
Efficient Resource Arbitration in Reconfigurable Computing Environments�

Iyad Ouaiss and Ranga Vemuri
Digital Design Environments Lab, University of Cincinnati

Cincinnati, OH 45221-0030, USA
fiouaiss, rangag@ececs.uc.edu

Abstract

In a multi-FPGA synthesis system, ideally the designer
has only an abstract view of the board architecture. This ab-
stract modeling of the underlying reconfigurable computer
poses complex challenges to the synthesis and partitioning
tools. Since the design specification is not constrained by
the number of memory segments on the board or the num-
ber of pins between FPGAs, it is difficult for the CAD tools
to transform the design into one that maps onto the multi-
FPGA board. This paper describes an arbitration mecha-
nism that bridges the abstraction between the input design
and the reconfigurable architecture. Since this mechanism
allows such architecture abstraction between the design and
the board, it becomes easier to port a design from one target
architecture to another. This arbitration mechanism intro-
duces very little overhead in terms of area and delay. It
has been used in data-dominated applications; in this pa-
per, Fast Fourier Transform (FFT) is shown as an illustrative
example.

1 Introduction

FPGAs enable designers to perform fast prototyping of an
ASIC design. Also, when a small number of design imple-
mentations is required, FPGAs provide a cheap and perfor-
mance efficient alternative to hardware (ASICs) or software
implementations. However, due to the rather limited pro-
grammable hardware area that FPGAs offer, many vendors
introduced multi-FPGA reconfigurable boards [3, 16, 6].

These multi-FPGA reconfigurable computers eased the
area constraint but introduced design complexities. One
of the major problems in synthesis tools for reconfigurable
computers is the lack of flexibility. Each tool is usually tar-
geted for one specific Reconfigurable Computer (RC) board.
Furthermore, the tools expect a tight relationship between
the input design and the actual board. If the target board

�This work is supported in part by the US Air Force, Wright Labora-
tory, WPAFB, under contract number F33615-97-C-1043.

changes, the design would require major modifications be-
fore it can be synthesized.

1.1 Memory conflicts
If the design makes use of L logical data segments and

the board has P physical memory segments, then two cases
arise: when L is less than or equal to P, and when L is
greater than P. It is assumed that the total amount of mem-
ory used at one time in the design must not exceed the total
memory available on the board. Obviously, if L is less than
or equal to P, then the mapping is straightforward: each data
segment is mapped to an individual physical memory bank.

On the other hand, when L is greater than P, there are
more data segments in the design than there are physical
memory banks on the multi-FPGA board. In this case, the
mapping becomes difficult since more than one data seg-
ment has to be mapped to the same physical bank. Even
if the two data segments can fit on a single physical bank,
there might still be memory access conflicts.

So far, memory access arbitration has not posed a prob-
lem since very few synthesis systems cater to several target
architectures [2]: the trend is to model a design at a lower
level of abstraction where knowledge of the target board is
given.

1.2 I/O pin limitations
FPGA pins limitation poses a great problem for partition-

ing and synthesis. The cutset between partitions limits how
much the partitioner can fit on each partition. FPGA pins
limitation is a problem that is posed in any synthesis frame-
work. With the advent of technology, the trend points to an
increase in gates faster than an increase in pins. Effectively,
FPGAs are getting bigger without an increase in the num-
ber of available pins. This might not pose a problem when
the design fully fits on a single FPGA. However, when the
design requires a multi-FPGA system, cutsets between the
different partitions typically govern the amount of logic that
can go in each FPGA: The bigger the partition, the larger the
cutset between the partitions. Thus, the low number of pins
on FPGAs (compared to the number of gates that the FPGA

offers) forces designers to under-use the FPGA.

