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Abstract
An objective of DSP testing should be to ensure that any
errors due to missed faults are infrequent compared to a
circuit’s intrinsic errors, such as overflow. A method is pro-
posed for quantifying test quality for digital filters by mea-
suring the risk associated with any untested faults. Tech-
niques for finding upper bounds on fault activation rates
under worst-case operating conditions are described. These
techniques enable test designers to objectively discriminate
significant missed faults from near-redundant faults, which
are unlikely to be activated in normal operation of the de-
vice. This complements fault coverage as a measure of
test quality, providing a means of locating high-risk missed
faults even in very high coverage test regimes.

1 Introduction
Digital filter datapaths pose a number of unique challenges
to testing. In these designs, full scan techniques suffer from
high overhead due to the large number of registers inher-
ent to this type of design, while partial scan or testing from
the boundary of a filter usually means long test sequences
due to the deep sequential nature of the datapath. In this
case, built-in self-test based on pseudorandom pattern gen-
eration is an attractive approach since it offers inexpensive
testing and usually provides high fault coverage, although it
is rarely able to achieve 100% coverage.

In practice, it is not difficult to reach fault coverages in
the high 90’s using pseudorandom BIST on filter datapaths.
However, it has been shown that these tests can be seri-
ously flawed in the sense that some of the faults that are
left untested can be relatively easy to trigger during normal
operation of the device [1]. Such flaws can often be traced
to some fundamental problem in the test generator, such as
correlation properties that are incompatible with the device
under test [1, 2]. In many cases, these deficiencies can be
overcome to some extent with the use of decorrelating cir-
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cuits or alternate test modes [1].
Even with these improvements to random pattern test-

ing, the fundamental quality of a test will remain uncer-
tain until the risk associated with any untested faults has
been understood. Fortunately, linear digital systems offer an
unusual opportunity to directly assess the risk of a fault—
specifically, to bound the maximum fault activation rate ex-
pected under normal operating conditions. This information
can be used to profile a test, providing information about
which faults pose the greatest risk, and which are so un-
likely to be activated that they are deemed “pathological”,
or near-redundant.

Practical implementations of large fixed-point filters of-
fer an interesting comparison point for test quality: it is usu-
ally possible to induce overflow errors during normal oper-
ation of a filter; such errors can be viewed as “designed-in”
faults. Clearly, a fault with a maximum activation rate far
below the activation rate of such intrinsic faults should not
be a test priority. On the other hand, a large number of faults
with potentially high activation rates can be a sign of a seri-
ously flawed test, and may signal the need to design a new
test, or to target the associated logic for test point insertion.

Test quality is an important factor in choosing a test strat-
egy. For example, it is tempting to believe that a long white-
noise test sequence will catch all faults that are likely to be
activated during normal operation of the datapath. However,
this is not always the case. For example, wide-band test sig-
nals can miss faults due to thenarrow-band test problem:
even in wide-band filters it is common to find portions of
the circuit that exhibit a narrow-band response, leading to
reduced test signal power when wide-band tests are used.
High-variance wide-band tests may still detect the fault, but
will typically require very long test sequences. In contrast,
such a fault might be easily triggered during normal opera-
tion of the datapath if a narrow-band input signal is applied.
Similarly, non-white LFSR-generated tests can provide high
fault coverage, yet still miss significant faults due to low
signal power in the filter’s passband. An objective means of
determining functional test quality is needed.



In order to place bounds on the activation rates of
untested faults, we will need to model the normal operat-
ing behavior of the datapath. We will see how fault activa-
tion rates depend on internal signal variances and correla-
tion, and ultimately how this can be linked back to the input
signal power spectrum. The bounds on untested fault acti-
vation rates will be presented usingrisk profiles, which give
insight into the quality of a test.

2 Design Faults
Overflow can be viewed as a designed-in fault; in this sec-
tion we will look at the probability of activating this type of
fault. This provides an introduction to the fault activation
rate computations of the sections which follow.

We will model the input signal as a normally distributed,
zero-mean random variable. In this case, all internal signals
and the datapath output will also be normally distributed,
by the Gaussian reproductive property (the sum of normally
distributed random variables is again a normally distributed
random variable). Signal variance is then sufficient to com-
pletely characterize the distribution of all derived signals,
although it must be kept in mind that these derived signals
may be correlated.

