
Evaluating System Dependability
in a Co-Design Framework

M. Lajolo
Politecnico di Torino

Dip. Elettronica
Torino, Italy

M. Rebaudengo, M. Sonza Reorda, M. Violante
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

L. Lavagno
Università di Udine

DIEGM
Udine, Italy

http://www.cad.polito.it/

Abstract

The widespread adoption of embedded microproces-
sor-based systems for safety critical applications man-
dates the use of co-design tools able to evaluate system
dependability at every steps of the design cycle. In this
paper, we describe how Fault Injection techniques have
been integrated in an existing co-design tool and which
advantages come from the availability of such an en-
hanced tool. The effectiveness of the proposed tool is
assessed on a simple case study.

1. Introduction

Embedded systems are widely used for performing
safety-critical tasks, where failures can cost lives and/or
money. Two key issues arise when designing these sys-
tems: time-to-market and dependability assessment.

The need to shorten time-to-market has motivated in-
tensive research efforts which result is the co-design ap-
proach to embedded design. Co-design is an appealing
solution since it allows designers to concentrate their
efforts on defining the system behavior and analyzing
alternative hardware/software implementations, while the
system is automatically synthesized by the co-design tool.

 Several approaches to co-design have been proposed,
differing on the specification language, the mechanisms
available to perform design space exploration, and the
supported target architecture. In particular, [1] and [2]
target control-dominated applications and system specifi-
cation, while [3] is oriented to data-dominated applica-
tions.

As far as dependability assessment is concerned, it is
usually addressed resorting to Fault Injection [4]. How-
ever, up to now Fault Injection techniques have been
mainly applied to real systems (in their final or prototypi-
cal version) or when a low-level description is available.

When designing a safety-critical application the gap
between the level of abstraction at which the design is

carried out, and the level at which dependability is as-
sessed is becoming unacceptable. If a safety-related de-
sign pitfall is discovered in a late phase, a complete re-
design spin is required, resulting in a dramatic increase of
the time-to-market. Design centers involved in the design
of safety-critical systems are facing this problem, and
some approaches have been proposed to cope with it
[5][6] adopting Fault Injection to analyze the behavior of
the system during co-design.

The basic idea is to move the dependability evaluation
step from the bottom of the design flow to the top, thus
providing designers with tools able to evaluate depend-
ability during the system level design [5] through Fault
Injection. The ability to inject faults immediately after the
system behavior specification allows an early validation
of the fault detection and tolerance mechanisms of the
system, as well as an early identification of possible
safety-related pitfalls in the system behavior.

When reasoning at the behavioral level, designers lack
the details of the physical implementation of the system,
and fault models exactly matching the behavior of all real
faults can hardly be identified. In the best case, faults
defined at the higher level correspond to a subset of the
physical faults. Under this hypothesis, an analysis of the
system carried out using a behavioral fault model can be
fruitfully exploited for early evaluating the system de-
pendability, and for verifying the correctness of the sys-
tem. When proceeding through the design process, further
Fault Injection experiments are likely to be performed on
lower level descriptions to obtain more confidence in the
system fault tolerance.

Fault Injection is a powerful approach to cope with
this need; it can indeed be exploited at every level of
abstraction, provided that a suitable fault model is identi-
fied, and effective techniques are available. Two kinds of
Fault Injection techniques can be of interest to the de-
signer: focused and statistical [6]. Focused Fault Injection
consists in injecting carefully selected faults to validate
either the behavior or the implementation of a module in a
safety-critical system. Conversely, statistical Fault Injec-

tion consists in injecting statistically selected faults, and is
intended to validate the whole system. Moreover, statisti-
cal Fault Injection carried out on the final architecture
with a large set of faults can be used to measure the sys-
tem reliability.

