
Standards for System-Level Design: Practical
Reality or Solution in Search of a Question?

Christopher K. Lennard, Cadence Patrick Schaumont, IMEC Gjalt de Jong, Alcatel
Anssi Haverinen, Nokia Pete Hardee, CoWare

Members of: System-Level Design and On-Chip Bus Development Working Groups of VSIA

Abstract:
We address the issue of standards development for
the system-level design space. System-level design
IP re-use standards are key to the future of the VSIA.
However, the concept of system-level standards has
its share of sceptics: what role can standards play in
this developing market segment? In response we
present an overview of three standards in the
system-level VC integration space, and describe two
distinct industrial case studies to support their
practicality.

1 Introduction
Three factors drive the need for standards within

the design and EDA industry. These are the need for:
(1) common communication principles, (2) common
design formats, and (3) a unified approach to design-
quality measurement and assurance. Standardising
communication permits straightforward connection of
tools (e.g., via APIs), virtual components (VC) (e.g., via
bus standards), or complete SoC designs (e.g., telecom
standards). Standardisation of design formats ensures
comprehensive design-property encapsulation within a
small set of alternatives (e.g., RTL synthesizable subset
of VHDL or Verilog). Finally, quality-based standards
must help resolve an industry-wide design-quality issue.
For the VSIA, the quality issue is the guarantee of SoC
design integrity while ensuring fast integration of VCs
from multiple sources.

To ensure “design quality” in the rapidly
developing system-level design space, standards must
help to align existing technology and design principles
with emerging concepts. They link the fundamental
principles developed in academia to the industrial needs
of: a) the handling legacy-components, b) catering to
customer risk-tolerance, and c) understanding how the
flurry of new system-level tools enhance existing design
flows.

The VSIA is producing standards to help the
industry take small-steps towards comprehensive
adoption of system-level architectural exploration and
VC exchange [1]. To achieve this, the VSIA is
standardising a definition for “interface-based design”
at all levels of design abstraction. At the system-level,
this implies common VC description techniques ensured
through a unified taxonomy ([2], [3]) and well defined
separation of VC interface (protocol) and the VC
internal behaviour. This standardisation of “mutual
comprehension” is a quality assurance of documentation
for VC hand-off. The VSIA must also develop
“interoperability” standards to simplify integration
overhead today. This includes the standardisation of
communication principles – for example, the On-Chip
Bus VC interface; and standardisation of design-format
features – for example, design-language data-types.

In this paper we describe three emerging VSIA
system-level integration standards which are already
gaining industrial adoption. These are the System-
Level Interface Behavioural Documentation (SLIF)
Standard, the On-Chip Bus Virtual Component
Interface (OCB VCI), and the System-Level Data-Types
standard. The first of these is a mutual comprehension
standard for rigorous interface-based description of any
VC, legacy or new. It enforces a system-level view upon
standard VC integration, and provides the link between
abstract models and VC implementation. The latter two
standards are interoperability standards, and both tie in
with use of the SLIF standard. The OCB VCI
transaction-level view provides a bus-interface
abstraction, which is not limited by the VC integrator’s
choice of bus. The OCB VCI transactions are the first
step towards full interoperability standards for VC
interfaces across multiple system-design abstractions.
The standard data-types permit quick analysis of
interoperability requirements, and guarantees that a
common interpretation of data-operations is used within
the VC behaviours.

2 The VSIA Interface Standards

2.1 The Interface Based Design Principle
To enable mutual comprehension and

interoperability, system-level VCs need clean separation
of internal-behaviour and protocol ([4], [5], [6], [7]). All
VC documentation (and eventually models) must specify
internal behaviour independent of protocol, and a
protocol block independent of internal behavioural
details.