Let the idealized filter’s output (in the absence of over-
flow) be modeled as a normally distributed, zero-mean ran-
dom variable with variance�2y . The probability of overflow-
ing the[�L;L] interval is then

Povf = erfc

 
Lp
2�y

!
; (1)

where erfc is the complementary error function, given by
erfc(z) = 1 � erf(z). The error function, erf(z), is defined
by

erf(z) =
2p
�

Z z

0

e�t
2

dt:

L represents the absolute maximum value that the datapath
output can support without overflow. We will usually inter-
pret signals as two’s-complement numbers on the interval
[�1; 1), corresponding toL = 1. The relation betweenPovf
and�y for L = 1 is plotted in Figure 1.

In FIR filters, the designer’s concern is to keep the over-
flow probability at the output within acceptable levels: in-
ternal overflow does not result in an output error as long as
the internal width is at least as wide as the output width, and
the final result using infinite-precision arithmetic would fall
within the output range. In IIR filters, overflow should also
be minimized at feedback nodes. Peak values of�=L in the
range of one-fourth to one-third are common.

3 Input Spectrum and Power Gain Factor
To compute fault activation probabilities, it will be nec-
essary to compute the maximum signal variances under
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Figure 1. Probability of overflow vs. RMS signal amplitude.

worst-case operating conditions at each point in the data-
path, where worst-case conditions are identified using in-
formation about the input signal’s spectrum and maximum
variance. Thepower gain factor, g, is defined as the ra-
tio of output variance to input variance of a filter or sub-
filter, g = �2y=�

2
x. Elements of scaling theory [3] can be

used to find the maximum output variance for a stochastic
model of the datapath’s input signal. Maximizing variance
requires concentrating all input signal power at the subfil-
ter’s peak gain frequencies. For a filter with frequency re-
sponseH(ej!), the maximum power gain is

gmax = max
!
jH(ej!)j2:

As discussed in Section 2, systems are frequently de-
signed with peak input/output� values between 0.20 and
0.33, assuming a�1 signal range. Computinggmax for each
signal in the datapath, we can determine the worst-case sig-
nal variances for a given peak input power,�2x. However,
in some applicationsgmax will be too conservative. For ex-
ample, if signal power in some bands is limited, or if it is
not possible to concentrate all power at the subfilter’s peak
frequency response,gmax may overestimate output variance.
In such cases the approach can be refined to account for the
characteristics of the operational spectrum. Without know-
ing such specifics, we usegmax. Additional discussion of
power gain factors can be found in a separate report [4].

4 The Bivariate Normal Model
In order to determine the worst-case fault activation rates in
a datapath, we will need to characterize the behavior of each
adder and subtracter. Neglecting truncation effects (which
tend to diminish at the upper bits that are our chief con-
cern), fault activation rates can be determined from the in-
put variances (�2A, �2B) and correlation coefficient (r). In
this section, we will model the inputs to an adder as a bi-
variate normal distribution and examine how test activation
rates are influenced by the parameters�2A, �2B , andr, which
will in turn give an indication of the type of input spectrum
that maximizes fault activation rates.
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Figure 2. Block diagram used to examine effect of input spectrum on fault activation probab ilities during normal filter operation.

Figure 2 provides the context for our discussion. The in-
put to the datapath, denotedx[n], has a spectrum modeled
by a white noise source feeding a spectrum shaper. The
adder being examined is fed by two paths; theA input is
fed by a subfilter with responseHA, and theB input is fed
by a subfilter with responseHB . When one input has a pre-
dominately larger input variance than the other, we use the
convention that theA input is the high-variance “primary”
input, and theB input is the lower-variance “secondary” in-
put. Where there are testability problems, it is common to
find �B � �A, although this relationship can vary with in-
put spectrum, and even reverse at certain input frequencies,
depending onHA andHB . The difference between input
variances is referred to as thevariance gap[2, 5].

The response of the datapath output to a signal injected at
the adder’s output is given byHC ; this can be used to model
the transformation of fault effects as they travel from the
adder’s output to the observation pointy[n]. The remainder
of the datapath functionality is modeled byHD, where the
overall filter response,H , is given byHD+HC (HA+HB).