In the last years, several approaches to system-level
dependability analysis have been proposed (e.g., [7] and
[8]). The main drawback of these approaches is that they
are not integrated in a design environment. Conversely,
the full integration of Fault Injection features in a co-
design tool leads to an environment where dependability
is a design space dimension, along with performance,
area, and power consumption. For example, the way of
describing the system used during dependability evalua-
tion must be the same used during system architecture
design and hardware/software synthesis.

Following the above considerations, we describe a co-
design tool which has been enriched with fault tolerance-
oriented facilities, in particular with the possibility of
performing Fault Injection experiments. The tool we
developed allows analyzing:

1. the system behavior dependability: given a formal
specification of the system behavior, the designer
analyzes how the system reacts in presence of
faults. This analysis allows to validate the fault de-
tection mechanisms the system embeds, and it al-
lows identifying possible critical conditions the
given behavior is not able to detect;

2. the system architecture dependability: when the
system behavior has been debugged and fixed, the
designer analyzes the dependability of the archi-
tecture implementing it. This allows selecting the
architecture that best fits the design constraints of
speed and power consumption while preserving the
required level of dependability.

We have defined a new fault model for the experiments
at the behavior level. The behavioral fault model is used
to perturb the system behavior, and it has to be coherent
with the adopted co-design tool. In the current imple-
mentation of our methodology, we have integrated Fault
Injection in POLIS [1].

The tool we developed, described in Section 2, is thus
able to effectively support a design flow where depend-
ability can be evaluated at every design step. To assess its
effectiveness a case study is presented in Section 3. Fi-
nally, in Section 4 some conclusions are reported.

2. Proposed approach

The co-design environment we have considered in our
work is POLIS, which has been developed at the Univer-
sity of California Berkeley in collaboration with Politec-

nico di Torino and several industrial partners such as
Cadence Design Systems and Magneti Marelli.

2.1. Background

The internal model of computation of POLIS is based
on Co-design Finite State Machines (CFSMs) which are
extended finite state machines with asynchronous buff-
ered communication. The choice of an asynchronous type
of interaction between CFSMs is due to the need to sup-
port a neutral high-level specification of hardware and
software components in which the execution delay of a
CFSM transition is unknown a priori. It just assumes an
unbounded delay for the software response and the com-
munication between CFSMs is not performed with shared
variables (as in the classical composition of FSMs), but
by means of events. An event is a unidirectional commu-
nication that can be sent and received, and that can carry a
value.

POLIS can synthesize both software and hardware im-
plementations for each CFSM, as well as a Real-Time
Operating System that coordinates the execution of the
software CFSMs (one task for each CFSM).

One important characteristic of the software POLIS
synthesizes, from a CFSM, is that the model of execution
of CFSMs is globally asynchronous, but locally synchro-
nous. This means that the (acyclic) path of execution for a
given invocation of each task is fully determined by the
presence/absence status of its input events, and by their
value. This provides an easy mechanism for linking low
level simulators (e.g., an Instruction Set Simulator for the
target processor and/or a gate level simulator for the
hardware) to the functional simulator.

2.2. Behavioral fault injection

Behavioral fault injection is intended to analyze the
behavior of the system in presence of a transient fault
perturbing the system. The fault model has to be coherent
with the description of the system in order to perturb its
behavior and to easily fit in the adopted design tool.

Given the model of computation of POLIS we can
perturb the system by modifying the sequence of events
the CFSMs detect and emit, the value associated to events
and the values stored in the CFSMs internal variables.

We have therefore devised the following behavioral
fault model:

1. faults on output events:
a. suppress an output event when it has to be

emitted
b. change the value associated to the output event

before emitting it
c. emit an output event in an erroneous time

2. faults on input events:
a. suppress an input event when it should has been

detected
b. change the value associated to the input event
c. detect an input event that has not been emitted

3. faults on internal variables: change the value stored
in an internal variable.

In POLIS variables and events at the behavioral level
corresponds to registers or memory locations at the ar-
chitectural level, therefore we expect a relatively strong
correlation between the adopted fault model and real
physical faults affecting memory elements.

