
Thorsten Adler†

Infineon Technologies AG
Thorsten.Adler@infineon.com

Abstract

We present the single layer router CDR (Current
Driven Router) capable of routing analog multiterminal
signal nets with current driven wire widths. The widths
used during routing are determined by current properties
per terminal gained by simulation or manually specified
by circuit designers.

The algorithm presented computes a Steiner tree
layout satisfying all specified current constraints while
obeying the maximum allowed current densities on all
connections. CDR calculates the Steiner tree topology,
computes the unknown currents of wires connecting two
Steiner points and generates the final Steiner tree layout
in a single step thus eliminating the need for a separate
layout post-processing step common to power and ground
routing algorithms.

CDR uses a connection graph for layout representa-
tion and applies an advanced minimum detour algorithm
in combination with a modified ‘three-point steineriza-
tion’ heuristic for Steiner tree based layout construction.

1. Introduction

Designing analog power ASICs in modern mixed
signal BCD-processes (Bipolar, CMOS, DMOS) requires
a large amount of expert knowledge in order to meet
constraints like symmetry, voltage drops, current density,
temperature gradients, piezoelectrical effects, electro-
migration, etc. Unlike in digital design it is not possible to
treat all of these constraints automatically up to now.

One main difference with respect to signals in digital
circuits is the presence of large currents. In order to avoid
electromigration due to excessive current density one has
to design wires according to the current imposed on them.
Routing multiterminal nets with current driven wire
widths is a problem which arises not only in power and

* This work was supported by the German BMFT under contract 01 M

3034. The authors are responsible for the contents of this publication.
†

This work was done while T. Adler was with IMS Hanover

 Erich Barke
Institute of Microelectronic Systems

University of Hanover, Germany
Erich.Barke@ims.uni-hannover.de

ground routing of analog and digital circuits but also in
routing of multiterminal signal nets in analog circuits.

Several approaches to automatic routing of power and
ground nets have been presented ([2], [19], [20], [25]).
Their goal is to generate the power supply interconnect of
integrated circuits prior to ‘normal’ routing in order to
achieve a planar single-layer implementation of these
nets. Routing of power and ground nets consists of three
tasks: Construction of interconnection topology, wire
width determination and layout generation. [19] computes
the power and ground net topology using a combination
of Hightower’s line-search algorithm [9] and Lee’s maze-
routing algorithm [12] using a standard wire width. Based
on that topology all unknown currents, i.e. the currents of
wires connecting Steiner points1, are calculated. After-
wards, all wires are widened with respect to current flow.
This may lead to DRC errors that have to be resolved in a
separate post-processing step which modifies device
placement.

In this paper we present a new approach to current
driven routing of multiterminal nets for analog circuits.
Unlike in power and ground routing algorithms our algo-
rithm calculates the unknown currents ‘on the fly’ during
Steiner tree based layout construction. Therefore, no post-
processing steps are needed to generate design rule
correct layout. In order to achieve good routing results
even in congestioned layout regions CDR uses more
advanced detailed routing algorithms than those used by
power and ground routers normally working on an empty
routing space.

In the next two sections we describe basic path finding
algorithms and algorithms for routing multiterminal nets.
Section 4 illustrates CDR’s database and basic routing
algorithm and in Section 5 we present the algorithm used
to route a multiterminal net with current driven wire
widths. Section 6 illustrates some examples generated
with CDR and finally we give some concluding remarks.

1 Assuming that the currents at all terminal are known

Single Step Current Driven Routing of Multiterminal Signal Nets
for Analog Applications*

2. Path Finding Algorithms

There are two basic classes of shortest path finding
algorithms: Maze-routing algorithms and line-searching
algorithms. Maze-routing algorithms rely on a grid-based
layout representation. The first known algorithm is Lee’s
algorithm [7] which uses an improved version of the
breadth first search (BFS) to find the shortest path
between source s and target t. It requires O(mn) memory
and run-time in the worst case for m x n grid graphs.