Fault activation during normal operation of the adder can
be understood by modeling the adder’s inputs with a bivari-
ate normal distribution with zero mean,

p(x) =
1

2�j�j1=2
exp

�
�1

2
x
0��1x

�
; (2)

wherex = [A B]0, x0 denotes the matrix transpose ofx,
and the 2-by-2 covariance matrix,�, is given by

� =

�
�2A �AB
�AB �2B

�
:

The cross-correlation,�AB , is EfABg. The correlation co-
efficient,r, is defined asr = �AB=�A�B ,�1 � r � 1.

In variance mismatched adders, we will find that trigger-
ing some difficult faults will require maximizing variances
and input correlation, while other difficult faults will be less
sensitive to total signal variance, but are dependent on the
ratio of input variances and prefer uncorrelated inputs. Con-
sequently, we need to know the range of values that�2A, �2B ,
andr can take.

The maximum values that�2A and�2B can take are deter-
mined by the maximum power gain factors of theHA and
HB responses, respectively. As discussed in Section 3, this
depends on what type of input spectra are possible during
normal operation; if narrow-band signals at the subfilter’s
peak response frequency are possible, thegmax power gain
factor should be used.

The correlation coefficient,r, can typically cover most of
the [�1; 1] range as input frequency is swept. In determin-
ing fault risk, we make no assumption restrictingr’s range.

5 Test Zones
In earlier work, the input conditions necessary for asserting
“difficult” tests at the upper bits of an adder were derived
[2]; these are repeated here in Table 1. These tests can
be mapped to the corresponding numbered regions in Fig-
ure 3(a). Subtracter test zones are shown in Figure 3(b).
These patterns, corresponding to tests of the next-to-MSB
logic, are periodically extended to account for out-of-range
values. For lower bits, the test zone size is scaled by2�b+1,
whereb is the distance from the MSB. The logic faults trig-
gered by a signal can be determined by looking at the test
zone that the adder’s inputs fall in.

To find how correlation and signal power relate to fault
activation rates during normal operation of the design, we
will combine these test activation regions with the bivariate
normal model of the adder’s input distribution to compute
test activation rates. This in turn maps directly to fault acti-
vation rates based on the logic fault model used.

Table 1. The four difficult test zones of the next-to-MSB adder.

Test Input Output

T1p 0 � A < 0:5 A+ B� 0:5

T1n A < �0:5 A+ B� �0:5
T2p 0 � A < 0:5 A+ B < 0

T2n A < �0:5 A+ B� 0:5

T5p A� 0:5 A+ B < �0:5
T5n �0:5 � A < 0 A+ B� 0

T6p A� 0:5 A+ B < 0:5

T6n �0:5 � A < 0 A+ B < �0:5
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Figure 3. Adder test activation zones (a), and subtracter test
activation zones (b) for the next-to-MSB bit. The pattern is
periodically extended in all directions, and the size of the zones
is halved for each progressively lower bit.

6 Fault Activation Rates
For a fault requiring a test T with test zonesZjk, wherej
andk specify the horizontal and vertical indices of the test
zones, the fault activation probability is

Pact(T) =
X
j;k

Z Z
Zjk

p(x) dAdB; (3)

wherep(x) is the bivariate normal density defined in Equa-
tion 2. The activation probability is a function of�A, �B ,
andr. Figure 4 shows the test zones corresponding to the
MSB�1 overflow tests T1 and T6, with the constant-density
ellipses of a positively correlated (r > 0) normal distribu-
tion superimposed. Equation 3 is computed over the shaded
regions.

While theA datapath width may only support values
of A over the range[�1; 1) (as is typically assumed for
fixed-point two’s-complement notation), we extend the re-
gions beyond this limit. The reason for this is that two’s-
complement arithmetic permits overflow at internal nodes
as long as the final (ideal) result is in-range. Consequently,
we can treat theA input signal as though it covers a wider
range, and extend the test zones to account for the portions
that would be wrapped by overflow.

To demonstrate the effects of correlation on test activa-
tion rates, we examine a bivariate normal distribution with
�A = 0:2,�B = 0:01. In this example, the test zones shown
in Figure 3 are sufficient; the more distant test zones con-
tribute little to thePact computation. The integral in Equa-
tion 3 was computed for values ofr ranging from�0:95 to
0:95. The results are shown in Figures 5–8.

-1

1

B

A
-2 -1 1 2

Figure 4. Computing activation probabilities for test T1, posi-
tively correlated A and B. The shaded areas indicate the test
zones over which the integral in Equation 3 is computed.
The ellipses indicate constant-density levels of a positively-
correlated normal distribution.