Arbiter

Req1

Req2

ReqN

Grant1

Grant2

GrantN

Clock

Figure 1. Generic N-bit arbiter

I/O pin management comes in two flavors: hardware
specific and synthesis specific. Hardware specific manage-
ment refers to RC architectures that have complex intercon-
nect structures such as programmable crossbars or meshes
[14, 4]. In order to bridge the gap between designs and
variable board architectures, software techniques are used
to make the design board-independent. It becomes the par-
titioner and the synthesis tools’ responsibility to adapt the
design to the RC architecture utilized. Several mechanisms
exist to reuse pins for several connections; Virtual wires
[12] offer a way of overcoming pin limitations in FPGAs by
statically scheduling data transfers so that multiple trans-
fers re-use the same set of pins. This comes at the price
of statically scheduling accesses. On the other hand, Vahid
used functional partitioning and the concepts of Function-
Bus interprocessor bus and port calling to reduce the I/O
requirements [8]. This solution came at the price of intru-
sive modifications to the partitioning and synthesis process.

1.3 Generic arbitration
It would be advantageous to have a mechanism that

would solve both memory conflict and pin limitation prob-
lems. At the same time, this mechanism should not restrict
scheduling of resource accesses or introduce complexity to
the partitioning/synthesis process.

An arbiter should be introduced for each resource that is
to be shared between processes executing in parallel. The
size of the arbiter depends on the number of processes ac-
cessing that resource; and a general N-bit arbiter is shown
in Figure 1. In the literature, arbiters are also referred to as
mutual-exclusion circuits or interlocks [13].

For each process accessing a shared resource, two wires
are introduced — Request and Grant — between the pro-
cess and the resource’s arbiter. When a process wants to
access the shared resource, it asserts its Request line and
waits until its Grant is asserted. Thus, at any given point,
the duty of the arbiter is to receive zero or more Requests
from processes and issue zero or exactly one Grant.

Most importantly, for the arbitration mechanism to be
successful, it should be automated in the RC design environ-
ment. The advantages of this automation are two-fold: first,
it allows the designer to produce architecture-independent
designs; second, it allows the tools to target a generic set of
RC boards. A generic target architecture might have a vari-
able number of processing elements, local memory banks,
shared memory banks, as well as a variable interconnec-
tion topology. This paper presents an automatic arbitration

PE-1 PE-2

M1 - M2M2M1

ArbT1 T2

T1

T2

b) After memory mappinga) Before memory mapping

Figure 2. Memory access arbitration

mechanism in the synthesis/partitioning RC environment.
The rest of this paper is organized as follows: Section 2

describes the functioning of arbitration for both memory
and I/O pins resolution. Section 3 lists the features that an
arbiter should have. Section 4 introduces one implementa-
tion of an arbitration mechanism and discusses its suitability
to this framework. Section 5 shows how arbitration fits in
the RC framework and shows an actual implementation of
arbitration in a popular digital signal- processing algorithm.
Finally, Section 6 provides a brief conclusion.

2 Arbitration Mechanism
In this discussion, the input designs being partitioned and

synthesized are assumed to be in the form of taskgraphs.
Taskgraphs contain two types of objects called tasks and
memory segments. Tasks represent synthesizable elements
of computation and memory segments represent elements of
data storage. Channels are used to represent inter-task and
task-to-memory communications.

The Unified Specification Model format, USM [9], is a
candidate specification language that provides a hierarchi-
cal representation for specifying the behavior of a design.
All tasks in the USM are simultaneously executing so as to
model concurrency. Other specification languages based on
the taskgraph representation are available in the literature
[7, 15, 5].

2.1 Memory arbitration
Consider the case when a task T1 reads/writes from data

segment M1 and task T2 reads/writes from data segment
M2 (Figure 2a). If the two memory segments M1 and M2
are assigned to the same physical memory bank on the RC

board, then tasks T1 and T2 are sharing the same address
lines, data lines, and read/write mode line of the memory
bank. But this creates a conflict since tasks T1 and T2 might
be independent from one another (i.e. executing in parallel).