In recent history there have been numerous improve-
ments (e.g. [1], [6], [24]) to reduce memory and run-time
requirements. Hadlock presented the Minimum Detour
(MD) algorithm [6] which uses the A* search heuristic de-
scribed in [8]. The MD algorithm is a shortest path algo-
rithm which is controlled by a parameter, called detour
number, leading to a drastically reduced search space.

All partial paths generated by maze routing algorithms
are represented by a sequence of grid points with a width
of the grid size g. In order to generate a route with a width
w different from the grid size g one has to modify the
basic maze-routing algorithm in such a way that a set of
grid points representing the desired wire width is labeled
at once. This increases run-time even further.

To improve performance over maze-routing algo-
rithms, line-search algorithms have been proposed. Line-
search algorithms tend to reduce memory requirements by
using line segments instead of grid nodes during path
searching. The time and space complexity of these
algorithms is O(L), where L is the number of line
segments produced. The first line-search algorithms
where reported in [9] and [15] almost simultaneously.
While [9] generates fewer trial lines during path searching
and thus achieves a faster algorithm, [15] generates trial
lines at every grid point and thus guarantees the optimal
solution. In addition, routing with different wire widths is
much easier as it only requires expanding trial rectangles
instead of trial lines.

More recent line search algorithms (e.g. [4], [16], [18],
[26]) are based on computational geometry techniques.
Almost all of these algorithms rely on a graph that is more
sparse than the original grid. Such a graph is called a
connection graph in [14].

3. Routing Multiterminal Nets

The problem of finding the shortest connection for a
net with n terminals (3≥n) is called the Steiner problem
[11]. It is related to the spanning tree problem. However,
in addition to the n terminals, it uses further connection
points called Steiner points.

Hanan [7] showed that there always exists an MRST
(Minimum Rectilinear Steiner Tree) with Steiner points
chosen from the intersections of all horizontal and vertical
lines passing through all terminals of the net. Despite this

restricted solution space, the MRST problem remains NP-
complete [5]. This has given rise to numerous heuristics
as surveyed by [11], [21], [22], [23]. Most heuristics start
with a minimum spanning tree (MST) and modify it to
obtain shorter trees, because it has been shown that the
length of an MST is at most 3/2 of the length of the
MRST [10]. Thus, an MST is a good approximation for
an MRST.

Lee, Bose and Hwang [13] proposed a variation of
Prim’s algorithm [17] called ‘Three-Point Steinerization’
(P3S). P3S generates an MRST by sequentially adding the
nearest terminal to the current subtree. That terminal is
chosen based on the minimum Manhattan distance to a
terminal or Steiner point in the current subtree. The con-
nection between those three points is built using three-
point RMSTs (Rectilinear Minimum Spanning Tree).

4. CDR’s Database and Basic Algorithms

CDR’s database and path searching algorithms are
based on those presented in [27]. A connection graph GC

is used for layout representation. It can be obtained by
extending the horizontal and vertical edges of each
obstacle until another obstacle or the boundary is reached,
in addition to generating a horizontal and vertical line
through all terminals (see Fig. 1). For a more formal
definition of GC refer to [27] or [14].

T1

T3

T4

T5

T6

O1 O2

O3

O4
O6

3

-3

2

2

-6
O5

T2
2

Fig. 1: An example connection graph GC

It is known that the shortest path between source and
target is a path in the connection graph [14], [27]. There-
fore, a shortest path algorithm such as Dijkstra’s algo-
rithm [3] can be employed to find a path of minimum
length between source and target.

The algorithm detour() used to accomplish this is
similar to the one presented in [27]. It is basically a line-
search version of the MD algorithm with a generalized
detour number concept. The detour length of a node u
with respect to a source node s and a target node t, de-
noted by δ(u), is the sum of the detour lengths of all direc-
ted edges in any directed shortest path from s to u in GC.

5. CDR’s Steiner Tree Construction

Due to the more generalized problem of Steiner tree
based layout construction with non-uniform wire widths
CDR has to cope with additional difficulties with respect
to basic Steiner tree algorithms.