7 Fault Characterization
We now characterize the basic fault classes based on the
type of tests required to activate the fault in question. Faults
are broadly classified as either easy or difficult faults. Diffi-
cult faults are further broken into central, overflow, and joint
central-overflow faults. This characterization applies pri-
marily to high-order datapath bits, where testability is most
often a concern. At lower bits, test zones proliferate, lead-
ing to a more uniform distribution of tests. Thus, there is
little to distinguish fault classes at the low-order bits.

Easy Faults: The so-called “easy faults” are faults that can
be tested by any one of the four tests that are not sensitive
to variance gap (T0, T3, T4, T7). For uniformly-distributed
independent inputs to the adder, the probability of asserting
any of these tests is near 0.125 in variance-matched adders,
and rises to 0.25 as the variance gap is increased. Under
certain conditions these tests may not be quite so easy to
assert. For example, if the correlation between adder inputs
approaches unity, T0 and T7 activation rates increase at the
expense of T3 and T4. The tests are considered easy be-
cause they have high activation rates over a broad range of
correlation values. With correlation, easy fault activation
rates can reach 50%. Figures 5 and 8 illustrate the typical
behavior of this class of faults as a function ofr.

Difficult Faults: Faults that are not testable by the easy
tests are classified as difficult faults. These are faults that
are only testable by one or more of the tests T1, T2, T5, and
T6. Difficult faults fall into three possible categories: cen-
tral, overflow, and joint central-overflow faults. Of these,
overflow faults tend to be the most difficult to test, while
central faults tend to be relatively testable.

Central Faults: Difficult faults that are only testable by
the central tests are termed central faults. At the next-to-
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-1 -0.5 0.5 1
r

0.1

0.2

0.3

0.4

Pact T3

Figure 8. Test T3 and T4 activation probability as a function of
correlation coefficient, �A = 0.2, �B = 0.01.

MSB bit, central tests are asserted when the primary input
of the adder under test and its output have opposing signs.
In adders, these are tests T2 and T5, while in subtracters the
central tests are T1 and T6. The activation rates of central
faults are typically maximized by uncorrelated input sig-
nals (zero correlation coefficient). In many filter architec-
tures (e.g., the common transpose-form filter) this can be
achieved by using a test generator that exhibits low sample-
to-sample correlation.

Under some circumstances, central faults can reach high
activation rates. This happens when the normal�A > �B
relation is inverted, as can happen when the test signal lies
in the stopband of the subfilter feeding theA input, but is
in B’s passband. In this case, activation rates comparable
to those of the easy faults are possible. This provides some
motivation for the test approach of applying narrow-band
test signals that sweep the full input spectrum. However, we
have not seen a strong need for this level of test generator
complexity for testing central faults, given that wideband,
uncorrelated test signals tend to give good activation rates
for central faults in most architectures, and are cheaper in
terms of chip area.

Maximizing central fault activation rates does not gen-
erally require the test signal’s variance to be maximized.
Low variance test signals can be just as effective as long
as the adder inputs do not degenerate due to truncation ef-
fects. This property makes central faults particularly unde-
sirable from a signal-to-noise perspective, as it is possible
that fault effects will appear even when the input signal is at
low power levels. Figure 7 gives an example of central fault
activation dependence on correlation.

Overflow Faults: Overflow faults are those faults that are
tested only by asserting an overflow condition at the adder
slice in question: tests T1 and T6 for an adder or tests T2
and T5 for a subtracter. Note that this does not refer to
overflow of the entire addition or subtraction operation, but
only to overflow at a single bit (carry in 6= carry out at
a full-adder cell). Overflow faults at high-order bits form
the class of faults whose behavior most closely resembles
that of the normal, functional overflow faults. They tend
to require high-variance input signals to activate, and their
activation rates rapidly decrease as input power is reduced.

Since overflow faults require high signal variance, test-
ing of these faults is usually most effective when the test
signal has a substantial portion of its power in the passband
of the subfilter outputting at the adder in question. Figure 6
illustrates overflow fault dependence on correlation.

Central-Overflow Faults: Difficult faults that are tested
by either central or overflow tests are classified ascentral-
overflow faults. In the commonly used adder models em-
ployed in this study, all difficult logic faults are either cen-
tral or overflow faults; there are no central-overflow faults.
Such faults do not pose any additional theoretical challenge
since their activation rates are dominated by the activation
rates of either the central or overflow tests.