Mutual exclusive access cannot be ensured for the ad-
dress/data lines as well as the select mode line. So, if T1
is writing to the address lines in clock step c1, T2 cannot
be accessing the memory during this step. Moreover, dur-
ing clock step c1, T2 must tristate its access to the address
lines. In conclusion, when two memory accesses are occur-
ring through the same physical memory bank, an arbitration
scheme has to be present to avoid any conflicts on the bank.
For the example shown in Figure 2a, an arbiter solution is
shown in Figure 2b.

Arbiter

T3
m

k

PE-2PE-1

T1

T4

T2

2

T1 T2

T3 T4

2

Enable

Enable

c1

c4

c1_4

k

Figure 3. Channel arbitration

T1

T2

T1

T2

T1

T2

Shared
Line

Grant1

Grant2

Line
Shared Shared

Line

c) Active-low accessb) Active-high accessa) Tristate access

Figure 4. Accessing shared lines

2.2 Channel arbitration
Pin limitation between processing elements might cause

a practical problem when a design has to be partitioned
across several connected processing elements. Similar to
the memory sharing mechanism described earlier, when the
number of physical channels on the board is less than the
number of logical connections required, then physical chan-
nels can be re-used. A single physical channel can be used
by more than one pair of writer/reader provided that arbitra-
tion is introduced to avoid access conflicts.

An example of channel sharing is shown in Figure 3.
Two logical channels (k-bit and m-bit wide, with m<k) are
merged onto one k-bit physical channel. Arbitration cir-
cuitry (registers and tristate buffers) is required to ensure
proper functioning of the shared channel; they are discussed
in detail in Section 4.3.

Finally, irrespective of the type of resource that is being
shared, tristating of shared lines is required when a task is
not accessing the resource. This can be seen in Figure 4a
where the processes’ Grant lines control the “enable” lines
of their tristates. Only when a process is granted access to
the shared resource (i.e. its Grant is asserted), should the
process drive the shared line. But what happens if all tasks
are tristating their access to the shared line (in other words,
none of the tasks is accessing the resource at a specific in-
stant)? In Figure 4a, if both T1 and T2 are not accessing
the shared resource, then the line connected to the shared
resource is in a high- impedance state. This might cause the
design to malfunction since the actual value of the shared
line is unknown. In the case of address and data lines, this
is not a problem, but for the select mode of a memory (write
on high), for instance, it can produce unwanted effects. In
this case, instead of tristating the shared line, a task should

disable its access to the select mode of the memory by driv-
ing a zero, and all lines are OR-ed to drive the select mode of
the shared memory. This ensures that even if the memory is
idle at some time, its select mode will be driven to zero (read
mode) and no unwanted writes would occur. Hence, all re-
source inputs that are active-high should follow the scheme
presented in Figure 4b; whereas active-low inputs should
follow the one presented in Figure 4c.

In conclusion, if two or more tasks are accessing a single
physical resource (memory, channel, etc.), arbitration has
to resolve any access unless the tasks are globally sched-
uled to avoid conflicts. The latter statement refers to the
case where scheduling of all tasks across all processing el-
ements is done simultaneously so as to avoid resource con-
flicts. Global scheduling of the design is feasible but it re-
quires a complicated controller model and it prohibits real
parallelism in the execution when processes contain unpre-
dictable loops and conditionals.

3 Choice of Arbiters

The implementation and functioning of arbiters depend
on the environment that they will be used in as well as other
constraints that the application imposes. In the RC frame-
work, the constraints that an arbiter should follow are fair-
ness, low overhead in terms of area and delay, and ease of
insertion and synthesis.

1. Fairness: Similar to concerns in many aspects of
multi-tasking operating systems, the arbiter should en-
sure mutual exclusion, prevent starvation, and prevent
deadlock [1]. The reader is referred to [1] for an exten-
sive explanation of these concepts.

2. Low overhead: The introduction of arbitration to the
design should not involve a substantial increase in area
(function generators or CLBs) or a substantial slow-
down in the design’s clock speed. Also, the latency
increase due to arbitration should be kept to a mini-
mum.

