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Abstract

We present abstraction techniques for systems contain-
ing counters, which allow to significantly reduce their state
spaces for their efficient verification. In contrast to previous
approaches, our abstraction technique lifts the entire veri-
fication problem, i.e., also the specification, to the abstract
level.

As an application, we consider the reduction of real-time
systems by replacing discrete clocks of timed automata with
abstract counters. The presented method allows the reduc-
tion of such systems to very small state spaces. As bench-
mark examples, we consider the generalized railroad cross-
ing and Fischer’s mutual exclusion protocol.

1 Introduction

Symbolic model checking [3] has become one of the
most successful and reliable methods for formal verification
as this verification technique works completely automatic.
However, model checking tools suffer from the so-called
state explosion problem: This means that the size, i.e. the
number of states of the system grows exponentially with the
size of the implementation description. There are three typ-
ical sources for the state explosion problem:

• The parallel execution of processesP1, . . . , Pn re-
quires to first determine finite state machinesA1, . . . ,
An for the processes and then to compute the product
automatonA× := A1× . . .×An. In the worst case,
the number of states ofA× can become the product of
the numbers of states of the automataAi.

• Theuse of real time constraints: Real-time constraints
are often modelled with timed automata. Timed au-
tomata extend usual finite state automata by a finite
number of clocks. Each time a new state is entered,
some of the available clocks can be reset. Transitions

leaving a state are moreover guarded by clock con-
straints that allow or disallow the transition to a suc-
cessor state.
• Furthermore, systems that have anon-trivial data flow

suffer from the state explosion due to the representa-
tion of the data values by large numbers of boolean
variables.

Clearly, there are systems in which the state explosion is
caused by more than one factor, like Fischer’s mutual ex-
clusion protocol [16] (Section 6), where the state explosion
is due to the parallel composition ofn processes that addi-
tionally have a statement which consumesn time steps. As
this is not unusual for real-time systems, the state-explosion
problem is even more serious for them: Experiences with
automatic verification tools [2, 13, 10] have proven this
claim.

To fight the state-explosion problem that stems from
complex data values, methods based on different kinds
of abstraction are used. These approaches are essentially
based on abstract interpretation in the sense of the Cousot’s
[8]. In abstract interpretation, given an abstraction function
and a programming language semantics, we derive an ab-
stract semantics for the programming language, where we
replace concrete data types by abstract ones. The basic idea
is thereby to apply a predefined abstraction function to ob-
tain an abstract system with a smaller state space. Abstrac-
tion of concrete systems to obtain smaller abstract systems
is often the only way to make automated finite-state verifi-
cation procedures applicable to large systems.

Specifications that can be verified in abstract systems
have been considered in [7]. Given a systemK over the vari-
ablesVc and an abstraction function̄h : Vc → Va that maps
concrete variablesVc to abstract onesVa, it has been shown
how an abstract systemKa over the concrete variablesVc
can be constructed that preserves anyACTL∗ formula over
Vc: Whenever it can be proved thatKa |= Φ holds, it is
guaranteed that alsoKc |= Φ holds. In case a specification
does not hold for the abstract systemKa, nothing can be
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said aboutKc |= Φ. In many cases, it is however not clear
how to construct a suitable abstraction functionh̄. Usually
it is left up to the verification engineer to find an appropri-
ate abstraction function and to hope that the verification will
succeed with the chosen abstraction.

In this paper, we present an abstraction functionh̄ that
can be applied to a wide range of systems, in particularly
to any system that contains counters. Using this abstraction
functionh̄, our technique constructs from a concrete system
Kc over the concrete variablesVc an abstract systemKh̄
overabstract variableswith less states. Having constructed
the abstract systemKh̄, we furthermore show what kinds
of specificationsΦ can be lifted to the abstract level, i.e.,
we construct anabstract specificationΦh̄. Thus, unlike the
approach given in [7], we lift the entire verification problem
to the abstract level: Whenever we succeed in verifying that
Kh̄ |= Φh̄ holds, our results imply that alsoK |= Φ holds.