8 Fault Activation Bounds
In gauging the quality of a test, we are interested in com-
puting bounds on the fault activation rates of any untested
faults. Of the fault classes described in Section 7, the most
stubborn faults are typically overflow faults, followed by



central faults where there is a large variance gap. Any easy
faults that go untested are penalized by assigning a high
fault activation rate (e.g., 0.5, since under the right condi-
tions this is possible). For any untested fault, the maximum
fault rate attainable under worst-case operating conditions
is a measure of the risk associated with the fault.

While, in general, computing fault activation rates re-
quires evaluating double integrals over a wide range of
power and correlation combinations, it is possible to effi-
ciently compute bounds using the observations made earlier
about the� andr values that maximize fault rates. Based on
the test zone model, we have seen that positive correlation
maximizes overflow fault activation rates, while zero cor-
relation maximizes central fault activation rates (although
there is an exception to this, which will be discussed in Sec-
tion 8.2). For central faults, low input signal variance can
give good fault activation rates since the test zones are adja-
cent to the origin, while high signal variance is required to
activate the more distant overflow fault regions.

These observations about fault behavior are based on the
assumption that the test zone tiling period in Figure 3 is
larger than the range ofB; if the tile size is on the order
of a couple of�B or smaller, the fault characterization of
Section 7 tends to break down as more test zones become
involved in thePact computation. In the extreme, as�A
and�B are increased (or equivalently, the tile size is scaled
down), the tests start to look more uniformly distributed.
This is not a serious problem for computing fault activation
bounds, as we are generally only interested in bounds on the
most difficult faults, which lie at the upper bits of variance-
mismatched adders. Untested faults that lie too far down
from the MSB are assigned a high fault risk, just as for the
easy faults at upper bits.

8.1 Overflow Faults
For overflow faults, we develop a bound on fault activation
probabilities based on the assumption that the inputs are lin-
early dependent (r = �1). This bound is conservative, as it
requires simultaneously maximizing�A, �B , andr.

We will consider adders here; subtracters are handled
analogously using the test zones of Figure 3(b). For over-
flow test T1, the first quadrant test zone gives the largest ac-
tivation rates since the second quadrant test zone is slightly
farther from the mean. This produces the slight asymmetry
observed in Figure 6. Therefore, we assume positive cor-
relation in this bound. (Similarly, we would choose posi-
tive correlation to maximize overflow test T6 since the third
quadrant zone is closer to the mean than the fourth quadrant
zone.) For subtracters, negative correlation is preferred.

The bound is based on the assumption thatA andB are
fully correlated,B = �A, where� = �B=�A. In this
case, the 2-D integral of Equation 3 reduces to a line in-
tegral. TakingA as the independent variable, the T1p test
constraints (A < ui andA + B � ui) correspond to the
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integration ranges given by

ui

1 + �
� A < ui; i = 0; 1; 2; : : : ;

whereui = (1+2i) 2�b for adder bitMSB�b. The width of
the test zones is also limited byBmax, the maximum value
thatB can take. Accordingly, the fault activation bound is
given by

Pact =

1X
i=0

0:5

�
erf

�
uip
2�A

�
� erf

�
lip
2�A

��
: (4)

where theli are the lower edges of the test zones,li =

max(ui �Bmax; ui=(1 + �)).
Even though the outer test zones are more distant from

the mean than the inner zones, negative correlation can con-
ceivably result in a larger fault activation rate since the outer
zones are wider than the inner zones (e.g., test T1n could
have a higher activation rate than T1p). Therefore, when
computing the bound we try bothr = 1 andr = �1, taking
the larger of the twoPact values as the bound.

The bound can be tightened in some cases by using the
output standard deviation,�A+B , in place of the input stan-
dard deviation�A, with appropriate modifications to the
above equations. Thus, we compute the bound using both
approaches and select the tightest bound. The behavior of
the bound as a function of input power is shown in Figure 9
for � = Bmax = 0:05. Applying the bound to the exam-
ple in Section 8 (�A = 0:2, �B = 0:01), the bound gives
Pact = 0:0024 for bit MSB� 1, in close agreement with the
right limit in Figure 6.