3. Extendibility and ease of insertion: The process of in-
troducing arbitration to the design should be simple,
fast, and fully automatable. The arbiter generation
should be parameterized such that the mechanism can
be extended to any number of tasks being arbitered.

In the next section, a specific implementation of the arbi-
tration mechanism is shown, and its conformity to the above
requirements is analyzed.

4 Implementation of Arbitration
In the literature, there exist several algorithms for con-

tention resolution each with its shares of advantages and
drawbacks [13, 1]. Techniques such as random, FIFO,
round-robin, and priority-based were examined. Given

its complexity and the type of applications that RC archi-
tectures help solve, the round-robin technique proved to
best fit our RC framework. In this technique, requests
are handled in a cyclic manner; whereas in the random
technique, requests are handled in a random manner; for
FIFO, requests are handled in the order in which they arrive;
and for priority-based, requests are handled in a statically-
determined weighed order. With the exception of the round-
robin technique, all other techniques introduced consider-
able complexity in the required hardware. In the RC frame-
work, the required hardware made the arbiter either too slow
or too large thus placing a considerable constraint on the
synthesized design.

At anytime during the execution of a design, a round-
robin arbiter — corresponding to a shared resource — re-
sides in a single state. The number of states in the arbiter de-
pends on the number of tasks accessing that resource. Each
task being arbitrated introduces two states. For task i:
Ci corresponds to the state when task i is exclusively access-
ing the shared resource.
Fi corresponds to the state when none of the tasks are ac-
cessing the shared resource and task i has the highest access
priority to the shared resource.

Thus, for N tasks accessing a single resource, the round-
robin arbiter moves within the following set of states:

Φ = C1, C2, ..., CN , F1, F2, ..., FN

The arbiter takes, as input, request signals from all tasks
and produces, as output, a grant signal for each task. The
set of input signals and output signals are respectively:

σ = R1, R2, ..., RN

Ω = G1, G2, ..., GN

Based on the set of inputs (σ), outputs (Ω), and the possi-
ble set of states (Φ), the transition mechanism of the round-
robin arbiter is shown in Figure 5.

4.1 Fairness
Since the round-robin arbiter is implemented as an FSM

and since each state in the FSM acknowledges at most one
request, mutual exclusion is ensured. Given the above as-
sumption, the round-robin arbiter is designed such that star-
vation is avoided. Since the order of requests is cyclic, it
is guaranteed that all tasks requesting access to the shared
resource will be acknowledged. Furthermore, with the N-
input arbiter implementation presented in this paper, it is
also guaranteed that a task requesting at a certain instant
will have its grant at most after (N-1) tasks. This is the
upper limit where not only all other (N-1) tasks happen to
request access to the resource, but also the task in question
happens to be at the end of the current order. Furthermore,
the round-robin implementation prevents deadlock. The ar-
biter can handle any number of requests occurring at the
same time. In the current form in which the round-robin ar-
biter is presented, it does not support preemption. However,

case current state is
when Fi)

case σ is
when zeroes)

next state = Fi
Ω = zeroes

when Ri)
next state = Ci
Ω = Gi

when not(Ri) and Ri+1)
next state = Ci+1
Ω = Gi+1

when not(Ri) and not(Ri+1) and Ri+2)
next state = Ci+2
Ω = Gi+2

when etc...
end case

when Ci)
case σ is

when zeroes)
next state = Fi+1
Ω = zeroes

when Ri)
next state = Ci
Ω = Gi

when not(Ri) and Ri+1)
next state = Ci+1
Ω = Gi+1

when not(Ri) and not(Ri+1) and Ri+2)
next state = Ci+2
Ω = Gi+2

when etc...
end case

end case

Figure 5. round-robin transition algorithm

in this RC framework, since arbitration will be automated,
preemption is not required.

