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Predicting Coupled Noise in RC Circuits
Bernard N. Sheehan, MentorGraphics, Wilsonville, OR, USA

Abstract
A novel method which can be regarded as the noise-
counterpart of the celebrated Elmore’s delay formula— both
being based on the first two moments of the network’s
transfer function— efficiently and accurately predicts
maximum noise between two capacitively coupled RC
networks, without simulation.  The method applies to
general topologies (with significant simplification for
coupled trees), accurately models how coupling varies with
driver transition time, and quantifies the uncertainty in the
calculated noise values.  Efficient enough for large circuits,
the new method can serve as a key ingredient in CAD
methodologies to ensure that a layout is noise-problem free.

1. Introduction

Capacitively coupled noise can sabotage a deep sub-
micron design, if not properly managed [1].  There is a
clear need for efficient, accurate analysis of crosstalk,
including its impact on timing [2].  A number of papers--
[3][4][5][6]--propose formulas that predict or bound noise,
but these papers usually postulate a simple topology, often a
coupled T network (Figure 2).  At the other extreme are
papers that invoke the machinery of circuit simulation or
general N-port reduction [7][8][9].  We seek a middle
ground, a simple theory of crosstalk based on only the first
two non-zero moments that can be regarded as the noise
counterpart to the celebrated Elmore’s delay formula.

Considering the coupled RC networks in Figure 1, our
goal is to estimate peak noise— in closed form, without
simulation— at each victim receiver, like R, due to a
transition of the aggressor’s driver d.  We want to estimate
how the noise varies from receiver to receiver depending on
actual layout.  Moreover, we want to predict how the
magnitude of crosstalk varies with the rise or fall time ∆ of
the aggressor’s source.  Finally, we want to gauge how
much approximation is involved in our estimate.  This
states our problem.

We attempt to solve the noise problem by analogy with
the familiar Elmore delay formula used to predict
interconnect delay [11].  The Elmore formula is based on
the first two moments of the transfer function from the
driver to a receiver node on the same net; we develop
analogous noise equations based on the first two moments
of the transfer function from the aggressor driver to the
victim receiver.  The resulting ‘Elmore crosstalk’ formulas

give us greater generality than the coupled T formulas in
the literature and greater efficiency than the general N-port
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Figure 1 Two coupled RC Networks

reduction/simulation methods.  The closest counterpart to
our method is [10], which— as we shall see— is a one
moment method.

Coupled Circuit Equations

The nodal equations for a pair of coupled RC networks
like those in Figure 1 can be written in block form as
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The matrix partitions correspond to the aggressor and
victim nets. Blocks C11 and G11 are the capacitance and
conductance matrices of the aggressor and V(1)(s) is the
Laplace transform of net 1’s nodal voltages.  C22 G22 and
V(2)(s) are the corresponding quantities for net 2 (the victim
net).  Normally, C11 and C22 are diagonal.  Block C21 and
CT

21 constitute the coupling between the nets.  Jd(s) is the
Laplace transform of the current source at d, VR(s) the
transform of the noise voltage at R.  Unit vector ed has 1 in
the row corresponding to the nodal equations for node d
where the driver is attached; unit vector eR has a 1 in the
row corresponding to the receiver node.  The driver
conductance gd is included in G11; the conductance of the
quiescent victim driver, gD, is included in G22.
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3. Moment Calculation

We are interested in calculating the initial two
coefficients in the expansion of the transfer impedance
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where z0 is absent because there is no dc connection
between the two circuits.  We will first show how to
calculate z1 and z2 and then show how to estimate coupling
noise using these first two moments.