In particular, our method applies to any kind of counters
(with increment/decrement inputs) and any kind ofACTL∗

specification that compares the counter’s value with some
fixed constants. The existence of counters in the data flow
of a system is a typical reason for state-explosion: It is
well-known that counters are complex to handle in sym-
bolic model checking [19, 14, 4]. Counters often arise in
many control problems, and in particular the clock con-
straints in the verification of real-time verification [6] can
be modeled by counters. Related work has been done by
Macii, Plessier, and Somenzi [19]. They considered a sim-
ilar approach, which is however limited to special kinds of
time-out mechanisms that have only reset and start inputs
and do not consider intermediate values of the counter.

The outline of this paper is as follows: In the next Sec-
tion, we present how we construct abstract systemsKh̄ and
abstract specificationsΦh̄ by given abstraction functions̄h.
As already noted, our approach allows in contrast to [7] to
also lift the specification at the abstract level (cf. definition
3 and theorem 2). In Section 3, we present our abstrac-
tion function for counters and refine our criteria for abstract
specifications (theorem 3). In Section 4, we present the re-
duction of timed automata to finite state machines with (ab-
stract) counters so that our abstraction technique can be ap-
plied to the verification of real-time systems. In Section 5,
we consider as examples the generalized railroad crossing
[12], and Fischer’s mutual exclusion protocol [16].

2 Construction and Verification of Abstract
Systems

We consider systems modeled as Kripke structures over
some set of variablesVΣ, i.e., as a tupleK = (I,S,R,L)
whereS is a finite set of states,I ⊆ S is the set of initial
states,R ⊆ S ×S is the transition relation, andL is a label
function that maps each states ∈ S to a set of variables

L(s) ⊆ VΣ. The intension is that the variablesL(s) are
those that hold in states, while the variables inVΣ \ L(s)
do not hold ins.

For the specification of a concurrent system, we con-
sider formulas given in the temporal logicACTL∗ [7]. The
key idea is thatACTL∗ formulas can only express univer-
sal quantification over computation paths, i.e., anyACTL∗

formula states that some property holdsfor all paths of the
system. Abstract systems usually contain more (abstract)
paths than the concrete ones, but due to the reduction of the
state spaces, it is nevertheless reasonable to reduce systems
by means of abstraction.

We write(K, s) |= Φ if theACTL∗ formulaΦ is satisfied
on the states of the structureK. Moreover, we simply write
K |= Φ if Φ is satisfied on all initial states ofK.

Given a description of a systemP in some programming
language, we can derive a corresponding Kripke structureK
for it such that the verification of a temporal logic formula
Φ means to check whetherK |= Φ holds or not. In this
paper, we derive directly fromP smaller abstract structures
Kh̄ and abstract specificationsΦh̄ such that for anyACTL∗

formulaΦ, Kh̄ |= Φh̄ impliesK |= Φ. Given an abstrac-
tion functionh̄, the corresponding abstract structureKh̄ is
defined as follows:

Definition 1 (Abstract Structures) An abstraction func-
tion is a function̄h : 2VΣ → 2VΩ that maps sets of variables
of VΣ to sets of variables ofVΩ. Given a Kripke structure
K = (I,S,R,L) over the variablesVΣ, and an abstrac-
tion functionh̄ : 2VΣ → 2VΩ , we define the abstract Kripke
structureKh̄ := (Ih̄,Sh̄,Rh̄,Lh̄) as follows:

• Ih̄ := {h̄(L(s)) | s ∈ I}
• Sh̄ := {h̄(L(s)) | s ∈ S}
• Rh̄ := {(h̄(L(s1)), h̄(L(s2))) | (s1, s2) ∈ R}
• Lh̄(ϑ) := ϑ

