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Abstract

A paradigm for automatic approximation/refinement in
conservative CTL model checking is presented. The ap-
proximations are used to verify a given formula conserva-
tively by computing upper and lower bounds to the set of
satisfying states at each sub-formula. These approxima-
tions attempt to perform conservative verification with the
least possible number of BDD variables and BDD nodes.
We present new forms of operational graphs to avoid limi-
tations associated with previously used operational graphs.
Three new techniques for efficient automatic refinement of
approximate system are presented. These methods make it
easier to find the locality. We also present a new type of
don’t cares (Approximate Satisfying Don’t Cares) that can
make model checking more efficient in time and space. On
average, an order of magnitude speedup was achieved.

1. Introduction

The success of formal verification in detecting incorrect
designs has been proven over the last decade. However, the
limitation on the size of verifiable problems continue to be a
serious drawback. Therefore, for most practical, industrial
strength designs, abstraction, either manual or automatic, is
required to make formal verification tractable. There has
been extensive research on this topic. Some of works that
were foundation of this research are summarized below.

In [6], Kurshan described an abstraction paradigm called
“localization reduction” in the context of -regular lan-
guage containment based on reducing the parts of a system
that are irrelevant with respect to the property being ver-
ified. Another approach using both (but not at the same
time) over and under approximations was considered in [7]
based on State Space Decomposition [3]. If the result is not
conclusive due to abstraction, further refinement is done by
adding the best subsystem to each of the remaining subsys-
tems. In the worst case, the number of decision procedure

calls is quadratic in the number of subsystems in the sys-
tem. This procedure is limited to CTL formulae. In [12],
a more sophisticated, operation-based refinement was pro-
posed. The given CTL formula is parsed, and the initial er-
ror states (initial states shown not to satisfy the given CTL
formula) are treated as a “goal set.” Using the parse tree
of the formula, called an operational graph, the goal set is
systematically distributed for refinement to the operations
which induced the approximation in the first place. This
procedure requires exact image computation to propagate
goal set. Another new method that uses upper- and lower-
approximations at the same time was introduced in [8]. But,
they did not explore all the benefits from previously com-
puted satisfying states (explained in Section 5) and their re-
finement method is only based on dependency relation with
structural depth.

2. Approximation

The physical interpretation of the given system is a finite
state machine (FSM) model. Here the symbol X represents
the external input to the system. We operate in an encoded
world, so S 0 1 n and X 0 1 q, and s S denotes a n-
vector of state variable value assignments. To distinguish a
present state s S from a next state s S t is used to express
a state after one clock cycle from a state s. The triple s x t
can be viewed as a member of the system transition relation
T , or equivalently as a labeled edge of the State Transition
Graph. Thus there are n latches, and T n

i 1 Ti s x ti is
the system transition relation. This transition relation can
be implemented in many ways. In this research, BDDs are
used to manipulate a set and a relation including T s x ti .
In general, BDDs operations are exponential in the number
of variables and polynomial in the size of BDDs nodes.

Model checking of a CTL [4] property f is based on a
states evaluation function, SAT f —all states in SAT f
satisfy f [10]. After computation of SAT f , the initial
states, S0, are compared to SAT f and verification is com-



pleted with the following test:

S0 SAT f f istrue (1)

Many researchers have focused on approximate eval-
uation of the set of satisfying states. We shall refer to
two such approximate evaluating functions: SAT f , and
SAT f :

SAT f SAT f SAT f

When we derive exact verification results from these ap-
proximate states evaluations, we call it Conservative Ver-
ification ( Positive Conservatism: S0 SAT f S0

SAT f , Negative Conservatism: S0 SAT f S0

SAT f .
All SAT f computations can be based on one primitive

operation called PRE C s which computes predecessors
of states in C s :

PRE C s x t
i I

T s x ti C t (2)

Same index i I are associated with si ti, and Ti s x ti
and Ti is used instead of Ti s x ti interchangeably. Of the
many ways to implement upper-bound or lower-bound of
Equation 2, we shall consider only the following meth-
ods defined in Definition 2.1 and 2.2, where Ti Ti

Ti . With these methods, lower-bound and upper-bound
preimage computations are defined as shown below. Here,
C t is computed from C t according to the approxima-
tion method being used.