Noise feedback from the victim to the aggressor will
only influence coefficients z3 and higher; accordingly, since
we are only interested in z1 and z2, we can ignore
block TC21 in (2.1).  With this simplification, (2.1) becomes
block lower triangular and is readily solved:
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this expression being exact up to the second moment z2.
From (3.1),
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Applying these formulas to (3.2), we get1

d
T
R eGCGez 1

1121
1

221
−−−= (3.4)

d
T
R eGCGCCGCGez 1

1111
1

112121
1

2222
1

222 )( −−−− +=

4. Moments for Coupled Trees

We will now show that when the two coupled nets are
trees, the calculation of z1 and z2 reduces to calculating
several generalized Elmore delays.

To this end we first decompose (3.4) into several sub-
calculations:
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Vectors a and b are associated with net 1, while c, d, and e
are associated with net 2.

To further simplify, we restrict ourselves to the case of
                                                       
1 In calculating z2 we have used the identity
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RC trees in which only one node per tree (namely, the
active or quiescent driver) has a resistance to ground.  All
other nodes may have series resistances between nodes, and
capacitances to ground (or to other nets) but no resistances
to ground.  Such trees we will call uniquely grounded.  It is
also useful to introduce the following notation.

Definition 4.1.  For any two nodes q and k in an
uniquely grounded RC tree, R(q,k) denotes the total
resistance (including the driver resistance) that is common
to the unique resistive paths from q to ground and from k to
ground.

In Figure 1, R(q,k) would be the path resistance from
node j to d.

In the case of uniquely grounded RC trees, the elements
of 1

11
−G  (and similarly 1

22
−G ) have a surprisingly simple

interpretation.  To see this, apply a dc current source I at
node q, say, and calculate the resulting voltage at node k,
say, of net 1 (see Figure 1).  This current I will flow along
the path q-j-d to ground.  The voltage vk produced at node k
is equal to R(q,k)I.  Alternatively, we get this voltage by
solving
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that is, q
T
kk eGIev 1

11
−= . We have established

Theorem 4.1 The kq’th element of 1
11
−G is the voltage

produced at node k from a unit dc current source at node q.
For a uniquely grounded RC tree, this voltage is equal to
R(q,k), the resistance common to the paths from q to ground
and k to ground.

If net 1 is a uniquely grounded tree, then, by the same
sort of reasoning,
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where gd is the internal conductance of the driver and 1n is a
column vector of all ones.

From Theorem 4.1, it is easy to see that vector b in (4.1)
is nothing other than the vector of Elmore delays (divided
by gd) for net 12:
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Vector c and d are what might be called ‘generalized
Elmore delays’, in that the capacitors used are the coupling
capacitors (weighted by bk in the case of d) rather than
capacitors to ground, in contrast to the standard Elmore
calculation.

                                                       
2 For purposes of calculation (4.4)— and similarly (4.6)— coupling capacitors
are treated as grounded.  This is because these capacitances contribute to the
diagonal terms of C11 and C22 in (2.1).
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The sums are over all coupling capacitors.  Finally, e is the
vector of Elmore delays for net 2, capacitors to ground
being weighted by the elements of c:
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It is clear from these equations that all components of
a,b,c,d, and e are positive; hence, from (4.1), z1 is positive
and z2 negative.

The quantities in (4.4)-(4.6) can be computed efficiently
by doing post and pre-order traversals of the trees, the
procedure being similar to the standard one used for Elmore
delays.  For non-tree circuits, the moments can be
calculated from (4.1) by LU factoring G11 and G22.

5. Noise From Moments

Having explained in detail how the first two moments of
the transfer impedance can be calculated, we return to our
primary task of considering how these moments can be used
to predict coupling noise.

The general procedure for predicting noise or delay from
a set of moments is this.  First, judiciously select a family of
functions )(),...,( 1 sFF mpp=  with parameters p1,… ,pm.
The form of F is chosen so that the inverse
transform [ ]FLtf 1)( −≡  has a shape similar to the
expected impulse responses of actual circuits.  Next,
calculate values for the parameters so that the Maclaurin
series of F(s) has the same initial coefficients as ZRd(s); in
other words, match moments.  Finally, for a given source
Jd(s), take the noise or delay of the approximate
waveform [ ])()()(ˆ 1 sJsFLtv dR

−≡  as an estimate for the
noise or delay of the true waveform

[ ])()()( 1 sJsZLtv dRdR
−≡ .  Limitations of this

procedure are that the choice of )(),...,( 1 sF mpp  is usually
rather ad hoc and there is no way of estimating or bounding
the error )(ˆ)( tvtv RR − .