The relationship between the abstract structureKh̄ and the
concrete structureK is as follows: for any path throughK
there is a corresponding path throughKh̄, which means that
Kh̄ can ‘simulate’K. This is formally defined as follows:

Definition 2 (Simulation Relations) Given two structures
K1 = (I1, S1, R1, L1), K2 = (I2,S2,R2,L2) over vari-
ablesVΣ andVΩ, respectively. A relationσ overS1 × S2
is called a simulation relation betweenK1 andK2 iff the
following holds:

• SIM1: for statess1, s′1 ∈ S1 and s2 ∈ S2 with
(s1, s2) ∈ σ and (s1, s′1) ∈ R1, there is a state
s′2 ∈ S2 such that(s2, s′2) ∈ R2 and(s′1, s

′
2) ∈ σ.

• SIM2: for any s1 ∈ I1, there is as2 ∈ I2 with
(s1, s2) ∈ σ.

K2 simulatesK1 written asK1 � K2, if there is a simula-
tion relationσ betweenK1 andK2.



It is easy to see that any structureK is simulated by any
abstractionKh̄ of it that is constructed as given above. In
[18] and [9], it is shown that the above given construction
of Kh̄ is in some sense optimal, i.e. the smallest structure
that simulatesK. Note thatK does however not necessarily
simulateKh̄ since the collection of states that have the same
labels to a new abstract state can generate new paths that did
not appear in the original structure.

Theorem 1 (Simulation of Concrete Structures)Given
a Kripke structureK = (I, S, R, L) over the variables
VΣ, and an abstraction function̄h : 2VΣ → 2VΩ . Then,
the relationσh̄ := {(s, h̄(L(s))) | s ∈ S} is a simulation
relation betweenK andKh̄.

The proof is straightforward: to prove SIM1, chooses′2 :=
h̄(L(s′1)) and note thats2 := h̄(L(s1)). To prove SIM2,
simply uses2 := h̄(L(s1)).

The theorems and definitions we mentioned so far al-
low us to compute an abstract structureKh̄ from a con-
crete Kripke structureK. It is important to note that by
abstract interpretation [8] of the programP allows us to di-
rectly compute the abstract structureKh̄ from the program
P without first computing the concrete structureK.

Having computed the abstract structureKh̄ from the pro-
gram, we also need to define an abstractionΦh̄ of the spec-
ificationΦ such thatKh̄ |= Φh̄ impliesK |= Φ. This will
then enable us to check the simpler problemKh̄ |= Φh̄ in-
stead of the more complex problemK |= Φ.

For this purpose, we have to consider all propositional
subformulas ofΦ in their disjunctive normal form: let
suppVΣ(Φ) denote the set of clauses of a propositional for-
mula ϕ, i.e., suppVΣ(Φ) is a set of sets of variables of
VΣ. For example,supp{x,y,u}((x ∧ ¬y) ∨ (¬x ∧ u)) =
{{x}, {x, u}, {y, u}, {u}}, i.e. suppVΣ(Φ) contains the
set of sets of variables that are necessary to makeΦ
true. Given thatsuppVΣ(Φ) = {ϑ1, . . . , ϑn}, Φh̄ is ob-
tained as the disjunctive normal form that corresponds with
{h̄(ϑ1), . . . , h̄(ϑn)}.

Definition 3 (h̄-Invariant Specifications) Given a Kripke
structureK = (I, S, R, L) over some set of variablesVΣ,
an abstraction function̄h : 2VΣ → 2VΩ , and aACTL∗ for-
mulaΦ. Φ is called to bēh-invariant wrt. K iff the follow-
ing holds for alls ∈ S:

L(s) ∈ suppVΣ(Φ)⇔ h̄(L(s)) ∈ suppVΩ(absh̄(Φ))

