Abstraction from Counters: An Application on Real-Time Systems

G. Logothetis and K. Schneider
Universitat Karlsruhe
Institut fir Rechnerentwurf und Fehlertoleranz (Prof. Dr.-Ing. D. Schmid)
P.O. Box 6980, 76128 Karlsruhe, Germany
email: {logo,schneide}@informatik.uni-karlsruhe.de
http://goethe.ira.uka.de/hvg

Abstract leaving a state are moreover guarded by clock con-
straints that allow or disallow the transition to a suc-
We present abstraction techniques for systems contain- cessor state.
ing counters, which allow to significantly reduce their state o Furthermore, systems that havaen-trivial data flow

spaces for their efficient verification. In contrast to previous suffer from the state explosion due to the representa-
approaches, our abstraction technique lifts the entire veri- tion of the data values by large numbers of boolean
fication problem, i.e., also the specification, to the abstract variables.

level.

As an application, we consider the reduction of real-time Clearly, there are systems in which the state explosion is
systems by replacing discrete clocks of timed automata withcaused by more than one factor, like Fischer's mutual ex-
abstract counters. The presented method allows the reduc-clusion protocol [16] (Section 6), where the state explosion
tion of such systems to very small state spaces. As benchis due to the parallel composition afprocesses that addi-
mark examples, we consider the generalized railroad cross-tionally have a statement which consumetime steps. As
ing and Fischer’'s mutual exclusion protocol. this is not unusual for real-time systems, the state-explosion
problem is even more serious for them: Experiences with
automatic verification tools [2, 13, 10] have proven this
claim.

To fight the state-explosion problem that stems from
complex data values, methods based on different kinds

Symbolic model checking [3] has become one of the of abstraction are used. These approaches are essentially
most successful and reliable methods for formal verification hased on abstract interpretation in the sense of the Cousot's
as this verification technique works completely automatic. [g]. In abstract interpretation, given an abstraction function
However, model checking tools suffer from the so-called and a programming language semantics, we derive an ab-
state explosion problem: This means that the size, i.e. thestract semantics for the programming language, where we
number of states of the system grows exponentially with the replace concrete data types by abstract ones. The basic idea
size of the implementation description. There are three typ-is thereby to apply a predefined abstraction function to ob-

1 Introduction

ical sources for the state explosion problem: tain an abstract system with a smaller state space. Abstrac-
tion of concrete systems to obtain smaller abstract systems
e The parallel execution of processes, ..., P, re- s often the only way to make automated finite-state verifi-
quires to first determine finite state machiogs ..., cation procedures applicable to large systems.

A, for the processes and then to compute the product gpecifications that can be verified in abstract systems
automatond, := A;x ...xA,. Inthe worst case, have been consideredin [7]. Given a systémver the vari-

the number of states of . can become the product of aples), and an abstraction functidn: V, — V, that maps

the numbers of states of the automata concrete variable®, to abstract one¥,, it has been shown

e Theuse of real time constraint®Real-time constraints how an abstract systeid, over the concrete variablés.

are often modelled with timed automata. Timed au- can be constructed that preserves AQ L* formula over
tomata extend usual finite state automata by a finite V.: Whenever it can be proved th&l, = @ holds, it is
number of clocks. Each time a new state is entered, guaranteed that al96. = ® holds. In case a specification
some of the available clocks can be reset. Transitionsdoes not hold for the abstract systé@y, nothing can be

said aboufC. = ®. In many cases, it is however not clear L(s) C Vx. The intension is that the variableXs) are
how to construct a suitable abstraction functionJsually those that hold in state while the variables i’y \ L(s)
it is left up to the verification engineer to find an appropri- do not hold ins.
ate abstraction function and to hope that the verificationwill ~ For the specification of a concurrent system, we con-
succeed with the chosen abstraction. sider formulas given in the temporal loghCTL* [7]. The