Instead of selecting a particular matching form
)(),...,( 1 sF mpp , we first argue abstractly by considering the

class of all suitable matching functions and considering to
what extent the response is determined by choosing any
element from this class.  Evidently, there is an infinitude of
coupled RC circuits having the same moments z1 and z2.
As the response of these circuits will not all be the same,
clearly vR(t) is not uniquely determined from z1 and z2.  But

to what extent is the response determined from z1 and z2?
Definition. A trial function f(t) is admissible if it

satisfies the following conditions:
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0,0)( (c) <= ttf
00)( (d) ≥≥ ttf

Conditions (a) and (b) are normalization conditions, (c)
expresses causality, and (d) captures the feature of RC
circuits that the impulse response is non-negative [11].

Let a
i Sf ∈ be an element from the class aS  of all

admissible functions.  Then
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where Fi(s) is the Laplace transform of fi.  In other words,
from any admissible function we can form an expression
that matches the first two moments of ZdR(s).  The quantity

1212 zz−≡τ in (5.2), being positive with dimensions of
time, can be though of as a coupling time constant from d
to R.

For simplicity, assume the driver is a Norton circuit with
a saturating ramp current source:
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∆ is the rise time of the ramp.  The response of (5.2) to this
source is, for ∆≤≤t0 ,
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For t>∆, the same expression applies except the lower limit
of the integral is ∆−12τt .  In either case, without
knowing the specific form of fi, we cannot, of course
evaluate (5.4).  However, because of admissibility properties
(a) and (b), we can say that, for any admissible fi,

12
1max  if ,ˆ τ>>∆

∆
≈ zVg

v DDd
R (5.5)

since the maximum value of the integral in (5.4) is
approximately (but always somewhat less than) 1 for such
functions and rise times.  How much greater must ∆ exceed
τ12 for (5.5) to be accurate?  Appendix A gives one answer
to this question.  What is the peak noise for smaller input
rise-times? Knowledge of only z1 and z2 doesn’t tell us
much here; according to (5.4), the max noise predicted from
test function fi is proportional to the max area of a section of
base ∆ under the graph of fi— a quantity which could vary
greatly from one admissible function to another.



4

6. Fast Rise-Time Noise

To make further progress, we chose a specific trial
function whose form is motivated by physical reasoning.
Transfer function (3.2) suggests the trial form

)1)(1(
1)()(

ss
sF x

−+ ++
≡

ττ
(6.1)

where, for F(x)(s) to be admissible,

1
2

1 ≤±=± xxτ (6.2)

The physical motivation behind (6.1) is that the factor with
τ+, say, captures in some way the average response from the
driver to the coupling capacitors and τ- captures the
response from the coupling capacitors to the receiver. If
both circuits are approximately the same size, then we
expect τ+ and τ- to be approximately the same, whereas for
strongly imbalanced circuits, the time constants will differ
significantly.

For each value of |x|<1 we get a different prediction for
the maximum coupled noise.  In the limiting case of very
fast drivers (∆=0), it can be shown that
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a quantity which increases from 2/e=0.7358 for x=0 to 1 for
|x|=1.

7.’Elmore Noise’ and its Uncertainty

One possibility is to choose x in (6.1) so as to match the
third moment z3 in the expansion (3.1) of ZdR(s).
Alternatively, we can take (6.3) for x=0 and x=1 as
estimating the uncertainty in our predicted maximum noise;
this is the approach we take here.