To understand the problem that is solved byh̄-Invariance,
consider the following example: Assume, the boolean val-
ued variables{xn, . . . , x0} are used to represent some inte-
ger numberx, and the abstraction function̄hmaps any setϑ
to ϑ \ {xn, . . . , x1}. Hence, we only consider whether the
numberx is even or odd. Consider now the specification

that amounts to say that for all the time,x = 10 must hold.
This specification is not invariant underh̄, but the specifica-
tion that formalizes thatx must be an odd or even number
is h̄-invariant. Forh̄-invariant specifications, we have the
following theorem:

Theorem 2 (Abstract Verification) Given a Kripke struc-
tureK = (I, S,R,L) over some set of variablesVΣ, an ab-
straction function̄h : 2VΣ → 2VΩ , and anACTL∗ formula
Φ that ish̄-invariant wrt.K. Then the following holds:

(Kh̄, h̄(s)) |= Φh̄ implies(K, s) |= Φ

3 Abstraction of Counters

Choosing appropriate abstraction functions can lead to
much smaller abstract structuresKh̄. In this section, we
present our abstraction functionh̄ for the abstraction of sys-
tems with counters.

AssumeB := {bn, . . . , b0} ⊆ VΣ is a set of proposi-
tional variables that represent ann+1-bit unsigned number
x with the usual binary representation of natural numbers,
i.e. each subsetϑ ⊆ B represents the natural numberΘ(ϑ)
that is defined as

Θ(ϑ) :=
n∑
i=0

fϑ(bi)2
i with fϑ(bi) =

{
1 : bi ∈ ϑ
0 : bi 6∈ ϑ

Using propositional variablesB := {bn, . . . , b0} ⊆
VΣ, and a finite set of numeric constants1 A :=
{α0, . . . , αm} ⊆ N, we define the following abstraction
functionh̄A,B:

Definition 4 (Abstraction Function for Counters) Given
that B := {bn, . . . , b0} ⊆ VΣ and some numbersA :=
{α0, . . . , αm} ⊆ Nwithαi < αi+1 for i ∈ {0, . . . ,m−1}.
We defineVΩ := (VΣ \ B) ∪ {e0, . . . , em, c0, . . . , cm+1}
and use then the abstraction functionh̄A,B : 2VΣ → 2VΩ

as given in Figure 1.

h̄A,B retains all variables ofVΣ \ B, and replaces the vari-
ables ofVΣ ∩ B by singleton sets of the new variables
{e0, . . . , em, c0, . . . , cm+1}, such thateimeans that the cur-
rent valueΘ(ϑ ∩B) of x equals toαi andci+1 means that
the current valueΘ(ϑ ∩ B) of x is betweenαi andαi+1.
In general, whenever the number of representable values,
i.e. 2n is larger thanm, the abstract systemKh̄A,B will
be smaller than the original one. Also, note that ifn is a
generic parameter of the structureK, i.e. if we define for
eachn ∈ N a new structureKn, then the abstract structure
Kh̄A,B will no longer depend onn. Thus, we can reduce
generic and even infinite state spaces to finite ones.

1Note that it is not required that each constantαi ∈ A satisfiesαi <
2|B|.



h̄A,B(ϑ) :=



{ei} ∪ (ϑ \B) : Θ(ϑ ∩B) = αi for i ∈ {0, . . . ,m}
{c0} ∪ (ϑ \B) : Θ(ϑ ∩B) < α0
{ci+1} ∪ (ϑ \B) : αi < Θ(ϑ ∩B) < αi+1 for i ∈ {0, . . . ,m− 1}
{cm+1} ∪ (ϑ \B) : αm < Θ(ϑ ∩B)

Figure 1. Abstraction function for counters
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Figure 2. Abstraction of a 3-bit modulo 5 counter

An example is given in Figure 2. The left hand side of
Figure 2 gives the Kripke structure of a modulo 5 counter
that counts whenever an enable signale is seen. The coun-
ters value is given by the variablesB := {b2, b1, b0}. The
right hand side gives the abstract structureKh̄A,B that is
obtained for the valuesA := {0, 5}. In Figure 2, we
have given segments of states that correspond to each other,
namely the states where the counters value equals to0 and
5 or is between these numbers. Note that , we can remain
infinitely often in the state labeled withc0e in the abstract
structure, but there is no corresponding path in the concrete
structure. Hence, the abstract structure is not simulated by
the concrete one.