PRE C t x t T s x t C t
PRE C t x t T s x t C t

Definition 2.1 (Upper-bound Transition Relation)

T s x t
i IA

Ti s x ti
i IR

Ti s x ti (3)

Here, IA I IR I IA.

(U1) Ti BddSupersetting Ti , C t C t .

(U2) Ti 1, C t tRC t , tR ti i IR .

U1 refers to making Ti from Ti with generic BDDs super-
setting techniques explained in [13]. These methods pro-
duce a new set that is close to the original set in terms
of on-set minterm count, where the new BDDs should
be much smaller in size. U2 refers to the Block Tearing
Method [1, 9, 7], where Ti is the tautology. All tR vari-
ables are not appeared during PRE computation.

Definition 2.2 (Lower-bound Transition Relation)

T s x t
i IA

Ti s x ti
i IR

Ti s x ti (4)

(L1) Ti BddSubsetting Ti , C t C t .

(L2) Ti 1, C t tRC t , tA ti i IA .

The L1 method is same as U1 but the complement of
the given BDDs are supersetted. The L2 method was used
in [7] to disprove a CTL formula more efficiently.

All approximation methods explained in this section are
easier than exact one in a sense that either the number of
variables is reduced or the size of BDDs are reduced during
PRE computation.

3. New Operational Graphs

The notion of an Labeled Operational Graph was first
defined in [12]. There a Polarity was associated with
each node in operational graph. The polarity of a node
of the operation graph tells whether over- (+) or under-
approximation (-) should be computed at that node in or-
der to have a positive conservative answer at the top node.
However, it considered only the case of ‘-’ polarity at the
top node, therefore, only Positive Conservatism was con-
sidered in that work. We now define a Dioecious Opera-
tional Graph (DOG), which allows either positive or nega-
tive polarity at the top node. We shall refer to a graph with
a required ‘+’(‘-’) polarity at the top as a Positive (Neg-
ative) Dioecious Operational Graph, pDOG (nDOG) re-
spectably. Then the Labeled Operational Graph in [12]
is same as nDOG. Note that a model checker requires a
pDOG in order to deal with Negative Conservatism.

Since pDOG or nDOG has a one-side advantage (e.g.,
f with nDOG is good to conservatively verify f TRUE,
but not for verifying f FALSE), we should exploit the ad-
vantage of both cases. If nDOG and pDOG are merged,
a more effective approximate verification approach can be
achieved without causing too much overhead. This oper-
ational graph shall be called the Monoecious Operational
Graph (MOG). Every node v in MOG has SAT v and
SAT v at the same time. With these two approximate
satisfying states, dual conservatism can be applied on a
unified labeled operational graph. The other benefit of
MOG will be explained in Section 5. In Figure 1, three
different operational graphs of AG EFq are illustrated.
First, formula f should be translated into CTL form by
using equivalence rules explained in [10]. For example,
AGp EU True p and EFq EU True q . The po-
larity of a given node v in DOG is determined by counting
the number of nodes in a path from the top node to v.
When even number of nodes in this path, node v gets the
same polarity as the top node. SAT v or/and SAT v
is computed according to a polarity of v in a operational
graph in depth first order. It is guaranteed that an approx-
imate satisfying set at the top node is correct by using this
method [12].



Figure 1. Different Operational Graphs for
AG EFq

4. Iterative Model Checking and Refinement

In approximate CTL based model checking, the main
operations are SAT f and SAT f computations. We
compute SAT0 f or SAT0 f on the operational graph
that we want to use first. If no conservative answer is found,
SAT1 f or SAT1 f is computed with a refined system,
where SAT0 f SAT1 f and SAT0 f SAT1 f .
This process is continued until we prove the given formula
or run out of gas. We call this type of verification Itera-
tive Model Checking and the index i in SATi f is called
iteration index. As the size of a circuit grows, it is more
difficult to reason about it as a whole. So, most properties
that we want to verify are written in a modular manner. In
other words, a formula may require only part of a system to
be verified by model checking. This is called Locality. In
this sense, refinement is important because the main goal of
refinement is how to find out the locality of a formula with
less effort.