4.2 Low overhead
In order to quantitatively evaluate the overhead intro-

duced by the round-robin arbiter, an arbiter generator was
implemented. It takes the number of tasks to be arbitrated
(N) as input and it generates a corresponding VHDL file. The
generator also has the option to produce different encoding
schemes for the FSM (e.g. one-hot encoding, compact en-
coding, or synthesis tool’s default encoding). The arbiter
generator was executed for N in the range [2; 10] and each
of the generated VHDL arbiters was then synthesized using
two popular synthesis tools (Synplify 5.1.4 by Synplicity,
Inc. and FPGA express 2.1 by Synopsys, Inc.) targeted for
the Xilinx XC4000e series with a -3 speed grade [17]. The
synthesized files were then taken through Xilinx M1.5 logic
and layout synthesis tools and the area values are reported
in Figure 6 (in terms of CLBs). Note that Synplify used
one-hot encoding regardless of what the VHDL files spec-
ified. FPGA express, on the other hand, implemented both
schemes. Also, note that for N=9 and N=10, even though the
tool execution time of Synplify was very small compared to
FPGA express, its results were still satisfactory.

Similarly, maximum clocking speeds for each arbiter
were obtained from Xilinx’s estimates. These values are
shown in Figure 7; they were obtained by placing timing
constraints on the Xilinx partitioning and routing tools. It
is important to note that no timing constraints were issued
to Synplify or FPGA express. Thus, it is possible to obtain
even faster implementations.

It can be seen from the values reported in Figure 6 and

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10

A
r
b
i
t
e
r

A
r
e
a

(
C
L
B
s
)

Arbiter Size (N)

FPGA_express One-Hot
FPGA_express Compact

Synplify One-Hot

Figure 6. N-input arbiter sizes in CLB s

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10

A
r
b
i
t
e
r

C
l
o
c
k

S
p
e
e
d

(
M
H
z
)

Arbiter Size (N)

FPGA_express One-Hot
FPGA_express Compact

Synplify One-Hot

Figure 7. N-input arbiter clock speed in MHz

Figure 7 that round-robin arbitration introduces very little
overhead to the design. In terms of function generators, a
10-bit arbiter added about 40 CLBs to the design. In our ex-
perience, arbiters in the range [2; 6] were the arbiters mostly
used for our example taskgraphs; larger arbiters were very
seldom introduced. With the Xilinx XC4000e series FPGAs,
this area overhead is very acceptable. Similarly, in terms of
clocking speeds, the arbiters seem to outperform any design
of reasonable size. Without, arbitration, designs occupying
50% or more of the FPGA usually reported clocking speeds
of less than 25MHz (XC4000e -3 speed grade). Since 10-
bit arbiters clocked at 26MHz, they did not introduce any
overhead on the clock speed.

4.3 Extendibility and ease of insertion
If a logical data segment is being accessed by more than

one task, the designer is responsible for arbitrating access
to the segment. However, an arbiter is automatically intro-
duced when multiple data segments are mapped onto the
same physical memory bank, and multiple tasks are access-
ing this physical memory bank.

Since arbiters are pre-characterized for the number of in-
puts and outputs, their area, and their delay, a precise esti-
mation can be performed by the partitioners to ensure the
fitness and speed of the contemplated design.

The arbiter synthesis is extendible for all values of N.

c := 13
Req := 1

c := 13 Wait for (Grant == 1)
mem[1] := ... mem[1] := ...
mem[2] := ... mem[2] := ...
... Req := 0
a) Original code ...

b) Arbitrated access

Figure 8. Task modification process

Time Task 1 Task 2 Task 3 Task 4
Step

1 c1 := 10
2 c4 := 102
3 ... x := c1

Table 1. Shared channel example

First, it generates arbiters of the appropriate sizes. Second,
for each affected task, a (Request, Grant) pair of lines is
added to the task’s ports. And, within the task, for each
access to the resource, the code is modified such that the
task requests access from the arbiter, waits until it receives
a grant, performs its usual access to the resource, then de-
asserts its request.