A complex system is usually described as several in-
terconnected CFSMs. A fault is therefore identified by the
following information:

• the CFSM on which the fault has to be injected
(target_CFSM)

• the signal (input event, output event or internal
variable) affected by the fault (target_signal)

• the value to be injected in the selected signal
(faulty_value)

• the time at which the fault has to be injected
(fault_time).

Our approach assumes that when affecting input events
or internal variables the fault is injected immediately
before the execution of a CFSM. Conversely, when the
fault affects output events, it is injected immediately after
the simulation ends, and before the simulation results are
committed to other CFSMs. Faults are thus injected at the
CFSM boundary, only. This approach allows to effec-
tively analyze the effects of transient faults with a low
simulation performance penalty. Moreover, from the im-
plementation point of view it does not require to modify
the mechanism exploited by POLIS to execute the
CFSMs.

2.3. Architectural fault injection

At the architectural level the system is modeled as a
single cache-free CPU with an external memory storing
the program and the data of the software partition, and a
set of hardware components connected to the CPU via a
bus, and among each other by dedicated connections.

For fault injection experiments we can thus exploit the
most commonly adopted fault models. Currently, we
support the transient single bit-flip fault model in the
memory cells storing the code and the data of the software
partition and in the registers of the CPU and of the hard-
ware partition.

The hardware partition is simulated as a digital circuit
that produces its output in a single clock cycle. All the
inputs and the outputs of the circuit are buffered through
registers. Conversely, the software partition is simulated
resorting to an Instruction Set Simulator (ISS) that simu-

lates CPU and memory behavior during program execu-
tion.

We have modified the simulation routine of POLIS so
that when injecting a fault in the hardware partition of the
system, at injection_time the register storing the se-
lected_signal is modified before executing the target
CFSM.

To inject faults in the software partition of the system,
we have instrumented the ISS so that at injection_time we
can inject the fault in any locations of the memory and the
CPU registers.

2.4. Analyzing the results

To observe the effects of a single transient fault with
respect to a given sequence of input stimuli, we store the
outputs in a trace file. Moreover, to analyze the system
behavior we sample the state of the system at a given
sample frequency: the values of all observed variables and
events are stored in a trace file. This approach allows
measuring the fault latency with an accuracy that depends
on the sampling frequency. By adopting a sampling strat-
egy, we limit the disk space required for the trace file.
Nonetheless, we are able to trade-off accuracy and disk
space by acting on the sample frequency.

By analyzing the simulation trace, we categorize the
fault effects according to the following classification:

• no effect: the transient fault does not modify the
system behavior; the system produces the expected
outputs and reaches the expected state;

• latent error: the fault affects the system state but it
does not reach the system outputs, thus the simula-
tion ends with the system producing the expected
outputs with an unexpected state;

• failure: the fault affects the system behavior and
produces an error on the system outputs

• time out: the outputs cannot be produced in a given
time.

2.5. Fault Model Discussion

The transient single bit-flip is often adopted as a fault
model when working on lower level descriptions, mainly
due to its closeness to real faults. Moreover, other fault
models can be supported by simply allowing the injection
of multiple bit-flips.

When moving to behavioral-level descriptions, new
fault models have to be devised, taking into account that
the higher abstraction level obviously makes more diffi-
cult to match the behavior of real faults.

A detailed analysis of the fault model we propose for
the behavioral level (not reported here for lack of space)
shows that, due to the synthesis rules implemented in
POLIS, each behavioral fault is equivalent to a single or

multiple bit-flip at the architectural level. This observa-
tion is crucial to support the usefulness of performing
Fault Injection experiments at the behavioral level, since
it proofs that they allow verifying the correctness of the
implemented fault tolerance mechanisms with respect to a
subset of the faults adopted at lower levels. Passing the
test corresponding to a behavioral-level Fault Injection
campaign is therefore a necessary condition for going
forward in the design process. Although the full confi-
dence in the ability of the system under design to cope
with the whole set of possible faults can only be achieved
by repeating the Fault Injection experiments at the archi-
tectural level, the ability to start the validation process
early in the design process can be crucial in reducing its
cost as a whole.