Figure 1. The Separation of Behaviour and Interface

As an example an interface-behaviour separation is
shown in Figure 1. The light-bulb behaviour on the left-
hand side (LHS) is a simple ON/OFF action. The ON
action requires a basic communication task: Read
“Colour” and “Intensity”. The arrival order and format
of this information is irrelevant to the conceptual
behaviour. The arrival order and format of the data is,
however, critical to each instantiation of the VC. In this
example, we have suggested two protocol instantiations
on the right-hand side (RHS). These both satisfy the
single behavioural communication requirement of the
VC whilst separately encapsulating the implementation
requirements of a protocol.
 The internal behaviour and the protocol block are
separated by the Functional (or Layer 1.0) Interface.
This Functional Interface supports a limited and well-
defined legal transaction set to ensure a common
definition of behaviour-interface separation. The
restrictions upon the Functional Interface are:

a) Actions on ports are not explicitly coupled or
related (e.g., no handshaking)

b) Any sequencing actions on these ports is a
property of the internal behaviour

c) The only allowable transactions are: Read,
Write, Sense and Emit

d) Data-types passing across the interface can be of
arbitrary complexity

To bridge the abstraction gap between the Functional
Interface and protocol block output, a hierarchical
interface-refinement strategy is supported. The protocol
block is be described as a series of refinement layers
taking the Functional Interface (Layer 1.0) properties
down to implemented protocol (Layer 0.0).

Deriving a clean interface-behavioural separation
satisfies the hand-off and integration principles of mutual
comprehension and model interoperability. Mutual
comprehension is supported by the classification of
communication properties and protocols into standard
semantics and abstraction hierarchies. Model
interoperability is achieved in two ways. First, it allows
the VC integrator to relate the communication principles
of the behaviour to the details of a protocol
implementation. Secondly, the separation of the interface
permits simple linking of a VC’s behaviour into standard
communication protocols (e.g., APIs)

2.2 The Standards

2.2.1 The System-Level Interface Standard
The VSIA System-Level Interface Behavioural

Documentation Standard (SLIF) achieves uniformity of
hierarchical description for VC interfaces. The interface
description standard follows the interface separation
principle outlined above. It possesses a sufficient set of
interface transaction and message classes for the
description of any interface abstraction layer. Each of
these transactions and messages can support attributes to
express communication intent. Diagrammatic shorthand
for representation of the interface layers, including ports,
transactions and attributes is given. This notation
indicates data producer/consumer and action
initiator/responder relationships. Example transactions,
attributes and shorthand are shown in the Table 1.

Transactions Attributes Notation
messSense Data Flow
messEmit Control Flow
transRead Buffer /

Persistence
transWrite FIFO

transOpenChannel Blocking
transCloseChannel Priority

transSynchronize Multirate

transReset Pipelined
transControl Protocol

Related

Table 1. SLIF Transactions and Attributes

To ensure industry-standard separation of interface
and internal behaviour in a VC description, a restricted
set of transactions and attributes are permitted at the
Functional Interface. Explicit temporal association
between transactions is also not permitted at the
Functional Interface. Documenting the basic
communication principles of each VC through use of the
Functional Interface is mandatory. This makes the most
abstract interface layer computation-domain neutral.

Bulb Behavior Implementation Options

Bulb On

Bulb Off

Color
Intensity

Data:
Blocking Read

Event

Trigger:
Sense

Reset
Color_Data
Intensity_Data

Protocol 1

Data_In
Req / Ack
Trigger

Protocol 2

Trigger
Data

Trigger
Data

Trigger

Data

Functional
Interface

Name

2

32

The SLIF Standard is a hierarchical interface
specification with consistent content requirements,
section numbering, and port / transaction naming
strategy for each interface layer. The format ensures
completeness and clear identification of the structural
and transaction relationship between layers. The
hierarchy permits verification of interface-property
inheritance on a layer-by-layer basis.

For situations where a VC connects to a bus, this
documentation approach can be linked into the
interoperability standards of the OCB VCI. However,
the SLIF standard can be able to be applied to any form
of VC or VC model whether bus-based or not (e.g.,
dedicated hardware components, cores, SW objects, etc.).
The SLD DWG is supporting multiple VC delivery
models with this standard. Each interface layer must
have supporting documentation, but it is optional to
supply a simulation model or implemented VC object for
each abstraction. In this way, the documentation
standard can be applied directly to legacy VC as just a
clarifying measure.