8.2 Central Faults
For central faults, fault activation rates tend to be maxi-
mized by uncorrelated signals (r = 0), since any correla-
tion tends to pull more of the distribution into some of the
easy test zones (T0 and T7 for adders with positively corre-
lated inputs, or T3 and T4 for negatively correlated inputs).
An exception occurs when�B=�A > 1, in which case the
central test becomes an “easy” test, which is maximized by
r = �1 for adders orr = 1 for subtracters. For fully cor-
related signals, the fault activation rates can reach as high
as 50%. In variance mismatched adders where testing is



0

50

100

150

200

250

300

350

400

450

1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 1e-03 1e-02

U
nd

et
ec

te
d 

F
au

lts

Risk Level

LFSR12 (.33)
LFSR12 (.25)
LFSR12 (.20)

LFSR12-D (.33)
LFSR12-D (.25)
LFSR12-D (.20)

Mix (.33)
Mix (.25)
Mix (.20)
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tal length 10k). The vertical bars mark the probability of the
fault-free filter generating an overflow effect for input standard
deviations of (from left to right) 0.20, 0.25, and 0.33.

a problem, it is typical to find�B � �A. Even so, the
easy/central inversion can still occur at frequencies that are
blocked byHA but passed byHB .

For r = 0, we assume that�A and�B are small enough
that the bulk of the distribution falls within range of the cen-
tral test zones that lie at the origin. This gives the upper
bound on central fault activation rates

Pact =
1

2�
arctan

�
�B(!)

�A(!)

�
; (5)

where the ratio�B(!)=�A(!) is maximized over the inter-
val [0; 2�]. This result follows from a change of variables,
B0 = �AB, A0 = �BA, which circularizes the distribution.
The maximumPact is attained by a narrow-band signal at the
frequency where the ratiojHB(e

j!)j=jHA(e
j!)j is greatest.

If this ratio is greater than 1 for some value of!, inversion
can take place, and we accordingly penalize any associated
faults by usingPact = 0:5. Continuing the example from
Section 8, this bound givesPact = 0:008, in agreement with
the peak value from Figure 7.

9 Risk Profiles and Results
To examine the risk associated with untested faults in a de-
sign, fault activation rate bounds were computed for a num-
ber of different test sequences applied to a 60-tap lowpass
filter. The results are presented usingrisk profiles, where
the total number of faults with activation rates greater than
a given risk level is plotted as a function of risk level. Since
fault activation bounds can span a wide range, risk level is
plotted on a log scale.

Figure 10 shows risk profiles for three test sequences: a
4k-long LFSR sequence (LFSR12), a 4k decorrelated LFSR
(LFSR12-D), and a higher-quality mixed test consisting of
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Figure 11. Fault risk profiles for the 60-tap lowpass filter, for two
pairs of identical length sequences. Profiles for two 10k-long
test sequences (from a 16-bit LFSR and the mixed sequence
of Figure 10), and two 4k-length test sequences (from a 12-
bit LFSR and a decorrelated 12-bit LFSR) are shown. The 4k
decorrelated LFSR is generally superior to the much longer
10k LFSR sequence, although it lets a few more high activation
rate faults escape, as indicated by the intersection of the two
curves.

a 2k decorrelated LFSR sequence followed by an 8k maxi-
mum variance test [1]. Risk profiles are shown for three dif-
ferent maximum input signal levels (�x): 0:20 (representing
a very conservative design),0:25, and0:33. The plot legend
lists the value of�x assumed for each curve. It can be seen
that the fault activation bounds for some faults rapidly de-
crease as the maximum input signal power is reduced.

For comparison, the normal operational fault rates given
by Equation 1 at peak input power span the range from
5:7� 10�7 for �x = 0:20 to 2:4� 10�3 for �x = 0:33. For
�x = 0:25, the fault rate is6:3�10�5. (For reference, these
risk levels are marked with vertical lines in Figures 10–12.)
For conservative design (e.g.,�x < 0:20), many of the
untested faults pose substantial risk compared to the normal
operational faults, while for more aggressive design only a
few of the untested faults are of greater risk than these in-
trinsic overflow faults. This ranking can be used by the test
designer to focus test resources on the highest risk faults.