In this paper, we present an abstraction funcfiotiat key idea is thaACTL* formulas can only express univer-
can be applied to a wide range of systems, in particularly sal quantification over computation paths, i.e., &@TL"
to any system that contains counters. Using this abstractiorformula states that some property hofdsall paths of the
functionh, our technique constructs from a concrete system system Abstract systems usually contain more (abstract)
K. over the concrete variablég. an abstract systerit; paths than the concrete ones, but due to the reduction of the
overabstract variablesvith less states. Having constructed state spaces, it is nevertheless reasonable to reduce systems
the abstract systerki;, we furthermore show what kinds by means of abstraction.
of specificationsp can be lifted to the abstract level, i.e., We write (K, s) = @ if the ACTL" formula® is satisfied
we construct ambstract specificatio®. Thus, unlike the on the state of the structurdC. Moreover, we simply write
approach given in [7], we lift the entire verification problem K | @ if ® is satisfied on all initial states &.
to the abstract level: Whenever we succeed in verifying that ~ Given a description of a systefin some programming

Kr | ©5 holds, our results imply that alg6 = @ holds. language, we can derive a corresponding Kripke strudture
In particular, our method applies to any kind of counters for it such that the verification of a temporal logic formula
(with increment/decrement inputs) and any kindA\GfTL* ® means to check whethéf = & holds or not. In this

specification that compares the counter’s value with somepaper, we derive directly fro® smaller abstract structures
fixed constants. The existence of counters in the data flowK;, and abstract specificatiods, such that for anACTL*

of a system is a typical reason for state-explosion: It is formula®, K, = &5 impliesK | ®. Given an abstrac-
well-known that counters are complex to handle in sym- tion function#, the corresponding abstract structiig is
bolic model checking [19, 14, 4]. Counters often arise in defined as follows:

many control problems, and in particular the clock con- o _

straints in the verification of real-time verification [6] can l_)ef|.n|t|on 1 (Abstrac‘t/Struct‘l/Jres) An abstraction func-
be modeled by counters. Related work has been done byion is afunctior : 2= — 2%« that maps sets of variables
Macii, Plessier, and Somenzi [19]. They considered a sim-©f V= 10 sets of variables ofq. Given a Kripke structure
ilar approach, which is however limited to special kinds of © = (Z;S: R, £)Vover tk‘l/e variabled’s;, and an abstrac-
time-out mechanisms that have only reset and start inputdi©n functionf : 2% — 2%, we define the abstract Kripke
and do not consider intermediate values of the counter. StrUCtUreXs := (Zn, Sp, Ra, Ln) s follows:

The outline of this paper is as follows: In the next Sec- o 7, := {h(L(s)) | s € T}
tion, we present how we construct abstract syst&mand o Sp:={h(L(s)) | s €S}
abstract specification®y, by given abstraction functiorfs o Ry = {(h(L(s1)),h(L(s2))) | (s1,52) € R}
As already noted, our approach allows in contrastto [7]to Ln(9) =10

also lift the specification at the abstract level (cf. definition

3 and theorem 2). In Section 3, we present our abstrac-The relationship between the abstract structGseand the
tion function for counters and refine our criteria for abstract concrete structur& is as follows: for any path throughk
specifications (theorem 3). In Section 4, we present the re-there is a corresponding path through, which means that
duction of timed automata to finite state machines with (ab- Ky can ‘'simulate’. This is formally defined as follows:
;J;ir: gtzoc:)huenf/eerrsifi(;ir;er\]t (())fu rr eﬁi}:ﬁg&ggﬂ;’r_‘l?ﬁ ggi{; Ot;‘eSépDeﬁnition 2 (Simulation Relations) Given two structures

we consider as examples the generalized railroad crossin t;le:sx(/zlérfé’VRl}(aﬁslp)éc’:?i?/ezly(I:\’r‘zfe’ngz’rﬁoil)e?\éer:z?_
12], and Fischer's mutual exclusion protocol [16]. . 2 PV, T - 1792
[12] ! utuatexciusion p [16] is called a simulation relation betweét; and IC, iff the

. e following holds:
2 Construction and Verification of Abstract .
Systems e SIM1: for statess;,s; € S, andsy € S with

(s1,82) € o and (s1,s]) € Rq, there is a state
sy € S such that(ssz, s5) € Re and(sy, s5) € o.

e SIM2: for anys; € 7, there is asy € Z, with
(s1,82) € 0.