3. A case study

To evaluate the proposed approach, a case study has
been implemented and analyzed. We designed a receiver
and transmitter system for the Internet Protocol (IP)
transmission.

3.1. System description

The system, depicted in Figure 1, is composed of three
operative modules, create_pack , ip_check and
checksum . The modules access to a shared memory,
mem, through an arbiter, arbiter . The module cre-
ate_pack stores in mem a bit stream coming from a
network cable. When all the required bits have been
loaded, the module checksum computes a checksum
code and passes it to ip_check that compares it with the
one received by the net and already stored in mem. If the
two values match, a new bit stream is loaded, otherwise
an error signal is activated, and the system requests the
sender to re-transmit the former message. The module
mem exploits error correction codes, thus single transient
faults have no effect on it. Moreover, the address and data
buses exploit a word-level error correction code, which
guarantees detection and correction of single bit transient
faults. All the modules have been initially described at the
behavioral level in terms of interacting processes, and
then synthesized into corresponding hardware or software
components at the architectural level.

Based on a comparative evaluation of the different
partitioning solutions, we found that the cheapest archi-
tecture (in terms of required area) still compatible with the
time requirements corresponds to implementing only
ip_check as a software module.

The system is described in POLIS as 6 CFSMs, and
amounts to 565 lines of ESTEREL code and 248 lines of
C code. Fault injection experiments have been performed

on a Sun UltraSparc 5 equipped with 256 Mbytes of
RAM. We experimented that 40 seconds of CPU time are
required to inject a fault at the behavioral level, while at
the architectural level 65 seconds are required. For the
purpose of this paper, both input stimuli and faults used
for fault injection experiments are supposed to be selected
by the designer.

arbiter

create_pack ip_check checksum

req 0

req 1

req 2

grant 0

grant 1

grant 2

Address Bus

Data Bus

mem

NET

retry

Figure 1: The case study

3.2. Fault tolerance evaluation

We analyzed the system by performing focused be-
havioral level Fault Injection on each module. We were
first interested in analyzing how the detection mechanism
provided by the IP protocol itself works in presence of
transient faults. Moreover, we were interested in analyz-
ing the effects of transient faults on the behavior of each
module and on the communication between modules. We
injected an amount of 1,000 faults, whose effects are
summarized in Table 1.

Module
No Effect

[%]
Failure

[%]
Time Out

[%]
Latent
[%]

create_pack 85.80 0.00 11.90 2.30
ip_check 75.60 8.50 13.80 2.10
checksum 86.20 2.10 11.70 0.00
arbiter 83.70 0.00 12.40 3.90

Table 1: Fault Injection results

In our case evaluation, the time-out situation always
happens when a fault corrupted a message issued by a
module that is idle waiting for an acknowledge from an-
other module. This observation suggested that the com-
munication protocol between the modules has to be hard-
ened to cope with transient faults, and that some of the
modules in the system had to be redesigned in order to
attain a sufficient degree of fault tolerance.

The majority of the faults we injected (68%) degrades
the system performance, as they are detected as transmis-
sion errors and thus retransmission requests are issued. As
a consequence, the throughput of the system is reduced.

3.3. Fault tolerant case study

Given the above considerations we modified the sys-
tem as follows:

• we added a watchdog timer to detect the time-out
situations;

• the arbiter is the most critical module in the sys-
tem, therefore we replicated it three times and we
added a voter (TMR architecture)

• we duplicated the module checksum : if the outputs
produced by the two replicas do not match, a re-
transmission request is issued

• we adopted a temporal redundancy for the module
ip_check : it performs its computation twice and is-
sues a retransmission request when the two computed
values mismatch.