Theorem 7.1.  The maximum crosstalk between two RC
nets driven by a saturating ramp source, as predicted by
form (6.1) and the first two moments z1 and z2, is
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The actual noise can be up to 2/e≈75% less that (7.1).
Proof.  We substitute (6.1) with x=1 into (5.4).  This

gives us (7.1).  The uncertainty is then taken from (6.3).
As already noted, another result on error bounds for

max
Rv appears in appendix A.  This result is rigorous and

does not depend on form (6.1)

8. Examples

To test our theory, we consider two limiting cases of

(7.1) and show that in these special cases (7.1) reduces
noise formulas already published in the literature.  We then
give a numerical example.
Example 1: Slow driver transition.  If the driver’s transition
time is very large compared to the coupling time constant,
the exponential term in (7.1) can be ignored and we get
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where the sum is over all coupling capacitors.  This is the
result of [10], a one moment estimation of noise.  According
to our theory, (8.1) is valid only when 12 zz−>>∆ .
Equation (7.1) is a generalization of [10], and an important
one, since for short transition times, (8.1) utterly breaks
down.  In the extreme case of a step input, (8.1) predicts an
infinite noise pulse— a wild unreality— whereas (7.1)
predicts the sober limit
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Example 2.  Coupled T networks.  Many crosstalk papers
start from a circuit like that in Figure 2.  Let us apply our
theory to this simple coupled T topology.  The expressions
for z1 and z2 for this circuit, which has only one coupling
capacitor, are
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where

Dydx rRRrRR +=+= 21 (8.4)
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Figure 2  Coupled T Network

Substituting into (8.2),

)()( 2211

2max
2 XCRXCR

XRv
+++

= (8.5)

This agrees with the noise expression derived in [6].  Our
theory, however, generalizes [6] in that (7.1) extends (8.5)
to arbitrary coupled topologies and to finite ramp sources.

Incidentally, the coupled T circuit of figure 2 has a
transfer function exactly of the form (6.1), an indication of
the physical suitability of that parameterized form for
predicting coupled noise.
Example 3. For a numerical example, consider the circuit of
Figure 3.  For simplicity, all resistors and capacitors have
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value 1.  Using (7.1) to predict the peak noise coupled to
nodes 1, 2, 3, and 4 for various driver transition times, we
plot in Figure 4 actual (solid lines) and predicted noise
(dashed lines) for driver ramp times (abscissa) from .1sec to
100 sec. The agreement is excellent for slow transistion
times, and even for step inputs the uncertainty estimate of

1 2 3

4

Figure 3  Test Circuit

Theorem 7.1 is adequate in this example, the actual values
lying within the range of the theorem.  Note that the
formula of [6] do not apply to this more general topology,
and [10] is applicable only for transition times that are large
relative to the Elmore delays of the circuit.
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Figure 4.  Peak Noise versus Driver Rise-Time

Conclusion

Calculating crosstalk based on two moments balances
the engineering goals of efficiency, generality, and
accuracy.  The moment calculation is quite efficient,
especially for trees, and no simulation is required. The
method applies to any topologies and customizes noise for
each receiver.  By treating a coupled circuit as a high-pass
filter (equation 7.1), it captures the rolloff of noise with
driver rise time.  Finally, the method is unusually careful in
that it also estimates the uncertainty in the predicted values.

Appendix A

Theorem.  The maximum crosstalk between two coupled

RC circuits satisfies
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where ∆ is the driver rise/fall time , 1212 zz−=τ ,and z1,
z2 are the first two moments of the transfer impedance (3.1).

Proof. First, we establish some inequalities.  For f an
admissible function,
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since u>t in the range of integration.  Hence
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The max noise over all positive time will be greater (or
equal) to the max noise over the interval 0<t<∆.  But in this
later interval, max noise occurs at t=∆.  Hence, combining
(a.4) at t=∆ with (5.4), we establish our result.
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