One problem for the current driven router is the deter-
mination of realistic current values for each terminal.
These current values are determined using a standard
circuit simulator or manually specified by analog circuit
designers. A post processing step is used after simulation
to extract a set of ‘worst case’ current vectors each repre-
senting a snapshot of the circuits operation at a particular
point of time.

Figure 2 illustrates an example net with six terminals
using only one current value per terminal for simplicity2.
The net shown has two current sources (terminals T3 and
T6) and four current sinks (T1, T2, T4, T5) which is
indicated by the positive current value shown. A
‘standard’ Steiner tree algorithm using a uniform (i.e.
minimum) wire width would lead to the net topology
shown in Figure 2 (Steiner points ST1, ST2, ST3, ST4):

T1

T3

T4

T5

T6

O1 O2

O3

O4
O6

3

-3

2

2

-6
O5

? ?

ST2

ST3

ST4

T2
2

ST1
?

Fig. 2: An example net topology

The current flow on wires connecting two Steiner
points (e.g. ST1 and ST2) is unknown prior to topology
construction and has to be computed afterwards in order
to widen all wires according to the currents imposed on
them. However, this may lead to improper layouts due to
design rule violations. In the example shown in Figure 2
obstacles O2/O3 and O4/O5 would have to be moved in
order to generate the final layout.

Therefore, CDR’s Steiner tree algorithm has to build
the Steiner tree in a greedy, sophisticated fashion to com-
pute the unknown wire widths ‘on the fly’ during Steiner
tree construction. CDR’s Steiner tree construction is
based on a modification of the P3S algorithm [13]
described in Section 3. The P3S algorithm sequentially
adds the nearest terminal to the current subtree. That
terminal is determined using simple Manhattan distances.
Due to the presence of obstacles CDR’s algorithm has to
use a smarter method to add a terminal to the partially
routed subtree.

2 These set of current values represents a snapshot of the circuit beha-

vior at a particular point of time

CDR()
{

sort all terminals in increasing x-order
i:=0; source:=terminals[i]; source_width:=width[i]
for (;i<num_of_terminals-2;i++)
{

steiner_point:=calc_steiner(source, terminals[i+1],
terminals[i+2], source_width, width[i+1], width[i+2])

detour(source, steiner_point, source_width)
detour(terminals[i+1], steiner_point, width[i+1])
source:=steiner_point
source_width:=source_width+width[i+1]

}
detour(source, terminals[i], width[i])
detour(source, terminals[i+1], width[i+1])

}

The algorithm calculates the Steiner tree layout by
repeatedly computing an optimum Steiner point for three
terminals at a time. At first, calc_steiner() computes the
optimum Steiner point for the first three terminals. After
that Steiner point has been found, detour() is used to con-
nect the first and the second terminal to the calculated
Steiner point. Afterwards, calc_steiner() is called
repeatedly to connect the last found Steiner point to the
next two unconnected terminals, etc. The remaining two
terminals are then connected to the last Steiner point
calculated using detour().

Using this greedy Steiner tree construction CDR is
able to compute the unknown current flow on connections
between two Steiner points by simply adding the current
flows of the two wires connecting to the Steiner point as
shown in Figure 3:

T1
T4

T5=ST4

T6

O1
O2

O3

O4 O6

3

-3

2

2

-6
O5

ST3

T3=ST2
4

2
T2
2

ST1

5

Fig. 3: A smarter solution

At Steiner point ST1 CDR has to add the current flows
of terminal T1 and terminal T2 to compute the unknown
current on the wire which leaves Steiner point ST1. At
Steiner points ST2, ST3 the current flow of terminals T3,
T4 is added to this sum and finally the current flow of
terminal T5 is added to that value at Steiner point ST4.