The fault tolerance of the new version of the system
was evaluated by performing a Fault Injection campaign
in which a total of 1,000 faults were injected. The cam-
paign was first performed at the behavioral level, and then
repeated at the architectural one. During the whole cam-
paign we did not identify any fault causing a failure or
hanging up the system (i.e., triggering a time out condi-
tion), therefore significantly improving the confidence in
the correctness of the adopted solution.

At the same time, by exploiting the features provided
by POLIS we evaluated the performance and area occu-
pation of both versions of the system. In Table 2 the
hardware overhead (number of gates) and the software
requirements (bytes of memory) are reported for the
original system and for the fault tolerant one.

Original System Fault Tolerant
System

Module
Type

Size
[#gates/
#bytes]

Type
Size

[#gates/
#bytes]

create_pack hw 1,092 Hw 1,092
ip_check sw 1,040 Sw 1,040
checksum hw 2,134 Hw 4,268
arbiter hw 1,198 Hw 3,594
voter Hw 35
watchdog Hw 55

Table 2: Resource requirements

When evaluating the system partitioning, we found
that the voter used by the fault tolerant arbiter had to be
implemented in hardware due to timing constraints of the
communication protocol. As far as the overhead is con-
cerned, we observed that the hardware and software parti-
tions of the resulting architecture are about 2 times larger
than the original ones. Finally, we evaluated the impact of
the redundancy on the system performance. The original
system receives and processes three packets (for a total

amount of 1,024 bytes of data) in 107,305 clock cycles.
The modified system requires 107,569 clock cycles to
perform the same operation. We are thus able to obtain a
dependable system with a tight control of resource over-
head and with negligible performance degradation (less
than 1%).

4. Conclusions

The need for early evaluation of system dependability
is becoming an issue for designers involved in the design
of safety-critical embedded systems.

We have described a tool able to support a co-design
methodology where Fault Injection is used to assess sys-
tem dependability both at the behavioral level and at the
architectural one.

The analysis of a simple case study has demonstrated
the effectiveness of our tool as well as that of the adopted
design methodology.

5. References
[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh,

B. Tabbara, A. Sangiovanni Vincentelli, A. Jurecska, L.
Lavagno, C. Passerone, K. Suzuki, Hardware-Software Co-
design of Embedded Systems, Kluwer Academic Publishers,
1998

[2] A. Balboni, W. Fornaciari, D. Sciuto, TOSCA: A pragmatic
approach to co-design automation of control-dominated
systems in Hw/Sw codesign, in Hardware-Software co-
design, G. De Micheli, M. G. Sami, Kluwer Academic
Publishers, 1996

[3] R. Ernst, J. Henkel, T. Benner, Hardware-Software Co-
synthesis for Microcontrollers, IEEE Design & Test of
Computers, pp. 64-75, 1993

[4] J. Clark, D. Pradhan, Fault Injection: A method for Vali-
dating Computer-System Dependability, IEEE Computer,
June 1995, pp. 47-56

[5] R. von Hanxleden, A. Botorabi, S. Kupczyk, A Codesign
Approach for Safety-Critical Automotive Applications,
IEEE Micro, 1998, no.5, pp. 66-79

[6] Y. le Guédart, L. Marneffe, F. Scheerens, J. P. Blanquart,
T. Boyer, Functional and Faulty Behavior Analysis: Some
experiments and Lessons Learnt, Proc. IEEE Int’l Conf.
Fault-Tolerant Computing Systems, 1999, pp. 348-351

[7] K. Goswami, R. Iyer, L. Young, DEPEND: A Simulation-
Based Environment for System Level Dependability Analy-
sis, IEEE Transactions on Computer, Volume 46, Number
1, Jan. 1997, 60-74

[8] J. Carreira, H. Madeira, J. Silva, Xception: Software Fault
Injection and Monitoring in Processor Functional Units,
DCCA-5, Conference on Dependable Computing for Criti-
cal Applications, 1995, pp. 135-149

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