In Equations 3 and 4, the index set I is divided into two
sets, IA and IR. Then a transition sub-relation Ti for a state
variable ti whose index i is in IR is approximated to Ti or
Ti . The refinement is simply to replace Ti or Ti with Ti.
Then, our problems are how to define IA and how to increase
IA by adding I , a subset of IR. First, the constant bound is
the size of I and defined by the user. The first index set I0 is
computed as following. Let Id be a set of indices of latches
shown in a given formula. If Id bound, IA I0 Id .
Otherwise bound indices are chosen out of Id randomly. If
the verification result is inconclusive, IA IA I1 and so
on. To make refinement efficient, Ii should be computed in
a way that Ii is more important to verify a given formula
than any other combination of bound elements in IR. To
compute Ii for i 0, the following two methods are used.

4.1. Latch Affinity Refinement

In [3], various relations between two latches were de-
fined and used to partition the state space. Those relations
are used here to compute efficient schedule to refine the ap-
proximate system. Those latch relations include connectiv-
ity, agreement, and affinity. The connectivity is computed
based on whether a next state function depends on the other
state variable. When two state variables have mutual de-
pendency, their connectivity is 1. In case of uni-directional
dependency, connectivity is 0.5 and 0 when there is no de-
pendency. The aggrement shows how similar a next state
function is to the other and the complement of the other.
Minterm fraction of Exclusive OR of these two next state
functions shows the similarity.Finally, the affinity is a con-
vex combination of these two factors. Latch affinity is the
factor that shows how two state variables are structurally
dependent and how their behaviors are similar. Let i j be
the affinity between si and s j . After computing I0 , the rela-
tional affinity j for each j I I0 is computed as below.

j
i I0

i j (5)

This new j is nothing but a summation of affinities be-

tween si in I0 and s j in IR. If j is bigger than k , it implies
s j has stronger affinity to the state variables in the formula
than sk. According to the relational affinity, we compute
each Ii . This method is based on direct relations to the
given formula.

4.2. Edge Traversal Refinement

Upper-bound approximation creates pseudo edges which
are not in the exact system. Main idea of this algorithm is
to determine which transition sub-relation has more impact
to delete them. Not every pseudo edges are considered, but
the pseudo edges that are traversed from the initial states are
targeted. First, a subset of initial states which have not been
proved to satisfy the formula are propagated by pre-order
depth first search in operational graph. This propagation,
called Forward Edge Traversal is a series of upper-bound
image computations bounded by SAT computed already.
Each approximate image computation yields an edge en-
velope ee s x t which is a set of exact and pseudo edges.
This edge envelope is conjoined with the negation of each
transition sub-relation which is approximated during veri-
fication. This conjoined term is ee s x t Ti s x ti . The
result is stored as Killi s x t and this is the set of edges
to be removed if the approximated Ti s x t is replaced
with exact Ti s x t . If any of Killi s x t is not empty dur-
ing this propagation, the system is refined in a way that
the transition sub-relation with the biggest minterm count



of Kill j s x t is refined. When no pseudo transition is
found and the traverse reaches to bottom of the formula,
then post-order propagation of refining procedure, called
resolution propagation, where an un-verified set of states
of a sub-formula during edge traversal is bi-partitioned into
a set which satisfies the sub-formula and the other set where
sub-formula is verified false. This second propagation veri-
fied the given formula. This refinement method is only ap-
plicable when all nodes v EXg EGg EU g h in op-
erational graph have SAT v , because the edge envelope
ee s x t is computed in SAT v . The advantages of this
method are (1) refinement is guided by approximate satis-
fying states and (2) the impact can be predicted before the
system is actually refined.