We consider systems modeled as Kripke structures over
some set of variableky, i.e., as a tupléC = (Z,S, R, L)
whereS is a finite set of state§, C S is the set of initial
statesR C S x S is the transition relation, anflis a label ICo simulatesiC; written askC; < Ko, if there is a simula-
function that maps each statec S to a set of variables tion relationos betweeriC; and/C,.

It is easy to see that any structuteis simulated by any that amounts to say that for all the time= 10 must hold.
abstraction’Cy, of it that is constructed as given above. In This specification is not invariant underbut the specifica-
[18] and [9], it is shown that the above given construction tion that formalizes that must be an odd or even number
of Ky, is in some sense optimal, i.e. the smallest structureis h-invariant. Fora-invariant specifications, we have the
that simulatesC. Note that!C does however not necessarily following theorem:

simulateiC;, since the collection of states that have the same

labels to a new abstract state can generate new paths that difiheorem 2 (Abstract Verification) Given a Kripke struc-

not appear in the original structure. tureX = (Z, S, R, L) over some set of variablés;, an ab-
straction functions : 2¥= — 2V and anACTL* formula
Theorem 1 (Simulation of Concrete Structures)Given ® that ishi-invariant wrt. IC. Then the following holds:
a Kripke structure = (Z, S, R, £) over the variables o
Vs, and an abstraction functioh : 2V — 2Y2. Then, (Kn, (s)) = @ implies(K, 5) = @
the relationoy, := {(s,(L(s))) | s € S} is a simulation
relation betweerkC and Ky,. 3 Abstraction of Counters
The proof is straightforward: to prove SIM1, choage:= Choosing appropriate abstraction functions can lead to
h(L(s1)) and note thak, := h(L(s1)). To prove SIM2, mych smaller abstract structuréS. In this section, we
simply uses; := A(L(s1)). _ present our abstraction functiérfor the abstraction of sys-
The theorems and definitions we mentioned so far al- tems with counters.
low us to compute an abstract structuég from a con- AssumeB := {b,,...,by} C Vs is a set of proposi-
crete Kripke structuréC. It is important to note that by tipnal variables that representar- 1-bit unsigned number
abstract interpretation [8] of the progrdfmallows us to di- ; with the usual binary representation of natural numbers,
rectly compute the abstract structutg from the program e each subset C B represents the natural numIs(9)
P without first computing the concrete structuce that is defined as
Having computed the abstract structiigfrom the pro- .
gram, we also need to define an abstracfigrof the spec- i 1 :b;ed
ification & such that = ® impliesk = . This will O() := 3 folbi)2" with f(b:) = { 0 b g
then enable us to check the simpler problEm = @, in- =0
stead of the more complex problétj= . Using propositional variable®8 := {b,,...,by} C
For this purpose, we have to consider all propositional V5;,, and a finite set of numeric constahtsA :=
subformulas of® in their disjunctive normal form: let {ag,...,a,,} € N, we define the following abstraction

suppy,, (®) denote the set of clauses of a propositional for- functionf 4 5:
mula o, i.e., suppy, (®) is a set of sets of variables of

Vs. For examplesuppy, , ., ((z A ~y) V (-z A w)) = Definition 4 (Abstraction Function for Counters) Given
{{«}, {z,u}, {y,u}, {u}}, i.e. suppy,(®) contains the thatB := {bn,....bo} C Vi and some numberd :=
set of sets of variables that are necessary to make {0, am} S Nwitho; < ajyqfori€{0,...,m—1}.

true. Given thakuppy, (®) = {t1,...,0,}, &, is ob- ~ We definél := (Vs \ B) U {607""7em7007"/:'7cm+‘1/}
tained as the disjunctive normal form that corresponds with and use Fher) the abstraction functibn g : 2" — 2"
{R(P1),...,h(9,)}. as given in Figure 1.

hia p retains all variables ofx; \ B, and replaces the vari-
ables of 's N B by singleton sets of the new variables
{€0,.-y€m,cCo,-..,Cms1}, SUChthat; means that the cur-
rent value® (¢ N B) of x equals tay; andc;+; means that

the current valu® (¥ N B) of z is betweeny; anda;+1.