2.2.2 The OCB VCI Standard
The OCB Virtual Component Interface standard

defines a generic cycle-based address-mapped point-to-
point interface rather than a bus. It does not demand nor
define particular bus allocation schemes or bus protocols.
Instead, the OCB VCI provides a set of logical signals
with a flexible and extendable protocol to transfer
information between two end points, (e.g.) a VC and the
interface logic of a bus. (See Figure 2). The OCB VCI
standard specifies:

1. a request-response transaction protocol
2. a protocol for the transfer of those requests and

responses,
3. the contents and coding of these requests and

responses.

Figure 2. Use of VCI with an On-Chip Bus

The VCI will generally require a “wrapper” between
the interface and the bus. This wrapper may be specific
translation logic or a parameter-driven generator of
translation logic.

The advantage of using the VCI is that it greatly
improves integration across multiple platforms. To
support true mix-and-match of VCs, the VC provider
should not need to know the system interconnect. A VC

provider can now design to the VCI as a single interface
(as shown on the RHS of Figure 3), and the integrator
understands how this is translated to their OCB standard.
Tuning the VC connection to the system’s
communication channel (bus) by building of the wrapper
(LHS of Figure 3) is left to the system integrator.

Figure 3. Separating Bus-Specific Logic from the VC

There are three complexity levels for the OCB VCI:
Advanced VCI, Basic VCI, and Peripheral VCI. All
these interfaces are compatible with each other. The
Peripheral VCI is the most generic interface and it
implements a simple communication channel without
features to enhance performance. The Peripheral VCI is
comparable to any peripheral on-chip bus interface, and
its targeted use is with VCs, which connect to such buses
and for generic point-to-point communication. The Basic
and Advanced VCI contain features typical with high-
performance on-chip buses, such as split transactions,
pipelining, threads, packets. Thus, a component with an
Advanced or Basic VCI can be connected to a high-
performance system bus with minimal wrapper logic.

Although the OCB VCI standard has mechanisms for
building VCs with complex high-performance interfaces
for system-bus connectivity, the predominant use of the
standard by VC providers is expected to be the simple
Peripheral VCI.

A further definition of the OCB VCI standard is a
transaction language format. This can be used to define
simulation vectors for VCI compliance tests, but also
provides the link into the SLIF standard. This
transaction language provides a higher abstraction for
the communication that isolates the designer of the test
cases from interface signals, clock, and protocol in
general. The example of Figure 4 shows how an abstract
transaction maps to Peripheral VCI signals:

Figure 4. An Example of VCI Transactions

Bus Wrapper

VC

VCIVCI

VCI
protocol

Bus protocol logic
Buffers, etc.

OCB
protocol

VAL

CLOCK

RNW

ADDR

BE

ACK

“0x3”

“0xF”

WDATA “0x12”

vciStore (0x3, 0xF, 0x12);

V C _ 2V C _ 1

V C _ 3

W rapper W rapper

W rapper

O n - C h i p B u s

V
C
I

V C I

V
C
I

2.2.3 The System-Level Data-Types Standard
This data-type standard addresses the issue of highly

variable system-level data-types and operations. This
variability in the industry has made the portability of
software VCs and simulation models difficult. The
solution offered by the VSIA Data-Types standard is one
of standard header-file syntax and data-type semantics
for C/C++-based data-types. The goal is to achieve a
result similar to what the IEEE 1164 package has
achieved for VHDL [8], [9]. The first version of the
standard will cover built-in types for: int, short and the
IEEE standards for floats; and will also address the bit-
true versions of ‘std types’: bitvector: uninterpreted,
signed and unsigned integral types, and signed and
unsigned fixed-point types.

Standardisation of data-types is recognised as critical
in any system-level C/C++ language. Example language
developments which have identified this need are:
SystemC [http://www.systemc.org], Cynapps [http://
cynapps.com] and Superlog [http://www.co-design.com].
Cleveldesign [http://www.cleveldesign.com], and
Frontier Design [http://www.frontierd.com]. The VSIA is
seeking data-type alignment will all these efforts.