In Figure 10, it is interesting to note that the decorre-
lator is effective in reducing the number of untested faults
with worst-case activation ranges between10�5 and10�2,
but does not significantly enhance detection of the highest
risk missed faults, which is on the order of 50–80 faults
for both the LFSR12 and LFSR12-D tests. This seems to be
due to the fact that the decorrelator, by increasing test signal
passband power, is better at reaching overflow faults. How-
ever, this effect does not help in detecting the toughest of
the high-risk central faults. In fact, there are 49 undetected
central faults after LFSR12 testing, but 73 after LFSR12-
D (decorrelated) testing. The longer Mix test combining
a decorrelated LFSR with maximum variance testing does a
good job at proportionally reducing risk at all levels as com-
pared to the LFSR12-D test. After applying this test, there



were 31 untested central faults.
Figure 11 compares two sets of similar length tests of

differing quality for�x = 0:25. The 4k-long LFSR12 and
LFSR12-D tests, and the 10k-long Mix test from Figure 10
are repeated here, and a 10k-long sequence from a 16-bit
LFSR (LFSR16-10k) is added.

At a test length of 4k vectors, the decorrelated LFSR test
(LFSR12-D) shows clear superiority to a standard LFSR
(LFSR12). Although the number of very high risk unde-
tected faults is similar in both cases, the decorrelated test
cuts the number of undetected faults by roughly 2:1 at low-
to-moderate risk levels. At a test length of 10k vectors, the
Mix test provided an even greater advantage over the stan-
dard LFSR (LFSR16-10k), showing more than a 4:1 reduc-
tion in undetected faults at most risk levels.

Figure 11 also shows that increasing test length does
not always offer much risk reduction if the test strategy is
flawed, as can be seen by comparing the 4k LFSR12 test
with a 10k LFSR16-10k test. Although more than twice as
many vectors are applied by LFSR16-10k, little improve-
ment is seen in the risk profile. Switching to the Mix ap-
proach offers much lower risk for the same 10k test length.
In fact, the 4k decorrelated LFSR12-D test is superior in
most respects to the 10k standard LFSR, although it lets a
few more very high risk faults escape.

Figure 12 shows an example of a more dramatically
flawed test, the 4k-long RAMP test (generated by a count-
by-one circuit). This test leaves over 200 very high risk
faults untested, compared to about 50 for both 4k-long
LFSR-based tests. Interestingly, the standard LFSR pro-
vides almost exactly the same absolute fault coverage as the
RAMP test, yet is clearly superior from a fault risk perspec-
tive. The number of undetected faults for the RAMP test
was 480, as compared to 477 for the LFSR12 test. The total
number of modeled faults was 57,124, giving a fault cov-
erage of 99.2% for both tests. The design size was on the
order of 25k gates. The RAMP test left many central faults
untested (232), possibly a serious deficiency since this type
of fault can generate large fault effects even when the filter
is relatively quiescent.

10 Conclusion
In high-performance datapaths, there is often limited oppor-
tunity to insert test structures or to restructure logic for im-
proved testability. Fortunately, many faults in DSP ASIC
datapaths are highly testable, allowing efficient testing from
the boundaries of the datapath. However, not all faults rep-
resent equal risk to the fault-free operation of a digital filter.
Some faults have a high likelihood of being triggered, while
others are almost impossible to activate with any operational
input signal. Consequently, fault coverage by itself is not
always a sufficient indicator of test quality. For example, a
random pattern generator used in a BIST scheme might give
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Figure 12. Fault coverage can be a poor indicator of test qual-
ity. Two identical length sequences (a Ramp and an LFSR-
generated sequence) give the same fault coverage, but the
Ramp sequence leaves over 200 faults with high activation
probabilities untested, compared with r oughly 60 for the LFSR
sequence. The decorrelated LFSR (LFSR-D), while not signif-
icantly reducing the number of very-high risk faults below 60,
does reduce the number of medium-risk faults (in the 10 -2 to
10-4 range) as compared to the standard LFSR. Risk profiles
are for �x = 0.25.

very high fault coverage, yet leave significant faults untested
due to some spectral characteristic of the input signal that is
lacking in the test signal. The seriousness of these untested
faults is gauged by their likelihood of generating a fault ef-
fect during normal operation of the filter.

To analyze the quality of a test from a functional per-
spective, we introduced risk profiles based on worst-case
operational fault activation rates. The risk associated with
any untested fault is estimated from activation rate bounds
using a model of the filter’s input signal. The more informa-
tion that is available about the input signal’s spectrum and
power, the more tightly we can bound the risk associated
with any untested faults. However, even with fairly limited
knowledge of the input signal, we can detect serious flaws in
a test sequence. By identifying faults with potentially high
activation rates, better tests can be developed, or test point
insertion can selectively target the most critical faults.
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