A task that wants to continuously access a shared re-
source, has to make its Request=0 between each “M” ac-
cesses. This is done in order to ensure that no task would
have to wait a long time before it can access the resource.
An example for M=2 is shown in Figure 8. Assuming a task
will receive its grant immediately, each arbitered access in-
curs two extra clock cycles due to the arbitration protocol.

Note that when a task is not accessing the shared re-
source, it must set all shared lines to their default states;
e.g. data and address lines are tri-stated, memory write/read
select is set to read.

The above discussion applies to all shared resources. In
the case of channel sharing, however, an additional concern
must be addressed: As seen in Figure 3, for each receiving
end of a shared channel, a register will be introduced whose
enable originates from the source task (whereas for non-
shared channels, a register is introduced at the source end).
The reason for having registers at the receiving ends of each
transfer is to ensure that data going to one of the targets
will not be overwritten by future transfers. In addition, the
presence of the registers allows transferred data to be stored
and subsequent transfers to take place immediately.

For the example of Table 1, if c1 and c4 were to be
merged into a single shared channel, c1 4, then we need
to store the c1 := 10 assignment from Task 1 before Task 4
performs the c4 := 102 assignment. By having the register
of c1 at Task 2’s end, the value will remain indefinitely for
Task 2 to consume regardless of when Task 4 writes to the
shared channel.

An arbiter is required when different sources of the
shared channels belong to different tasks. If all sources be-
long to the same task, then there is no need to introduce an
arbiter since the channel access would be implicitly arbi-
trated by the schedule of that task. Arbiter lines (Request
& Grant) are added for every task containing one or more

shared channel writes. Also, a tri-state buffer will be intro-
duced at the output of each source task whose enable is the
same as the one for the introduced register.

In conclusion, arbiters are introduced after spatial par-
titioning occurs. The hardware required for arbitration is
pre-characterized for area and speed thus making the par-
titioners’ estimation accurate. In addition, the number of
clock cycles introduced by the task modification process is
fixed and known in advance of synthesis.

5 Arbiter Synthesis in SPARCS
SPARCS (Synthesis and Partitioning for Adaptive Re-

configurable Computing Systems) [10] is an integrated de-
sign system for automatically partitioning and synthesiz-
ing designs for reconfigurable boards with multiple field-
programmable devices. The SPARCS system accepts de-
sign specifications at the behavior level, in the form of
task graphs, where each task is specified in VHDL [11].
In SPARCS’ view, a reconfigurable computer contains mul-
tiple FPGAs and multiple memory modules connected to
each other through a static or reconfigurable interconnec-
tion fabric. This view admits the use of SPARCS to re-
target the specification to a variety of RCs containing lo-
cal and/or shared memories among the FPGAs and dedi-
cated and/or shared connections among the memories and
the FPGA units.

SPARCS contains: 1) a temporal partitioning tool to tem-
porally divide and schedule the tasks on the reconfigurable
architecture; 2) a spatial partitioning tool to map the tasks to
individual FPGAs; and 3) a high-level synthesis tool to syn-
thesize efficient register-transfer level designs for each set
of tasks destined to be downloaded on each FPGA. Com-
mercial logic and layout synthesis tools are used to com-
plete logic synthesis, placement, and routing for each FPGA

design segment. In addition to these tools, SPARCS automat-
ically inserts resource arbitration, performs memory synthe-
sis, and generates interconnection information.

Figure 9 shows the role of arbiter synthesis in the
SPARCS flow. The arbiter synthesis tool can be adapted to a
variety of synthesis/partitioning flows since it is contained
as a separate module.

A variety of applications have been synthesized through
SPARCS. In this paper, we describe the Fast Fourier Trans-
form (FFT) application. The 4x4 pixel, 2-dimension FFT

algorithm was partitioned and synthesized in the integrated
SPARCS environment [10]. The main inputs to SPARCS con-
sisted of:

1. The FFT taskgraph: The taskgraph for this application
is shown in Figure 10. It follows the USM format [9]
where the “F” tasks represent the first FFT dimension
that is performed on an input image, whereas the “g”
tasks represent the second FFT dimension performed
on the complex-valued output of the first dimension.