2.2.3.1 Basic Concepts
The data types and their semantics are defined upon

the following of basic concepts: no assumptions on
compilers and run-time environments; explicit
conversion functions to avoid implicit conversions; all
types have a string representation to serve as foreign
exchange mechanism thereby eliminating reliance upon
stdio or IO stream class libraries; defined initial values
for all types; and implementations to have freedom with
respect to data representation, additional C++ keywords,
type inheritance, analysis capabilities, etc.. Further,
must be the development of a test-bench set so that
vendor compliance can be measured.

For consistency between all related types and their
semantics, a user centric use model is applied. This
provides a rich set of functions and operators. For
performance, good coding style of the defined data types
is demanded. We classify the set of types into four
classes: base-types, bit-vectors, signed/unsigned numeric
types, and fixpoint types

2.2.3.2 Base types
Eight standard types have been defined: vsi_intn

and vsi_uintn where n can have the values 8, 16, 32
and 64. This reflects common use and best practice of a
set of typedefs to fix the size of the native char, short, int
and long types, which are machine dependent in ANSI
C.

Other supporting types are: vsi_base which is an
enumeration type describing which base format, e.g.
binary, octal, decimal, or hexadecimal, used in the string
representations. Vsi_overflow_mode summarizes all
defined overflow mode characteristics used in
assignments. Wrap-around and two saturation modes are

defined. For the fixpoint types, quantization modes will
be defined.

Objects of the vsi_context class are to set default
and initial values for lengths of bitvectors at construction
time and overflow mode characteristics.

The vsi_bit type is a full replacement of the
‘bool’ type. This was defined to allow extension to a
multi-valued logic type. Two constants, VSI_ZERO and
VSI_ONE are defined. Bool and “const char*”
constructors and assignment variants are defined. The
equality and inequality operators are defined for all
constructor variants, together with the bitwise operators
~,| & and ^. No ordering between the “zero” and “one”
value exists. .

2.2.3.3 Vsi_bitvector
The vsi_bitvector type is a true bitvector type,

with a non-zero, positive size. int and const char*
constructor are defined, where the int constructor
defines the length. String conversion to and from the
bitvector type are defined; variants with and without base
are defined. Assignment operators, including shifts, are
defined for all constructor variants. Only the equality and
inequality operators are defined for all constructor
variants. No numerical interpretation and operations are
defined, only logical bit-wise operations ~,| & and ^.
The left and right shift operators are logical shifts. A
general shift function and rotate functions are also
included. The size of an object does not change during its
lifetime, regardless of operations upon it. Reverse and
concatenation operations exist as additional utility
functions.

Index and subvector operators can also be used as
lvalues, i.e. a vector can be assigned and partially
modified. For example, expressions like vec1[7] =
vec2[7] and vec1(3,0) = vec2(7,4) are allowed.
To achieve this behavior, proxy classes <type>_
bitref, and <type>_subref have been defined. The
proxy classes behave as close to the associated type.
Template classes like vsi_Tbitvector<n> and
vsi_Tsigned<n> are defined for user-friendliness.
The size of the vectors are directly visible, and optimized
implementations can be provided.

2.2.3.4 Vsi_signed and vsi_unsigned
The vsi_signed and vsi_unsigned types are

true numerical types with a defined bitvector
representation, which is in 2’s complement, and with
MSB as first element. Int, (un)signed and const
char* constructor are defined. The int constructor
determines the length of the object. Full-fledged
constructors, with initial value and overflow
characteristic, also exist. String conversion to and from
the bitvector type are defined; explicit conversions from
and to vsi_bitvector also exist. All relational
operators are defined. The ordering, as for differently
sized objects, is defined by considering the represented
numerical values. All bit-wise and arithmetic operations

are defined. Additionally a general shift and remainder
function are included. In contrary with ANSI C, division,
modulo and remainder are unambiguously defined. All
operations are defined with arbitrary precision; overflow
mode characteristics due to fixed sizes of the values are
considered at assignment time. For the index and
subvector operators, (implicit) sign extension is
considered when the value is accessed “out of bounds”.