For our abstraction function̄hA,B, this means that we
have to assume that the only occurrences of the variables
bi in Φ are comparisons of the ‘bitvector~b = [bn, . . . , b0]
with the constantsαi’. To explain this in a bit more detail,
assume that for anyα ∈ N, we have propositional formulas
ϕ~b=α andψ~b<α overB that evaluate to true under a truth
assignment2 ϑ ⊆ B iff Θ(ϑ) = α andΘ(ϑ) < α holds,
respectively. In the following, we simply write~b = α and

2Evaluating a propositional formula over the variablesB with a truth
assignmentϑ ⊆ B means that we consider the variables ofϑ as true and
the ones ofB \ ϑ as false.

~b < α instead ofϕ~b=α andψ~b<α, respectively. Under these
conditions the following holds:

Theorem 3 (Preservation ofACTL∗ Formulas) Given a
structureK = (I, S, R, L) over the variablesVΣ, B :=
{bn, . . . , b0} ⊆ VΣ, and some numbersA := {α0, . . . ,αm}
⊆ N withαi < αi+1 for i ∈ {0, . . . ,m− 1}. Moreover, let
Φ ∈ ACTL∗ be such that any occurrence ofbi ∈ B in Φ is
inside a comparison with one of the constantsαi, i.e. inside
a subformula ofΦ of one of the following forms:~b = αi,
~b < αi, or αi < ~b. Φh̄A,B is then obtained by replacing
~b = αi by ei, ~b < αi by ci ∨

∨i−1
j=0 cj ∨ ej, andαi < ~b by

cm+1 ∨
∨m
j=i+1 cj ∨ ej. Then, the following holds:

Kh̄A,B |= Φh̄A,B impliesK |= Φ

The h̄-invariance is given due to the assumption that the
specification does only contain comparisons with the num-
bersαi. It is easily seen that under this condition, our spec-
ification is indeed̄h-invariant.

4 FSMs with Counters and Timed Automata

Timed automata as given in [1] are frequently used to
model real-time systems. Essentially, a timed automaton is



a finite state machine that is further equipped with a finite
number of clocks. Each clock is a counter that can be reset
when a transition is taken. Transitions are enabled iff certain
input events are given and additionally a guard, i.e., a con-
dition on the clocks of the system is fulfilled. Guards are
equations or inequations where the clock’s current values
are compared with some real valued constants (the clocks
count on a continuous time that is represented by the real
numbers). Formally, a timed automaton is defined as fol-
lows (B(C) is the set of boolean combinations of equations
and inequations of clocks fromC and real valued constants):

Definition 5 (Timed Automaton) A timed automatonA
over actionsAck, atomic propositionsP , and clocksC is
a tuple 〈N, l0, E, V 〉. N is a finite set of nodes (control
nodes),l0 is the initial node,E ⊆ N×B(C)×Act×2C×N
corresponds to the set of transitions, and finally,V : N →
2P is a proposition assignment function.

Configurations of a timed automaton are given with a clock
assignmentξ : C → R that maps each clockτ ∈ C to a
real numberξ(τ). A configuration(n, ξ) consists then of
such an assignmentξ and a noden ∈ N for the automaton.
If (n1, ϕC , α,MC , n2) ∈ E holds, and the conditionϕC is
fulfilled, then a possible successor configuration of(n1, ξ)
is (n2, ξ′), whereξ′ differs fromξ in the values of the clocks
MC (these are reset to zero).