4.3. Example

Now, a simple example is presented to illustrate the al-
gorithms described in this section. The system models a
4-bit modulo 10 counter. States are encoded with vari-
ables counter 3 : 0 . The initial state is State 7 meaning
‘counter 3 : 0 0111’.

Figure 2. STGs of a 4-bits modulo 10 counter

The specification that we want to check is f
AG counter 3 : 0 1010 . The partial exact state tran-
sition graph is in (1) of Figure 4. Since state 10 does not
have any predecessor, this formula is true.

Let us now find out how approximation and refine-
ment work. The ‘Universal quantification Method (L2)’
explained in Definition 2.2 is used for lower bound com-
putation and the ‘Existential quantification Method (U2)’
in Definition 2.1 is for upper bound computation. Let us
start with an initial approximate system which includes
counter 3 : 2 . This approximation results in a new state
transition graph (4) in Figure 4. The approximate system
should be refined because no conservative answer can be
derived from above results. First, let us apply Latch Affinity
Refinement method. With this method, 0 0 5 (relational
affinity to counter 0 ) and 1 1 0 (relational affinity to
counter 1 ) as in Figure 3. Detail computation methods can
be found in [3].

Figure 3. Relational Affinity graph of a 4-bits
modulo 10 counter

Based on this factor, counter 1 is selected to refine the
approximate system. The refined STGs (2) is changed from
(4) in Figure 4. There is no reason to further refine because
State 10 does not have preimage now and the formula f is
verified true by positive conservatism.

Now, Edge Traversal Refinement method is applied.
Forward edge traversal computes the first ee s t

7 8 7 10 7 11 . There are two pseudo edges (7,10)
and (7,11) in ee s t . Notice that these two edge contribute
to make the formula f false because there are two paths,
(7,10) and (7,11,2,3,4,5,6,7,8,10) which lead the initial state
to State 10. The set of pseudo edges that can be killed by
counter 1 and counter 0 are:

killcounter 1 7 10 7 11

killcounter 0 7 11

This method also chooses counter 1 rather than counter 0
because killcounter 1 2 is bigger than killcounter 0 1.

Both methods successfully refine and verify the formula
f with three latches. If counter 0 is selected, all latches
must be included to verify the formula f . This is because
the edge (7,10) is not killed by adding counter 0 only.

5. Approximate Satisfying Don’t Care

Reachability analysis of a system has a significant role
in model checking. A set of reachable states is used to
make transition relation smaller by RESTRICT [5] oper-
ation. This minimized transition relation is smaller than
original one because unreachable states are used as don’t
care states. This type of don’t cares is called Reachabil-
ity Don’t Care(RDC). In [11], a superset of exact reachable



Figure 4. Upper-bound approximate STGs of
a modulo 10 counter with different T . Only
part of the whole STG is shown. A dashed
line is a pseudo edge. (1) T T3T2T1T0, (2)
T T3T2T1, (3) T T3T2T0, (4) T T3T2.

states is computed and used in the same way. This is called
Approximate Reachability Don’t Care (ARDC).

The benefit of Iterative Verification is to use SATi v
as don’t cares to minimize the transition relation and
reduce the cost of computing the refined SATi 1 v or

SATi 1 v . SAT v is called Approximate Satisfying
Don’t Care(ASDC). This is possible because the refined
system yields tighter satisfying states than previous level of
approximate system for a given sub-formula v as below.

SAT i v SATi 1 v SATi 1 v SATi v (6)

In addition to the extra don’t cares, the fixpoint com-
putation can be simplified by the following observa-
tion. When we compute the greatest fixpoint computation
SATi 1EG p as below, initially y is tautology.