In general, whenever the number of representable values,

r B) o h(L b (B i.e. 2" is larger thanm, the abstract systeri,, , will
(5) € suppys, (¥) (£(s)) € suppy;, (absn(®)) be smaller than the original one. Also, note thatifs a

To understand the problem that is solved/bynvariance, generic parameter of the structuge i.e. if we define for
consider the following example: Assume, the boolean val- €8¢ € N a new structurdC,,, then the abstract structure
ued variable§z,, . ..,z } are used to represent some inte- Kna,» Will no longer depend om. Thus, we can reduce
ger number, and the abstraction functidnmaps any sef generic and even infinite state spaces to finite ones.

tod\ {l‘nz ...,71}. Hence, we iny consider Whet_h_er t_he INote that it is not required that each constapte A satisfieso; <
numberz is even or odd. Consider now the specification 2!5I,

Definition 3 (h-Invariant Specifications) Given a Kripke
structureC = (Z, S, R, £) over some set of variablés;,
an abstraction functior : 2= — 2V and aACTL* for-
mula®. & is called to ber-invariant wrt. i iff the follow-
ing holds for alls € S:

{e}U@\B) :0WNB)=a;foric{o,...,m}
(o) U@\ B) :0(dnB)<a
{CH_l}U(ﬁ\B) oy < @(1903) < Q41 fori € {0,...,m—1}
{em+1} U\ B) :am <O(WNB)

hA’B(ﬁ) =

Figure 1. Abstraction function for counters

Figure 2. Abstraction of a 3-bit modulo 5 counter

An example is given in Figure 2. The left hand side of b < o instead ofp;_,, andy;_ ., respectively. Under these
Figure 2 gives the Kripke structure of a modulo 5 counter conditions the following holds:
that counts whenever an enable signa seen. The coun-
ters value is given by the variablés := {bs,b1,bo}. The Theorem 3 (Preservation ofACTL* Formulas) Given a
right hand side gives the abstract structiGg, , thatis structureX = (Z, S, R, £) over the variabled’, B :=
obtained for the valuest := {0,5}. In Figure 2, we {bn,...,bo} C V&, and some number$:= {ao, ...,am}
have given segments of states that correspond to each othef; N with a;; < a1 fori € {0,...,m — 1}. Moreover, let
namely the states where the counters value equdlsatal ~ ® € ACTL" be such that any occurrencelafe B in @ is
5 or is between these numbers. Note that , we can remaininside a comparison with one of the constamfsi.e. inside
infinitely often in the state labeled wiitye in the abstract @ subformula of® of one of the following formsb = a,
structure, but there is no corresponding path in the concretéh < i, Or a; < b. O, IS then obtained by replacmg
structure. Hence, the abstract structure is not simulated byp = a; bye;, b < a; byc; Vv \/] 0 G Vej, anda; < b by

the concrete one. cmi1V VL4, ¢ Vej. Then, the following holds:
For our abstraction functioh 4 g, this means that we

have to assume that the only occurrences of the variables Khap E P p impliesk = @

b; in ® are comparisons of the ‘bitvector= [br,y - - -, bo]

The h-invariance is given due to the assumption that the
specification does only contain comparisons with the num-
bersa;. Itis easily seen that under this condition, our spec-
ification is indeed-invariant.

with the constants;’. To explain this in a bit more detail,
assume that for any € IN, we have propositional formulas
v5_,, andy;_ over B that evaluate to true under a truth
assignmertty C B iff ©(9) = a and©(d9) < « holds,

respectively. In the following, we simply write = « and) i
4 FSMs with Counters and Timed Automata