Translator

Template
Generator

Light-Weight
High-Level Synthesis

Estimator
Temporal Partitioner

Spatial Partitioner

High-Level Synthesis

Logic Synthesis

Layout Synthesis

Memory Synthesis

Interconnect Synthesis

Resource Arbitration
Synthesis

Tasks specified in C/VHDL

Bitstreams

Intermediate Format

RTL

Figure 9. Arbiter synthesis in SPARCS

F1

ML1

g1r

F2

ML2

g2r g2ig1i

MO1 MO2 MO4MO3

g3r

ML4

F4

MI4MI3

F3

ML3

MI1 MI2

g3i g4r g4i

Figure 10. FFT Taskgraph

The solid arrows represent the data transfer between
tasks and memory segments and the dashed arrows are
used to specify control dependencies among tasks.

2. The target RC architecture: The Wild f orceT M board
from Annapolis MicroSystems Inc. was used for this
application. The board has four processing elements
(Xilinx XC4013e-3 FPGAs) with each a local memory
(32Kbytes) attached to it. Each processing element is
connected to its neighbor(s) by a set of 36 fixed pins.
Also, each processing element has a 36-bit connection
to a programmable crossbar interconnection structure.
The crossbar can be programmed to connect any two
or more processing elements together.

After partitioning, arbiter insertion, and synthesis, the
tool produced three temporal partitions, of which temporal
partition #0 is shown in Figure 11. This partition contains
two arbiters: a 6-bit (Arb6) and a 2-bit (Arb2). The 6-bit
arbitrates access to the local memory that contains all “ML”
memory segments. Since all 6 tasks in this temporal parti-
tion access the “ML” memory segments (as can be seen in
Figure 10), a 6-bit arbiter was introduced. The arbiter inser-
tion assumed that all 6 tasks were executing in parallel, thus
access should be arbitrated. In reality, since the “g” tasks
execute after termination of the “F” tasks (“g” tasks have to
wait until the “F” tasks finish writing their outputs), there
is no memory conflicts between them. The arbiter inser-
tion tool can easily detect this scenario based on the depen-
dencies between the tasks. Instead of inserting an arbiter
between these tasks, it should only ensure that the shared

Crossbar
Programmable

18+2

25+2+2

11+2

6

11+2

MI2 ML 1,2,3,4
MI 1,3

MI4
MO1

MO2

F2
Arb6

F1 F3

Arb2

g1r F4
g2r

Figure 11. FFT temporal partition #0

data, address, and select lines are appropriately set in tasks
F after they finish execution (tri-stated, OR-ed, or AND-ed
as explained in Section 2.2). On the other hand, it should be
noted that access of the “g” tasks to the “ML” segments is
implicitly arbitrated by the designer. Since each “ML” data
segment is assumed to be a single resource, the designer
should ensure that not more than one “g” task (or any other
task for that matter) can access it at one time.

Temporal partition #1 contained one 4-bit arbiter and
partition #2 did not require arbitration. Thus, for the en-
tire 4x4, 2-D FFT, a total of three arbiters were introduced
and the design clocked at about 6MHz. Even with this low
clocking frequency, the small amount of memory available
in each bank, and the rather small size of the processing el-
ements, the RC’s hardware execution (4.4sec for a 512x512
image) proved faster than a software execution on a Pentium
system running at 150MHz, with 48MB of RAM (6.8sec ex-
ecution time)! It should be noted that, even without arbi-
tration, the number of temporal partitions produced would
have remained the same as well as the clocking speed of the
overall design.

Finally, several modifications to the partitioning and syn-
thesis process could be made in order to obtain better re-
sults. For instance, providing constraints to the logic and
layout synthesis tools could have resulted in faster designs.
Also, as discussed above, by not arbitrating tasks “F” and
tasks “g”, the latency of the design could be reduced since
tasks “F” do not have to go through the arbitration protocol
in order to access the “ML” memory segments.