Calc_steiner() computes the optimum Steiner point for
a given set of three terminals at a time and uses detour()
to compute the exact distances between the candidate
Steiner point u and the two target terminals t1 and t2.
Calc_steiner() is guided by a cost function which uses the
priority queue PQ to store the candidate Steiner points
and basically computes the resulting routing area for each

candidate Steiner point. These points are reached using a
breadth first search starting from the source terminal.

calc_steiner(source, t1, t2, width[source], width[t1], width[t2])
{

width:=width[source]; PQ:=∅; dl[source]:=0; steiner:=source;
u:=source
d1:=detour(u, t1, width[t1]); d2:=detour(u, t2, width[t2])
if (d2<d1)

swap_terminals(t1, t2)
cost(u):= width[t1]*detour(u, t1, width[t1])+

width[t2]*detour(u, t2, width[t2])+
estimate_route_area(u)

min_cost:=cost(u); PQ.insert(u, cost(u))
while (!PQ.empty())

{
u:=PQ.delete_min(); visited.insert(u); d:=dl[u]
for each neighbor v of u in GC and v∉visited

{
cost(v):= width[source]*(d+M(u, v))+

width[t1]*detour(v, t1, width[t1])+
 width[t2]*detour(v, t2, width(t2])+

estimate_route_area(v)
if (cost(v)<min_cost)

PQ.insert(v, cost(v)); min_cost:=cost(v);
steiner:=v;

dl[v]:=dl[u]+M[u, v]
}

}
return (steiner)

}

At first, calc_steiner() computes the cost function for a
candidate Steiner point at the source node and stores that
value into the priority queue PQ. Afterwards all reachable
neighbors of the current node are evaluated. They are
stored into PQ if their cost is lower than the current
minimum cost. This continues until PQ is empty which
means that no further cost reduction (i.e. routing area
reduction) was possible. The node last entered into PQ is
the one which minimizes the cost function and therefore
the optimum Steiner point for the given set of terminals.

In order to find the global minimum calc_steiner()
uses some heuristics to improve the monotone search
algorithm. If, for example, the distance between the first
candidate Steiner point (source) and the second target
terminal t2 is smaller than the distance between source
and terminal t1, t1 and t2 will be swapped in order to im-
prove the routing result.

6. Examples

Figure 4 illustrates CDR’s result for an example net
with 6 terminals. To obtain better results terminals T2 and
T3 were swapped during calculation of Steiner point ST1.
Furthermore, Steiner points ST2 and ST3 were placed
above terminals T2 and T4, respectively.

T1

T2 (2)

T3

T4 (6)

T5

T6

ST1

ST2

ST3 ST4

Fig. 4: An example net with 6 terminals

The example shown in Figure 5 was routed without
any necessary layout modification due to CDR’s en-
hanced Steiner tree generation:

ST1

ST2

T1

T2 (6)

T3

T4 (-8)

Fig. 5: A second example with 4 terminals

CDR swapped terminal T2 and terminal T3 and placed
Steiner point ST2 above terminal T4. A standard power
and ground routing algorithm would connect terminal T1
and terminal T2 which would lead to an resulting routing
width of 12 units. In order to create a design rule correct
layout one obstacle would have to be moved after topolo-
gy determination which is not applicable for analog
design.

7. Conclusion

In our paper we presented a new approach to current
driven routing of multiterminal nets for analog circuits,
called CDR. The current properties used to guide routing
are gained by simulation or manually specified by analog
circuit designers. CDR generates Steiner tree based layout
in a greedy fashion in order to compute the unknown wire
widths between two Steiner points ‘on the fly’

The algorithm used for point-to-point connections is
based on a modification of the MD algorithm similar to
[27] and operates on a connection graph used for layout
representation. CDR’s Steiner tree algorithm is a variation
of the P3S algorithm [13] which uses Prim’s algorithm
[17] to compute a Steiner tree by sequentially adding the
nearest terminal to the already routed subtree. The cost
function used for Steiner point determination is based on

References

[1] S. B. Akers, A modification of Lee’s path connection
algorithm, IEEE Trans. Electron. Comput., vol. EC-16,
pp. 97-98, 1967

[2] S. Chowdhury, An Automated Design of Minimum-Area
IC Power/Ground Nets, Proc. Design Automation
Conference, pp. 223-229, 1987