2.2.3.5 Fixpoint types
The fixpoint data types will be defined as the natural

extension of the integral types vsi_signed and
vsi_unsigned. A fixpoint value is like an integral
value, but with 2 lengths. One length is the length of the
integral part; a second value is the length of the
fractional part. A set of quantization modes are to be
defined.

3 Applying the Standards to Industry
This section is a description of the application of the

standards presented above. Three industrial case-studies
are being performed by the VSIA SLD DWG as pilots for
the standards. The first study is the application of the
SLIF standard to the telecom design flow within IMEC.
The second involves the application of the SLIF and
OCB standards to VC exchange and bus integration
between projects in Nokia and CoWare; and the third
involves the application of all three standards on a design
project within Alcatel. The first of these case studies has
completed. The latter two are ongoing at the time of
authoring this paper, and the Nokia / CoWare project
intent and status is described following the IMEC study.

In each case, the application of these standards is
broken down into: (a) the environment and problem, (b)
applying the standards, and (c) the results of application.

3.1 Application within IMEC

3.1.1 Environment and Problem
At IMEC, “demonstrator” designs are being

developed in the field of telecommunications and
multimedia. The design flow relies on the use of C++ to
capture the entire design path from system level
exploration to detailed hardware design (Figure 5). The
SLIF standard has been applied to assist with the
following IP-related issues:

1. Demonstrator-design concentrates on the novel parts
of an application. The VC model capture using the
interface-based design style of the SLIF standard is
very effective at providing appropriate design focus.

2. The SLIF standard handles high level behavioural
models. This allows easy interpretation of a system
model by an external partner.

3. The SLIF documentation provides unified structure
for demonstration of the results from the design
methodology research at IMEC.

The driver application that was used in the pilot
project was a digital gain control block for a modem.
This VC, called CMULT performs a constant
multiplication of an input value with a parameter. The
parameter is also programmable. System integration of
this model raises the following issues: under what
conditions can the parameter be updated?; when can the
input be read?; what interface signals govern
consumption and production of data? The SLIF standard
supports accurate documentation of these issues.The
following two subsections describe how the SLIF
standard helps to expose the interface protocol
information so that the above issues are easily resolved.

3.1.2 Applying the Standards
The SLIF standard promotes interface-based design

by using documentation layers. Each layer describes a
VC at one level of abstraction, and each can use different
execution and communication semantics. All layers fit
on top of each other through refinement. This way, the
initial layer expresses the most abstract view of a VC,
while subsequent layers elaborate the abstract views into
more concrete views.

Figure 6 shows the uppermost layer of the CMULT
(constant multiplication) VC. This VC is drawn using
the standard attributes of the SLIF standard. It shows two

input interfaces (inp and parm), and one output
interface (out). The inp interface reads in data values
through port_I, and produces values through port_O.
Interface parm is used to update the parameter value to
multiply with. The arrows attached to each interface
explain the communication semantics that are used on
the interface ports. Consider for instance inp. The filled
arrow into this port indicates consumption of a data flow.
The transfer is initiated by inp itself, which is indicated
by a hollow arrow (a control event) going out of inp.
The transfer of data is also blocking, which is indicated

OCAPI C++

TX CHAN RX

Alg

Arch
RT
Fixp

HDL Code Generation

RT-VHDL Cath3 TestvectorsTestbench

Figure 5. C++ based design flow in use at IMEC

port_I

port_O

port_P

cmult_1.0

inp

parm

out

Figure 6. CMULT Layer 1.0 External View

cmult 0.1

port_I_rt_clk

port_I_req_clk

port_I_ack_clk

port_P_rt_clk

port_P_ack_clk

port_O_rt_clk

port_O_req_clk
inp_clk

parmrt_clk

out_clk

clk

port_P

cmult 1.0

port_O

port_I

port_clk
To inp_clk, parmrt_clk, out_clk,
and delay_1

accept_token delay_1

Figure 7. Layer 0.1 Internal View

by a vertical bar across the arrows. Thus, the transaction
on inp expresses a blocking read.