Pj

Nj Ij

e_Pi, τj := 0 e_Ii ∧ τj ∈ [ε1, ε2]

exiti

¬e_Pi

¬e_Ii ∨ τj 6∈ [ε1, ε2]

¬exiti

Figure 3. The train model

As an example of a timed automaton, consider the dia-
gram given in Figure 3 that models a train in the railway
crossing example given in [12]. As given in the next sec-
tion, a train may be in three regions of a track, namely the
regionP , the regionI, or neither inP nor in I (cf. Figure
4). Figure 3 shows the timed automaton that models a train
j. NodeNj means the train is neither in regionP nor in re-
gionI, while nodePj andIj mean that the train is in region
P andI, respectively.e_Pi ande_Ii are two signals, i.e.,
propositions ofP , emitted whenever a train on tracki has
entered the regionP andI, respectively.

The behavior of the automaton given in Figure 3 is as
follows: if the train enters the regionP on tracki, the signal
e_Pi is emitted. Hence, the automaton given in Figure 3

switches to nodePj where a clockτj is set to zero. The
automaton stays in nodePj until the value of this clock is
in the interval[ε1, ε2]. This means thatε1 andε2 are the
amounts of time the fastest and slowest train requires to pass
regionP . We do not count the time the train requires to
pass regionI, but when this happens, the eventexiti show
us this. This will turn the automaton back to nodeNj .

It is immediate to see that when we restrict the domain
of the clocks of a timed automaton fromR to the natural
numbersN, then we can easily model any timed automaton
by an ordinary finite state automaton and a finite number
of counters. Such a counter can thereby be viewed as a
hardware-circuit that increments its value unless it is reset
to zero. Additionally, we need comparators for testing the
guards that occur in a timed automatonA. The translation
of a timed automaton to an ordinary automaton with a cou-
ple of counters and comparators is straightforward so that
we do not give a formal definition here.

Having constructed a finite-state machine with counters
and comparators, we are ready to apply our abstraction
function for counters (cf. Figure 1). This reduces the coun-
ters together with the comparators to abstract systems with
only a few states. Our specification that are given in the
temporal logicACTL∗ can then easily be checked by any
symbolic model checker, i.e., we do not have a need for
using real-time verification systems such as UPPAAL [2],
KRONOS [10] and VERUS [5].

In the next sections, we list some experimental results we
have made with our abstraction technique. We have con-
sidered several benchmarks that have often been used by
researchers in the domain of real-time verification. In par-
ticular, we present our results for the generalized railroad
crossing system [12] and Fischer’s mutual exclusion proto-
col [16].

5 Experimental Results

5.1 The Generalized Railroad Crossing

In [12] a benchmark example has been presented for
the evaluation of real-time verification tools. This exam-
ple has been considered in a lot of research papers so far.
In this section, we present the application of our abstrac-
tion method outlined to this benchmark. The benchmark is
a generalized railroad crossing as illustrated in Figure 4.

We first give a short description of the railway crossing.
The crossing consists ofn tracks (Figure 4 shows only one
track) where trains cross a road. Two regions,P andI are
distinguished: first a train enters regionP which causes the
gateG to start closing. Before the train enters regionI, thus
leaving regionP , the gate must be closed. After the train
has left regionI, and no other train is neither in regionP
nor in regionI, the gate can be opened again. Note that both
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Figure 4. The railroad crossing with one track

the opening and the closing of the gate requires some time
and that the system does only work correct when the gate
can close faster than the fastest train can pass regionP .

This benchmark is a typical example for modeling real-
time systems by timed automata [12, 11, 17]. As outlined in
the previous section, we can use any model given as timed
automaton and transform it first into an ordinary finite-state
machine that is additionally equipped with some counters
and comparators. Our abstraction then replaces the counters
and comparators by abstract ones with only a few states. In
the following, we present the abstract model that we obtain
by the application of our method to the railway crossing
benchmark.