2Evaluating a propositional formula over the variabBswith a truth . . .
assignmenty C B means that we consider the variablesads true and Timed automata as given in [1] are frequently used to

the ones ofB \ ¢ as false. model real-time systems. Essentially, a timed automaton is

a finite state machine that is further equipped with a finite switches to node?; where a clockr; is set to zero. The
number of clocks. Each clock is a counter that can be resetautomaton stays in nodg; until the value of this clock is
when a transition is taken. Transitions are enabled iff certainin the intervalle;, e2]. This means that; ande, are the
input events are given and additionally a guard, i.e., a con-amounts of time the fastest and slowest train requires to pass
dition on the clocks of the system is fulfilled. Guards are region P. We do not count the time the train requires to
equations or inequations where the clock’s current valuespass regior, but when this happens, the eventt; show
are compared with some real valued constants (the clocksus this. This will turn the automaton back to nable.
count on a continuous time that is represented by the real It is immediate to see that when we restrict the domain
numbers). Formally, a timed automaton is defined as fol- of the clocks of a timed automaton frol to the natural
lows (B(C) is the set of boolean combinations of equations numbersN, then we can easily model any timed automaton
and inequations of clocks frothand real valued constants): by an ordinary finite state automaton and a finite number

of counters. Such a counter can thereby be viewed as a
Definition 5 (Timed Automaton) A timed automatonA hardware-circuit that increments its value unless it is reset
over actionsAck, atomic propositions?, and clocksC is to zero. Additionally, we need comparators for testing the
a tuple (N,lo, E, V). N is a finite set of nodes (control guards that occur in a timed automatdn The translation
nodes)], is the initial node E C N x B(C) x Act x 26 x N of a timed automaton to an ordinary automaton with a cou-
corresponds to the set of transitions, and finalfy; N — ple of counters and comparators is straightforward so that
27 is a proposition assignment function. we do not give a formal definition here.

Having constructed a finite-state machine with counters

Configurations of a timed automaton are given with a clock and Comparators, we are ready to app|y our abstraction
assignment : C — R that maps each clock € Ctoa function for counters (cf. Figure 1). This reduces the coun-
real numbeg(r). A configuration(n,§) consists then of ters together with the comparators to abstract systems with
such an assignmegtand a node: € N for the automaton. only a few states. Our specification that are given in the
If (n1,¢c, @, Mc,n2) € E holds, and the conditiopc is temporal logicACTL* can then easily be checked by any

fulfilled, then a possible successor configuratiorref, §) symbolic model checker, i.e., we do not have a need for
is (n2,§’), whereg’ differs from¢ in the values of the clocks ysing real-time verification systems such as UPPAAL [2],
M (these are reset to zero). KRONOS [10] and VERUS [5].

In the next sections, we list some experimental results we
have made with our abstraction technique. We have con-
sidered several benchmarks that have often been used by
researchers in the domain of real-time verification. In par-

e_li NTj € [e1,&2] ticular, we present our results for the generalized railroad
crossing system [12] and Fischer’s mutual exclusion proto-
col [16].

—e_I; V Tj g [81,62]

e P, =0

. 5 Experimental Results
—e_P; —exit;

Figure 3. The train model 5.1 The Generalized Railroad Crossing

As an example of a timed automaton, consider the dia- In [12] a benchmark example has been presented for
gram given in Figure 3 that models a train in the railway the evaluation of real-time verification tools. This exam-
crossing example given in [12]. As given in the next sec- ple has been considered in a lot of research papers so far.
tion, a train may be in three regions of a track, namely the In this section, we present the application of our abstrac-
region P, the region/, or neither inP nor in I (cf. Figure tion method outlined to this benchmark. The benchmark is
4). Figure 3 shows the timed automaton that models a traina generalized railroad crossing as illustrated in Figure 4.

j. NodeN; means the train is neither in regidhnor in re- We first give a short description of the railway crossing.
gionI, while nodeP; andl; mean that the train is in region The crossing consists eftracks (Figure 4 shows only one
P andI, respectively.e_P; ande_I; are two signals, i.e., track) where trains cross a road. Two regioRsandI are
propositions ofP, emitted whenever a train on trackas distinguished: first a train enters regi®which causes the
entered the regio#® andI, respectively. gateg to start closing. Before the train enters regiomthus

The behavior of the automaton given in Figure 3 is as leaving regionP, the gate must be closed. After the train
follows: if the train enters the regiaR on tracki, the signal has left regionl, and no other train is neither in regidh
e_P; is emitted. Hence, the automaton given in Figure 3 norinregion/, the gate can be opened again. Note that both

region P of tracki is equal 0 and in stat®; this number is
> greater than 0.