In the C++ design environment used at IMEC, the
most abstract view of a VC (the algorithmic view) uses
data-flow semantics. Execution of this kind of behaviour
is purely driven by the availability of data. The refined
view (the architecture view) uses cycle-true simulation
semantics. In that case, execution of VC behaviour is
governed by the presence of a clock edge. To go from the
algorithmic to the architecture view, one has to devise
interfaces that implement the data-flow semantics using
cycle-true semantics by means of an appropriate protocol.

The 1.0 layer implementation that is associated with
the SLIF document will be described in C++ using data-
flow semantics. For the transaction on inp for instance,
a C++ source code fragment is:

execute_vc() {
 if (data present on port I) then {

read data value;
do processing;

 }
 // else do nothing
return;
}

In this fragment, the code related to port_O and
port_P has been left out. However, the code
implements the specification of the inp interface in
Figure 6. This example illustrates a key-benefit of the
SLIF standard. The standard introduces an intermediate
layer of documentation that is independent of a particular
design environment. The specification in Figure 6 is
generic (yet unique), while the code fragment is specific
to the coding style and the C++ design environment.

3.1.3 Documentation Layering
The SLIF standard documents a VC at different

levels of abstraction (layers). The layers that were used to
document the constant-multiplication VC are shown in
Table 2. Four different layers are listed, starting from a
data-flow functional interface (Layer 1.0) down to cycle-
true register-transfer (RT) model (Layer 0.0).
Intermediate layers describe intermediate steps in the
refinement.

Layer Interface Behavior Implementation
1.0 Data-flow Data-flow C++
0.2 DF/RT Data-flow C++
0.1 RT Data-flow C++
0.0 RT RT VHDL

Table 2. Layering of the CMULT VC

Layer 0.2 expresses the interface characteristics of
the different I/O interfaces using request/acknowledge
signalling. However, the complete VC still is described

as a data-flow model. The 0.2 layer thus expresses the
ports that will show up in the VC architecture as a result
from the refinement from data-flow to RT.

The next layer (Layer 0.1) expresses the same ports,
but switches the simulation semantics of the interfaces
from data-flow to cycle-true. Introducing cycle-true
semantics allows the expression of the VC timing
characteristics in terms of clock cycles. This is not
possible in an untimed data-flow model (Layer 0.2).
However, even at Layer 0.1 a behavioural view of the
VC’s internal functionality may still be used. A possible
internal view of Layer 0.1 is shown in Figure 7. Since the
internals of a VC are essentially hidden, this mapping is
of course not unique; the figure rather shows one possible
solution of the mapping.

Comparing to Figure 6, we see that Figure 7
encapsulates level 1.0. Each of the 1.0 interfaces is
expanded to a set of interface signals. In addition, a clock
signal is introduced to control time in the RT model.

There is also a delay block present. This delay block
transports time (which cannot propagate through the
cmult_1.0 data-flow model) to the output interface
out_clk. The block is needed because, whenever the
input interface inp_clk accepts a data value, the data-
flow block cmult_1.0 evaluates an output result
immediately. Yet, the cmult_0.1 model is timed (cycle
true), and the output interface out_clk is expected to
produce a result with the appropriate latency. This
problem is solved with the delay block, that marks the
point in time at which a new input is accepted, and that
indicates when a new output should be produced.

This example illustrates that the SLIF has modelling
and documentation mechanisms that support full
interface based design.

3.1.4 Results of the application
From this design experience at IMEC, we conclude:

1. The SLIF standard is powerful as an environment-
independent documentation standard. SLIF allows
assessment of VC integration without getting lost in
implementation details.

2. The SLIF standard promotes interface-based design.
This is a side effect of preparing the documentation
as the design flow is traversed. In the IMEC
environment we have partitioned the interfaces and
the behaviour as separate C++ classes and this
establishes an obvious relationship with the SLIF
documentation.