6 Conclusion
We have provided an explanation of arbitration in the

RC framework and introduced the round-robin arbitration
mechanism as a solution. By analyzing the features of the
arbitration scheme, we showed how it fits nicely in this en-
vironment. A partitioning/synthesis system can freely dis-
tribute data segments onto physical memory banks, reuse
FPGA pins if required, automatically recognize the need for
arbiters and insert them, and ensure proper execution of the
design without a substantial loss in area or speed. The Fast
Fourier Transform application is a good candidate for such

arbitration mechanism and we show how it was synthesized
for the Wildforce RC board. With minimal user interven-
tion, the synthesis process produced a solution for a low-end
commercial board that was faster than an equivalent soft-
ware solution executing on a Pentium 150MHz platform. It
is noted that without any modifications to the input task-
graph, FFT can be synthesized for different architectures us-
ing the same set of partitioning/synthesis tools. As future
work, it would be interesting to implement different task
modification schemes (refer to Section 4.3) in order to de-
crease the number of clock cycles due to arbiter insertion.
Also, preemption techniques could be introduced to ensure
that no task is granted access to a shared resource and never
relinquishes its request.

References

[1] A. Silberschatz, P. Galvin. “Operating System Concepts”.
Addison-Wesley, 4th edition, 1994.

[2] A.A.Duncan, D.C.Hendry and P.Gray. “An Overview of the
Cobra-ABS High-Level Synthesis System for Multi-FPGA
Systems”. In Proceedings of FPGAs for Custom Computing
Machines, pages 106–115, Napa Valley, California, 1998.

[3] Altera Corporation. Reconfigurable Interconnect Peripheral
Processor (RIPP10). http://www.altera.com.

[4] Brian Box. “Field Programmable Gate Array Based Recon-
figurable Preprocessor”. In IEEE Workshop on FPGAs for
Custom Computing Machines, 1994.

[5] C. Hoare. “Communicating Sequential Processes”. In ACM
Communications, volume 21, pages 666–677, 1978.

[6] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt.
“The NAPA Adaptive Processing Architecture”. In Proceed-
ings of IEEE Symposium on FPGAs for Custom Computing
Machines, 1998.

[7] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. “High-
Level Synthesis, Introduction to Chip and System Design”.
Kluwer Academic Publishers, 1992.

[8] Frank Vahid. “Techniques for Minimizing and Balancing
I/O During Functional Partitioning”. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, volume 18, January 1999.

[9] I .Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R.
Vemuri. “A Unified Specification Model of Concurrency and
Coordination for Synthesis from VHDL”. In Proceedings
of the 4th International Conference on Information Systems
Analysis and Synthesis, July 1998.

[10] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and
R. Vemuri. “An Integrated Partitioning and Synthesis Sys-
tem for Dynamically Reconfigurable Multi-FPGA Architec-
tures”. In Proceedings of the 5th Reconfigurable Architec-
tures Workshop, pages 31–36. Springer, March 1998.

[11] IEEE Standard VHDL Language Reference Manual. IEEE
Standards Office. New York, NY, 1993.

[12] J. Babb, R. Tessier, A. Agarwal. “Virtual Wires: Overcom-
ing Pin Limitations in FPGA-based Logic Emulators”. In
Proceedings of FPGAs for Custom Computing Machines,
1993.

[13] J. Rabaey. “Digital Integrated Cicuits: A Design Perspec-
tive”. Prentice Hall, 1996.

[14] S. Walters. “Computer-Aided Prototyping for ASIC-Based
Systems”. In IEEE Design and Test of Computers, June
1992.

[15] U. Steinhausen, R. Camposano, et al. “System-Synthesis
Using Hardware / Software Codesign”. In International
Workshop on Hardware-Software Co-Design, October 1993.

[16] Wildforce multi-FPGA board by Annapolis Micro Systems,
Inc. http://www.annapmicro.com.

[17] Xilinx, Inc. “The Programmable Logic Data Book”, 1998.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