Counterl; is incremented (by_I;) each time when a
train enters regiod, thus leaving regior?, and is decre-
mented (byxit A—e_I;) each time when a train exits region
I and no other train is entering regidnat the same time.
Note that our method enables the verification of the system
for n trains for each gate. Hence, it allows the verification
of ageneric numbeof trains.

W The abstract counters are obtained with our abstraction

P | function for A := {0}.
Figure 4. The railroad crossing with one track m
ep * o,
(8
the opening and the closing of the gate requires some time i
and that the system does only work correct when the gate @ G@' £
can close faster than the fastest train can pass rdgion op - >
. . . . - 8
This benchmark is a typical example for modeling real- —ep £
time systems by timed automata [12, 11, 17]. As outlined in —inp A —iny A —ep
the previous section, we can use any model given as timed @
automaton and transform it first into an ordinary finite-state
machine that is additionally equipped with some counters
and comparators. Our abstraction then replaces the counters where : -ep
and comparators by abstract ones with only a few states. In o) o\
the following, we present the abstract model that we obtain tnp = \/ Booinp= \/ I ep:= \/ et
i=1 i=1 i=1

by the application of our method to the railway crossing

benchmark.
Figure 6. The gate model as a timed automa-
ton

Initially, the counter (i.e. the gat&j is in state ‘open’.
Let v40wn and~y,, be the durations the gate needs to close
and open, respectively. When a train enters redtonthe
system moves to state ‘closing’ and starts counting the time.
* After the timev,,., has elapsed, the system moves to state
‘closed’. Note that the basic assumption for the correct
functioning of the system, is that the gate can close faster
than the fastest train can pass the regiunThis is given
with the following temporal logic formula:

Figure 5. The abstract counters for regions P;
and I;

n
G ([Q.state = closing — — \/ e_IZ->
Figures 5 and 6 illustrate our approach. Our goal is to model =t

the entire system as one abstract counter, namelytteeG The countelG remains in state ‘closed’ until no trains are
(Figure 6), which uses two additional abstract counférs in the sections” andl. If this is the case, and additionally
andI; (Figure 5) for each track CounterP; isincremented no further train is entering at that moment the regiayrthe

(by e_P;) each time when a train enters regiBrand decre- system moves to state ‘opening’ where the gate is opened
mented é_I; A—e_F;) each time when a train leaves region again, similar to the closing. Note that a further train can
P to enter regiorl and no other train is entering regidh enter regionP while the system is in ‘opening’. If this hap-

at the same time. In stat® the number of trains within pens, the opening of the gate has to be interrupted and the

controler moves to state ‘closing’ where the gate is abouttracks and 6 trains per track using the HyTech (runtime 125
to close again. However, if this does not happen, then fi-s) and the Uppaal (runtime >10 h) tools. The verification

nally the gate will be completely opened after timg .. of an abstract system was possible for up to 35 tracks using
has elapsed. At this point of time, the counfemoves to the SMV tool (runtime 3466 s).
state ‘open’. As can be seen, our abstraction transforms the bench-
For the generalized railroad crossing system as describeanark into a quite easily verifiable example for symbolic
above, the following specifications are to be shown: model checkers which need no longer consider the real-time
constraints. However, we have to note that the results given
(1) AG(iny — G.state = closed in the above table crucially depends on the variable order-
(2) AG (—inp A —in; — EF(G.state = open) ing.