3. The SLIF standard allows design review process
done by either SLIF experts or design environment-
experts. In both cases, valuable and sensible
comments were formulated that allowed
improvement of the design.

3.2 Application within Nokia / CoWare

3.2.1 Environment and Problem
The Nokia/CoWare pilot project is centred on the

development of components for third-generation cellular
(3G) applications. The components in question are
essential elements of the physical layer, also called Layer
1 (L1), of a 3G cellular system. Nokia is adopting a
design methodology based on VCs and the application of
the SLIF and OCB standards to VC exchange and bus
integration for this project for three main reasons:

1. The 3G standards are not yet finalised and it is
clear that there will be multiple variants of the
standards. Known functions will therefore need
to be re-used in many different design variants.

2. Some functions can be common across different
sub-systems with very different system design
constraints and architectures. For example,
components with identical descriptions at SLIF's
Layer 1.0 (Functional Interface) could be used in
both base stations and handsets, with very
different architectural and implementation
needs.

3. It is beneficial to remain as independent as
possible from the implementation, including the
specifics of the processor and associated bus,
until the latest possible stage.

The pilot project endeavours to show that the SLIF
and OCB standards can be used, in combination with the
CoWare N2C™ design system, to achieve these benefits.

3.2.2 Applying the Standards
The L1 Pilot Project Virtual Component is comprised

of a convolutional encoder, Viterbi decoder and built in
self-test capabilities. In the pilot project, these are
implemented in a Gate Array (GA). The GA is mounted
on a test board, which includes an ARM processor. The
virtual component is tested with a Test Bench comprised
of a rack of test equipment or via its own built in self-test
capability. The Control block has a GUI in the CoWare
simulation environment to allow Test setup and
reporting. Each of the configurable blocks in the system
can be controlled via the GUI ARM SW running on the
test board will be used to control the VC’s function via
memory mapped I/O. The pilot project example is
illustrated in Figure 8.

Proving the usefulness of the SLIF method of
documentation and showing how it links into the OCB
specification is a key outcome for the pilot project. This
is especially important since the VC would be handed off
within different divisions of Nokia, so it must be
understandable outside of the team that created it. Figure
8 shows the VC as implemented in the pilot project's test
configuration. Only the VC portion of this diagram will
be described using the SLIF. The levels of description are
as shown in Figure 9.

Figure 9. Levels of Interface Description

The behavioural hand-off level reflects some aspects
of architectural choice for implementation while
remaining independent of the exact implementation.
From there, implementation will take place in a manner
appropriate for the implementation method (i.e. manual
design versus automated generation of bus interfaces in
CoWare). These levels are described in parallel using the
SLIF method, to check consistency of the SLIF with the
other paths.

3.2.2.1 Linking Standards to Implementation
Where a VC is implemented as a peripheral attached

to a bus (for the ARM processor in this case), one of the
Layer 0.x SLIF layers is made to map into the OCB
standard's Peripheral VCI (PVCI). From the Layer 0.x
layer to the RTL (or Layer 0.0), automated interface

1.0

Behavioral Hand-off

VCI CoWare Manual Spec in
IFSG Notation

Manual
Bus

Manual
HW-HW

Manual
SW-SWSupported Buses

0.0

Manual Automated

C_In V_InC_Out V_Out

ARM MemorySW

Conv Coder Viterbi

Delay

Channel
Sig Compar

uP Interface

VC

GA

Built-in Test

Test
Board

 Figure 8. Pilot Architecture – Nokia / CoWare Example

synthesis is used. This interface synthesis step is best
explained through an analysis of the similarity of the
PVCI and CoWare's “Virtual Bus”.

Both the PVCI and Virtual Bus specify a generic and
abstract means to define a bus interface. These interface
definitions are independent of the actual on-chip bus
used, thereby enabling a top-down design flow. The
PVCI bus interface describes the generic signal types and
protocols for requests, the responses to such requests, and
contents and coding of these requests and responses.
Virtual Bus also describes generic signal types and
associated protocols for bus transfers. The generic
categories of signals in the PVCI map closely to those in
Virtual Bus. The basic PVCI handshake protocol maps to
Virtual Bus' FullHndshk protocol, one of several basic
protocols provided with the Virtual Bus. This pilot
project will complete the mapping of signals and
protocols between PVCI and the CoWare Virtual Bus.