SATi 1 EG p y SATi 1 p PRE y (7)

But, y SATi EG p can be used as the first com-
putation and reduce some redundant steps because of 6.
Also, when we compute the least fixed point of EF p ,
SATi EF p is used instead of a empty set by the same
reason. Based on these two observations, upper-bound ap-
proximate satisfying set enables us to make upper and lower
transition relations smaller and both upper- and lower-
bound approximate satisfying sets reduce the number of it-
erations with tighter starting point. MOG enjoys these two
benefits because every node in the operational graph has
both approximations. Any node with only negative polarity
in DOG can not use ASDC. Generally speaking, MOG’s
overhead to compute both SAT and SAT requires more
computing resources than DOG uses. But, as the approxi-
mate system gets refined close to the exact system, MOG’s

overhead is compensated with the reduction of the transition
relation by ASDC. For instance, Example 7 in Table 6 is the
case where pDOG used 63.9MB memory while MOG used
42.9MB only. Figure 5 shows how upper-bound satisfying
states are used as care states to minimize transition relations
in this Example. The average size of approximate transition
relation minimized by ASDC is 20.08% of one without
ASDC.
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Figure 5. Minimization of T s x t by ASDC.

6. Experimental Results

We have implemented all the algorithms in this paper in
VIS-1.3 (called IMC). All experiments were ran on two dif-
ferent machines. The first one is a Pentium II(400MHz)
system with 512K internal L2 cache and 1GB main mem-
ory. The other is a Pentium II(233MHz) system with 256K
internal L2 cache and 256MB main memory. VIS-1.3 [2]
was used as a main platform and CUDD-2.3.0 [14] was
used. Here, RM: Refinement Method (S: Latch Affinity
Method, D: Edge Traversal), OG: Operational Graph (M:
MOG, P: pDOG, N: nDOG), FF: Number of latches in a
circuit, RFF: Number of latches reduced by formula depen-
dency, and VFF: IA . The results of IMC are compared to
the ones from exact model checker (MC). Not every combi-
nation of lower-bound methods, upper-bound methods, and
refinement methods were tested. But, many examples were
chosen from a small circuit to a big one to demonstrate that
incremental verification is not restricted to some class of the
circuits. Example 4 through 12 were the best results among
nDOG , pDOG and MOG . MOG was the best in 6 exam-
ples out 9. Example 3 is a case where ASDC helps model
checking even though there is no locality and the approxi-
mate system should be increased to the exact system. For all
12 cases, average memory usage of IMC is less than 30.0%
of MC (CPU Time is about 15%).



No Circuit FF Formula T/F RFF RM OG IMC MC
VFF MB TIME MB TIME

1 PDC 61 AG(p AF q) T 61 D N 58 6.9 23 26.3 1751
2 Example1 115 AG(p AF q) T 115 D N 6 5.8 12 14.4 1905
3 Ethernet 118 AG(p AFq) T 86 D N 86 13.5 978 20.6 2506
4 CPS 231 AG(EF p) F 231 S M 4 9.5 14 19.4 956
5 Hw Top 356 AG(EF p) F 356 S P 12 14.0 64 30.7 182
6 AG(p EF q) T 277 S N 62 22.0 1409 90.0 3533
7 AG(EF p) F 306 S M 251 42.9 299 248.4 27600
8 TrainFlat 866 AG(p EF q) T 583 S N 37 18.4 536 269.7 1781
9 AG(p EF q) T 609 S M 16 17.6 207 292.1 1846

10 AG(EF p) F 609 S M 16 17.7 203 322.3 4339
11 Avq 3705 AG(p EF q) T 2715 S M 3 162.4 668 321.6 1932
12 EF p T 2772 S M 11 163.7 922 616.6 86400

Table 1. Experimental results.

7. Conclusions

In approximate model checking, there are two main
goals. The first one is efficiency to find out the locality
of a formula. The impact of this is significant because the
number of BDD variables can be reduced by property lo-
cality. The second is how easier approximate computation
is than exact one. In this paper, efficient refinement algo-
rithms were introduced for the first goal. The upper-bound
and lower-bound methods along with ASDC were proposed
to achieve the second target. It is true that there is a formula
that does not have any locality. For this kind of formula, the
approximation method seems to be useless. But, thanks to
ASDC, the verification with the last iteration index may be
easier than the exact verification when ASDC is not empty.
The impact of all these new ideas was demonstrated with
big examples. Order of magnitude speedup was achieved
with 70% reduction in memory consumption.
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