Specification (1) is a safety property that expresses that the . , .
gateG must be closed if a train is in regidn This must hold 5.2 Fischer's Mutual Exclusion Protocol
for all points of time. (2) is a utility property that asserts that

the gate can be opened if there is neither a train in refion Itis well-known that program sections of concurrent pro-
nor in regionl. cesses that modify some shared variables have to be pro-

We have used the well-known SMV system available tected to avoid inconsistencies of the data structures. For
from the Carnegie Mellon University to verify both prop- this reason, several solutions have been suggested. Perhaps
erties for the system with tracks (note that the number of ~the simplest possible algorithm is one suggested by Michael
trains on a track is no longer of interest after our abstrac- Fischer [16] and is known aBischer's Mutual Exclusion
tion). The runtime and memory requirements obtained for Protocol Figure 7 gives some pseudo-code for the proto-
the properties (1) and (2) on a SUN Ultra 5/10 with 300 col: The protocol is used to protect critical sections for
MHz and 640 MBytes of main memory that runs under So- Processes. For this purpose, a global lock variatdétype

laris 7 are given in the tables below. {0, ...,d} is used. The role ok consists of holding the in-
dex of the process that is allowed to enter its critical section.
AG(in; — G.state = closed The basic idea of the protocol is roughly as follows (cf. the
Tracks | Run Time | BDD nodes| reach. States program code in Figure 7): Ik = 0 holds, the critical re-
[sec] poss. States gion is currently not owned by a process, so that a process
10 0.13 0624 250 /953 that wants to enter the section can try to obtain access to
20 0.63 10247 9100 /9103 the region. It therefore will then assignits own process
30 1.28 11791 9150 /9153 id (line s1). After this, the process will be inactivated féor
40 219 20716 2200 /9203 units of time so that the othérprocesses have the chance
50 3.29 32141 2250 /9253 to write their process ids ta. If after that time \ still con-
60 4.73 46066 2300 /9303 tains the process id of the considered process, this process
70 6.37 62491 9350 /9353 is allowed to enter the critical section and after that, it will
80 8.37 81416 9400 /9403 release the section by resettingo zero.
90 10.55 102841 2450 /453
AG (—inp A —iny — EF(G.state = open) Sinit : fepeat
Tracks | Run Time | BDD nodes| reach. States 50 await A = 0;
[sec] poss. States s1: A=
10 0.14 9609 351 252 Z o mﬁ'ief‘szf_
101 /9102 : -
gg ggg 1222; 3151/3152 84t //critical section
40 1.75 20513| 22012202 5 A=0;
50 2.68 31888 2251 /9252
60 3.80 45763 2301 /2302 Figure 7. Fischer's Mutual Exclusion Protocol
70 5.15 62138 2351 /2352
80 6.73 81013 2401 /402
90 8.73 102388 2451 /9452

The disadvantage of Fischer’'s mutex protocol is that it
As a comparison, in [17] the railroad benchmark has beenrequires forn processes in each process a delay thhuodé

verified as a concrete and as an abstract system as well. TherderO(n). In the meantime, other solutions have been pre-
verification of the concrete system was possible for up to 4 sented that do not suffer from this disadvantage (cf. [16]).

However, Fischer's mutex protocol is an excellent example [5] S. Campos, E. Clarke, W. Marrero, and M. Minea. Ver-

to illustrate our method. This example has also been con-

sidered by many researchers as a benchmark [15].

We have used McMillan’s new implementation of the
SMV system to verify Fischer’s protocol fotr processes
without any special composition techniques. The runtime
and memory requirements obtained on an Intel Pentium
platform with 450 MHz and 512 MByte of main memory
that runs under Linux are given in the table below. We ver-
ified Fischer’s protocol up to 38 processes. To our knowl-

(6]

(7]

edge, previous results that have been obtained for the auto- [8]

matic verification of the protocol without specialized com-
position techniques were only able to verify up to 11 pro-

cesses. Using such techniques, up to 50 processes have been

verified in [15].

m | #iter. | BDD nodes| BDD nodes| runtime

(trans.rel.) (total) | (mutex)
10 7 1997 253850 6.2
20 7 5695 1374366 47.3
30 7 11132 4063029 144.7
38 7 17050| 21823704| 472.1

(9]

[10]

[11]

The runtimes for the table above have been obtained for [12]
an asynchronous version of the protocol, where we assumed

that all processes will remain in stagguntil all other pro-
cesses have either movedstoto or have not yet reached.
This means that all processes have either written their pro-
cess id to\ or have not started to do so before any other
process will read the value of in stagess.
the possible write clashes in stage have been resolved

Moreover,

[13]

by nondeterministically choosing one of the values that are [14]
concurrently assigned ta

[3] J. Burch, E. Clarke, K. McMillan, and D. Dill.