Pi Pi

e_Pi

e_Ii ∧ Pi

¬e_Pi ∗

Ii Ii

e_Ii ∧ Pi

exiti ∧ ¬e_Ii

¬e_Ii ∨ ¬Pi ∗

Figure 5. The abstract counters for regions Pi
and Ii

Figures 5 and 6 illustrate our approach. Our goal is to model
the entire system as one abstract counter, namely thegate G
(Figure 6), which uses two additional abstract countersPi
andIi (Figure 5) for each tracki. CounterPi is incremented
(by e_Pi) each time when a train enters regionP and decre-
mented (e_Ii∧¬e_Pi) each time when a train leaves region
P to enter regionI and no other train is entering regionP
at the same time. In statePi the number of trains within

regionP of tracki is equal 0 and in statePi this number is
greater than 0.

CounterIi is incremented (bye_Ii) each time when a
train enters regionI, thus leaving regionP , and is decre-
mented (byexit∧¬e_Ii) each time when a train exits region
I and no other train is entering regionI at the same time.
Note that our method enables the verification of the system
for n trains for each gate. Hence, it allows the verification
of ageneric numberof trains.

The abstract counters are obtained with our abstraction
function forA := {0}.

closing

open closed

opening

where :

inP :=

n∨
i=1

Pi inI :=

n∨
i=1

Ii eP :=

n∨
i=1

e_Pi

eP ∗

¬inP ∧ ¬inI ∧ ¬eP
¬eP

eP

¬eP

in
P
∨
in
I
∨
e P

∗

¬eP

Figure 6. The gate model as a timed automa-
ton

Initially, the counter (i.e. the gate)G is in state ‘open’.
Let γdown andγup be the durations the gate needs to close
and open, respectively. When a train enters regionP , the
system moves to state ‘closing’ and starts counting the time.
After the timeγdown has elapsed, the system moves to state
‘closed’. Note that the basic assumption for the correct
functioning of the system, is that the gate can close faster
than the fastest train can pass the regionP . This is given
with the following temporal logic formula:

G

(
[G.state = closing]→ ¬

n∨
i=1

e_Ii

)

The counterG remains in state ‘closed’ until no trains are
in the sectionsP andI. If this is the case, and additionally
no further train is entering at that moment the regionP , the
system moves to state ‘opening’ where the gate is opened
again, similar to the closing. Note that a further train can
enter regionP while the system is in ‘opening’. If this hap-
pens, the opening of the gate has to be interrupted and the



controler moves to state ‘closing’ where the gate is about
to close again. However, if this does not happen, then fi-
nally the gate will be completely opened after timeγdown
has elapsed. At this point of time, the counterG moves to
state ‘open’.

For the generalized railroad crossing system as described
above, the following specifications are to be shown:

(1) AG(inI → G.state = closed)
(2) AG (¬inP ∧ ¬inI → EF(G.state = open))

Specification (1) is a safety property that expresses that the
gateGmust be closed if a train is in regionI. This must hold
for all points of time. (2) is a utility property that asserts that
the gate can be opened if there is neither a train in regionP
nor in regionI.

We have used the well-known SMV system available
from the Carnegie Mellon University to verify both prop-
erties for the system withn tracks (note that the number of
trains on a track is no longer of interest after our abstrac-
tion). The runtime and memory requirements obtained for
the properties (1) and (2) on a SUN Ultra 5/10 with 300
MHz and 640 MBytes of main memory that runs under So-
laris 7 are given in the tables below.

AG(inI → G.state = closed)
Tracks Run Time BDD nodes reach. States/

[sec] poss. States

10 0.13 9624 250/253

20 0.63 10247 2100/2103

30 1.28 11791 2150/2153

40 2.19 20716 2200/2203

50 3.29 32141 2250/2253

60 4.73 46066 2300/2303

70 6.37 62491 2350/2353

80 8.37 81416 2400/2403

90 10.55 102841 2450/2453

AG (¬inP ∧ ¬inI → EF(G.state = open))
Tracks Run Time BDD nodes reach. States/

[sec] poss. States

10 0.14 9609 251/252

20 0.48 10327 2101/2102

30 1.07 11638 2151/2152

40 1.75 20513 2201/2202

50 2.68 31888 2251/2252

60 3.80 45763 2301/2302

70 5.15 62138 2351/2352

80 6.73 81013 2401/2402

90 8.73 102388 2451/2452

As a comparison, in [17] the railroad benchmark has been
verified as a concrete and as an abstract system as well. The
verification of the concrete system was possible for up to 4