Unlike PVCI, however, Virtual Bus is backed by
tools and methodologies which enable interface synthesis
techniques to ease the bus integration process. The first
step in interface synthesis is detailed bus specification
capture. Along with a processor model and its associated
tool chain, this is part of a "Processor Support Platform"
(PSP). During bus specification capture, the mapping of
generic to specific signals and of transfer protocols to
signal transition graphs are completed. This knowledge
drives automatic synthesis of the logic needed to connect
a processor to any peripheral, providing implementation
of the user-specified communication scenarios. Since the
PSP which is integrated into CoWare N2C, is provided
for the designer in advance (usually by the IP/platform
provider) the designer is shielded from needing to know
detailed processor and bus interface. In effect, the
detailed implementation level is abstracted to the Virtual
Bus level. For the ARM processor and bus used in the
pilot, the PSP is already captured in CoWare N2C.

3.2.3 Results of the Application
The result of this project is to be the assessment of

the OCB and SLIF standards from a number of aspects of
interoperability:

1. Interoperability of the VC. Following the SLIF
documentation principles enhances all design
groups' understanding of the VC so it can more
easily be made to operate with other designs

2. Interoperability of the SLIF and OCB
specifications. The pilot project shows the flow
from the SLIF work to implementation via the
OCB specification.

3. Interoperability of real buses with the VCI. Both
manually, and automatically using Interface
Synthesis in CoWare N2C, the pilot project
shows that the VCIcan be implemented in
practice with a real commercial bus - in this case
for the ARM processor.

As we write, the pilot is still in progress, but early
indications are that we will achieve our goals.

4 Conclusions
Standards at the system-level are helping to solve a

real design problem: they are creating an engineering
mind-set which encourages design for re-use. There are
two key points to this: (1) the recognition of basic
interoperability requirements, and (2) development of a
common ground for mutual comprehension. As the
VSIA is building around the concept of a “design-data”
model and the clean separation of behaviour from
interface, these system standards apply independent of
adopted syntax and design environment. Besides the
improved ease of integration, this standardisation
approach ensures straight-forward cross-checking of the
VC specification with the actual implementation.

Taking such a strong role in system-level
standardisation places the VSIA is in the forefront of
System-on-Chip design practice. This organisation has
industry leaders both contributing to, and adopting our
work. We remain separate from the development of
system-level languages. However, our design-description
techniques and interoperability requirements will play a
crucial role in guiding the development of any new
system-level language. In particular, the work of the
VSIA helps to identify and prioritise the support of
possible design-format features. Through this role as a
language-neutral party we are defining authoring styles
and constraint sets which will ensure the future
interoperability of system-level virtual components.

5 References
[1] VSIA, VSI Alliance Architecture Document v1.0,

www.vsi.org, March 1997
[2] VSIA, VSIA System Level Design Model Taxonomy

Document, www.vsi.org, Jan 1999
[3] R. Goering, VSI spec establishes system-modeling

taxonomy, EE Times, Feb 1999
[4] J. Rawson et al., Interface Based Design, Proc. of Design

Automation Conf., June 1997
[5] C. Lennard, Enabling VC Exchange through System-Level

VC Standards, Proc. of Forum on Design Languages, pp.
641-650, Sept 1999

[6] K.Suzuki, et al, OwL: An Interface Description Language
for IP Reuse, in Proc. of Custom Integrated Circuits
Conference, pp.403-406, May 1999.

[7] Ptolemy II Heterogeneous Concurrent Modeling and
Design in Java v0.1.1, ERL Technical Report, University
of California Berkeley, Feb 1999

[8] IEEE Std 1164-1993 IEEE Standard Multivalue Logic
System for VHDL Model Interoperability
(Std_logic_1164)

[9] IEEE Std 1076.3-1997 IEEE Standard VHDL Synthesis
Packages

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