[4] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer.

References

[1] R. Alur and D. Dill. Automata for modelling real-time sys-

tems.Theoretical Computer Scienck26(2):183-236, April
1994.

[2] J.Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi.

UPPAAL in 1995. InIn Proc. of the 2nd Workshop on Tools
and Algorithms for the Construction and Analysis of Sys-
tems number 1055 in Lecture Notes In Computer Science,
pages 431-434. Springer-Verlag, March 19956.

Sequen-
tial Circuit Verification Using Symbolic Model Checking.

In ACM/IEEE Design Automation Conference (DAgages
46-51, Los Alamitos, CA, June 1990. ACM/IEEE, IEEE So-
ciety Press.

Veri-
fication and synthesis of counters based on symbolic tech-
niques. InEuropean Design and Test Conference (EDTC)
pages 176-181, Paris, France, March 1997. IEEE Computer
Society Press.

[15]

[16]
[17]

[18]

[19]

ifying the performance of the PCI local bus using sym-
bolic techniques. Technical Report CMU-CS-96-147, June
1996. ftp://reports.adm.cs.cmu.edu/usr/anon/1996/CMU-
CS-96-147.ps.

S. Campos, E. Clarke, W. Marrero, and M. Minea. \erus:
A tool for quantitative analysis of finite-state real-time sys-
tems. Technical Report CMU-CS-96-159, August 1996.

E. Clarke, O. Grumberg, and D. Long. Model checking and
abstractionACM Transactions on Programming Languages
and systemsl6(5):1512-1542, September 1994.

P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. IACM Symposium on Prin-
ciples of Programming Languages (POPpages 238-252.
ACM, 1977.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpreta-
tion of reactive systemsACM Transactions on Program-
ming Languages and Systems (TOPLASY7.

C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS
programs with KRONOS. Ihn Proc. of 7th International
Conference on Formal Description Technigu&g94.

C. Daws and S. Tripakis. Model checking of real-time
reachability properties using abstractions. Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’981998.

C. Heitmeyer and N. Lynch. The generalize railroad cross-
ing: A case study in formal verification of real-time systems.
In Proc. of the IEEE Real-Time Systems Sympospages
120-131, San Juan, Puerto Rico, December 1994.

P. H. Ho and H. Wong-Toi. Automated analysis of an audio
control protocol. In P. Wolper, edito€onference on Com-
puter Aided Verification (CAyyolume 939 of_ecture Notes

in Computer Sciencepages 381-394, Liege, Belgium, July
1995. Springer Verlag.

S. Krischer. The backward walk approach in FSM verifica-
tion. In D. Agnew, L. Claesen, and R. Camposano, editors,
IFIP Conference on Computer Hardware Description Lan-
guages and their Applications (CHDLjages 143-150, Ot-
tawa, Canada, April 1993. IFIP WG10.2, CHDL'93, IEEE
COMPSOC, Elsevier Science Publishers B.V., Amsterdam,
Netherland.

K. Kristoffersen, F. Laroussinie, K. Larsen, P. Pettersson,
and W. Yi. A compositional proof of a real-time mutual ex-
clusion protocol. Inn Proc. of the 7th International Joint
Conference on the Theory and Practice of Software Devel-
opment1997.

L. Lamport. A fast mutual exclusion algorithtACM Trans-
actions on Computer Systeni987.

A. Loetzbeyer.Temporale RealzeitverifikatioPhD thesis,
Universitaet Karlsruhe, March 1999.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Ben-
salem. Property preserving abstractions for the verification
of concurrent systemskFormal methods in System Desjgn
6:1-35, February 1995.

E. Macii, B. Plessier, and F. Somenzi. Verification of System
Containing Counters. IfEEE/ACM International Confer-
ence on Computer Aided Design (ICCAPages 179-182,
Santa Clara, California, November 1992. ACM/IEEE, |IEEE
Computer Society Press.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

