

Algorithm ADAPTIVE:

(1) 7 = curr_arrival_time - prev_arrival_time;
(2) if (idle_state) then

(3) idle_intervals = idle_intervals + 1;
(4) if (7 > k) then

(5) shutdown

(6) else

(¢p) if (idle.intervals > k) then

(8) shutdown

Figure 3: The 3-competitive adaptive algorithm for power
management that governs the shut down of an embedded sys-
tem.

P, = 4.5 watts, L = 4 milliseconds and average power dis-
sipated to service a request is 2.3 watts. Using these pa-
rameters, we modeled and simulated the following scenarios
to compute the power dissipated: (a) no power management
scheme at work, (b) the simple non-adaptive strategy, (c)
the simple adaptive 3-competitive algorithm and (d) Hwang
and Wu’s adaptive algorithm where the shutoff threshold is
a cumulative average of all the inter-arrival times.

We observed, as we had predicted, that the 3-competitive
strategy does well under most conditions. Hwang and Wu’s
algorithm does marginally better than algorithm ADAPTIVE
on some traces. We also find that algorithm ADAPTIVE is
much better than algorithm NONADAPTIVE and so is Hwang
and Wu’s algorithm. We have run several experiments on
the modeled disk drive. Table 1 presents the results obtained
from the experiments. The traces are named based on the
day they were obtained and the host from which they em-
anated. These results show that the algorithms perform as
well in practice as the heuristics; however, the algorithms are
very simple and can be used in both hardware and software
systems with their performance guaranteed.

We also note that the adaptive algorithms are a lot
more aggressive in shutting down the system than the non-
adaptive algorithm. This saves power, but trades off with the
latency of the system. We believe that the system designer
has to make design tradeoffs between power dissipation and
latency.

Though we have shown that the worst case competitive
ratio for algorithm ADAPTIVE is 3, the experimental results
show that the worst case input sequence does not occur of-
ten over a large time interval. However, the worst case for
algorithm NONADAPTIVE is encountered often enough that it
dominates the power dissipated. Therefore, algorithm ADAP-
TIVE performs better than algorithm NONADAPTIVE in prac-
tice and as shown by our experimental results.

The analysis we present outlines the worst input sequence
for Algorithm NONADAPTIVE and in practice, the probability
of the occurrance of this sequence over a large interval is sub-
stantial and therefore the lower bound dominates the power
dissipated by algorithm NONADAPTIVE. However, the be-
havior of algorithm ADAPTIVE is different on algorithm NON-
ADAPTIVE ’s worst case input sequence. Algorithm ADAP-
TIVE predicts the next inter-arrival time based on the pre-
vious one. Therefore, its worst case sequence becomes one
where every other inter-arrival time is larger than k£ and in
practice, the probability of this sequence occurring over a
large period of time is very small. Hence, we see that al-
gorithm ADAPTIVE performs significantly better than algo-
rithm NONADAPTIVE. In contrast, we do not know what
the worst case bounds for the previously proposed heuristics
for this problem are nor do we know what the worst case
distribution looks like.

6 Conclusions

We have used competitive analysis to analyze previous
“heuristic” algorithms for power management of embedded
systems. We present a simple non-adaptive algorithm that is
2-competitive and optimal. We have proved that the lower
bound on the competitive ratio for any adaptive online algo-
rithm attempting to solve the power management problem is
1.582. We concluded that the simple 3-competitive adaptive
algorithm can be used in both hardware and software sys-
tems and its results are guaranteed. The analysis of adap-
tive algorithms demonstrates that designers have to commit

greater resources to power critical subsystems so that aggres-
sive power management algorithms can be used for them.

References

[1] Chi-Hong Hwang, Allen C.-H. Wu. A Predictive Sys-
tem Shutdown Method For Energy Saving of Event-Driven
Computation. IEEE/ACM International Conference on
Computer Aided Design, Nov 1997, pages 28-32.

[2] G. A. Paleologo, L. Benini, A. Bogliolo, G. De Micheli. Pol-
icy Optimization for Dynamic Power Management. Proc.
of 35th Design Automation Conference, pp.182-187, June
1998

[3] M. B Srivastava, A. P. Chandrakasan, R. W. Broderson.
Predictive Shutdown and Other Architectural Techniques
for Energy Efficient Programmable Computation. IEEE
Trans. on VLSI Systems, vol. 4, no. 1, pp.42-54, March
1996

[4] Karlin A. R., Manasse M.S., McGeoch L.A., Owicki S.
Competitive Randomized Algorithms for Nonuniform Prob-
lems. Algorithmica, vol. 11, no 6, pp 542-571, June 1994

[5] A.R.Karlin, M. S. Manasse, L. Rudolph, and D.D. Sleator.
Competitive Snoopy Caching. Algorithmica, 3(1):70-119,
1988.

[6] M. Pedram. Power Minimization in IC Design: Principles
and Applications. ACM Trans. on Design Automation of
Electronic Systems, vol 1, no. 1, pages 3-56, January 1996

[7] S. Devadas, S. Malik. A Survey of Optimization Tech-
niques Targeting Low Power VLSI Circuits. Proc. of the
32nd Design Automation Conference, pages 242-247, 1995

[8] F.N. Najm. A Survey of Power Estimation Techniques in
VLSI Circuits. IEEE Trans. of VLSI Systems, vol 2, no 4,
pp 446-455, December 1994

[9] J. L. Peterson, A. Silberchatz. Operating Systems Con-
cepts. 2nd Ed, pp.118-120, Addision-Wesley Publishing Co.
Inc.

[10] R.El-Yaniv, R. Kaniel, N. Linial. On the Equipment Rental
Problem. Manuscript.

[11] D. Ramanathan, S. Irani, R. Gupta. System Level Power
Management and Its Effects on Latency Technical Report,
Center for Embedded Computer Systems. University of
California, Irvine (1999).

[12] D.D. Sleator, R.E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM, Vol. 32, No. 3, pages 652-686,
July 1985.

[13] S. Udani, J. Smith. The Power Broker: Intelligent Power
Management for Mobile Computing. Technical Report MS-
CIS-96-12, Department of Computer and Information Sci-
ence, University of Pennsylvania (1996).

[14] Auspex File Traces from the NOW project, available at
http://now.cs.berkeley.edu/Xfs/AuspexTraces/auspex.html
(1993)

[15] L. Benini and G. De Micheli. Dynamic Power Management:
Design Techniques and CAD Tools, Kluwer, 1997

[16] Technical specifications of hard drive IBM Travelstar VP
2.5inch, available at http://www.storage.ibm.com/ stor-
age/oem/data/travvp.htm (1996)

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