tracks and 6 trains per track using the HyTech (runtime 125
s) and the Uppaal (runtime >10 h) tools. The verification
of an abstract system was possible for up to 35 tracks using
the SMV tool (runtime 3466 s).

As can be seen, our abstraction transforms the bench-
mark into a quite easily verifiable example for symbolic
model checkers which need no longer consider the real-time
constraints. However, we have to note that the results given
in the above table crucially depends on the variable order-
ing.

5.2 Fischer’s Mutual Exclusion Protocol

It is well-known that program sections of concurrent pro-
cesses that modify some shared variables have to be pro-
tected to avoid inconsistencies of the data structures. For
this reason, several solutions have been suggested. Perhaps
the simplest possible algorithm is one suggested by Michael
Fischer [16] and is known asFischer’s Mutual Exclusion
Protocol. Figure 7 gives some pseudo-code for the proto-
col: The protocol is used to protect critical sections forδ
processes. For this purpose, a global lock variableλ of type
{0, ..., δ} is used. The role ofλ consists of holding the in-
dex of the process that is allowed to enter its critical section.
The basic idea of the protocol is roughly as follows (cf. the
program code in Figure 7): Ifλ = 0 holds, the critical re-
gion is currently not owned by a process, so that a process
that wants to enter the section can try to obtain access to
the region. It therefore will then assignλ its own process
id (line s1). After this, the process will be inactivated forδ
units of time so that the otherδ processes have the chance
to write their process ids toλ. If after that time,λ still con-
tains the process id of the considered process, this process
is allowed to enter the critical section and after that, it will
release the section by resettingλ to zero.

sinit : repeat
s0 : await λ = 0;
s1 : λ := i;
s2 : sleepδ;
s3 : until λ = i;
s4 : //critical section
s5 : λ := 0;

Figure 7. Fischer’s Mutual Exclusion Protocol

The disadvantage of Fischer’s mutex protocol is that it
requires forn processes in each process a delay timeδ of
orderO(n). In the meantime, other solutions have been pre-
sented that do not suffer from this disadvantage (cf. [16]).



However, Fischer’s mutex protocol is an excellent example
to illustrate our method. This example has also been con-
sidered by many researchers as a benchmark [15].

We have used McMillan’s new implementation of the
SMV system to verify Fischer’s protocol forn processes
without any special composition techniques. The runtime
and memory requirements obtained on an Intel Pentium
platform with 450 MHz and 512 MByte of main memory
that runs under Linux are given in the table below. We ver-
ified Fischer’s protocol up to 38 processes. To our knowl-
edge, previous results that have been obtained for the auto-
matic verification of the protocol without specialized com-
position techniques were only able to verify up to 11 pro-
cesses. Using such techniques, up to 50 processes have been
verified in [15].

m # iter. BDD nodes BDD nodes runtime
(trans.rel.) (total) (mutex)

10 7 1997 253850 6.2
20 7 5695 1374366 47.3
30 7 11132 4063029 144.7
38 7 17050 21823704 472.1

The runtimes for the table above have been obtained for
an asynchronous version of the protocol, where we assumed
that all processes will remain in stages2 until all other pro-
cesses have either moved tos2 to or have not yet reacheds1.
This means that all processes have either written their pro-
cess id toλ or have not started to do so before any other
process will read the value ofλ in stages3. Moreover,
the possible write clashes in stages1 have been resolved
by nondeterministically choosing one of the values that are
concurrently assigned toλ.
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