[3] E. W. Dijkstra, A Note on two problems in connexion with
graphs, Numer. Math., vol. 1, pp. 269-271, 1959

[4] K. L. Clarkson, S. Kapoor and P. M. Vaidya, Rectilinear
shortest paths through polygonal obstacles in O(n(logn)2)
time, Proc. Third Annual Conf. Computational Geometry,
pp. 251-57, 1987

[5] M. R. Garey and D. S. Johnson, The Rectilinear Steiner
Tree Problem is NP-Complete, SIAM Journal Applied
Math., pp. 826-834, 1977

[6] F. O. Hadlock, The shortest: Path algorithm for grid
graphs, Networks, vol. 7, pp. 323-34, 1977

[7] M. Hanan, On Steiner's Problem With Rectilinear
Distance, SIAM Journal of Applied Mathematics, vol. 30,
no.1, pp. 324-342, April 1972

[8] P. Hart, N. Nilson and B. Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE
Trans. Syst., Sci., Cybern., vol. SCC-4, pp. 100-107, 1968

[9] D. W. Hightower, A Solution to line routing problems on
the continuous plane, DA Workshop, pp. 1-24, 1969

[10] F. K. Hwang, On Steiner Minimal Trees with Rectilinear
Distance, SIAM Journal on Applied Math., vol. 30(1),
pp. 104-114, 1976

[11] F. K. Hwang, D. S. Richards and P. Winter, The Steiner
Tree Problem, Annals of Discrete Mathematics, No. 53,
North-Holland, 1992

[12] C. Y. Lee, An Algorithm for Patch Connections and Its
Applications, IRE Trans. Electron. Comput., vol. EC-10,
pp. 364-65, 1961

[13] J. H. Lee, N. K. Bose and F. K. Hwang, Use of Steiner’s
problem in suboptimal routing in rectilinear metric, IEEE
TCAS, vol. CAS-23, pp. 470-476, 1976

[14] T. Lengauer, Combinatorial Algorithms for Integrated
Circuit Layout, John Wiley & Sons, pp. 405-406, 1990

a routing area estimation which calculates the exact
distances between the candidate Steiner point and the next
two terminals and estimates the routing area of the
remaining net. The Steiner tree algorithm incorporates
some heuristics such as terminal swapping during routing
to improve the routing result.

CDR is to our knowledge the first routing algorithm
capable of constructing Steiner tree based layouts of
multiterminal signal nets with current driven wire widths
in a single step, thus eliminating the need of a separate
layout post-processing step. It is currently being
integrated into two commercial design flows and will be
used to enhance automatic layout generation for analog
integrated circuits.

[15] K. Mikami and K. Tabuchi, A computer program for
optimal routing of printed circuit connectors, Proc. IFIPS,
vol. H-47, pp. 1475-78, 1968

[16] J. S. B. Mitchell, An optimal algorithm for shortest
rectilinear paths among obstacles in the plane, Abstracts
First Canadian Conf. Comput. Geometry, pp. 22, 1989

[17] R. C. Prim, Shortest connection networks and some
generalizations, Bell System Technology Journal, vol. 36,
pp. 1389-1401, 1957

[18] P. J. Rezend, D. T. Lee and Y.-F. Wu, Rectilinear shortest
paths with rectangular barriers, Proc. Second Annual
Conf. Computational Geometry, pp. 204-13, 1985

[19] H.-J. Rothermel and D. A. Mlynski, Computation of
Power Supply Nets in VLSI Layout, Proc. Design
Automation Conference, pp. 37-47, 1981

[20] H.-J. Rothermel and D. A. Mlynski, Automatic Variable-
Width Routing for VLSI, IEEE TCAD, vol. CAD-2, no. 4,
pp. 271-284, Oct. 1983

[21] M. Sarrafzadeh and C. K. Wong, An Introduction To VLSI
Physical Design, McGraw-Hill, pp. 96-107, 1996

[22] M. Servit, Heuristic algorithms for rectilinear Steiner
trees, Digital Processes, vol. 7, pp. 21-32, 1981

[23] N. A. Sherwani, Algorithms for VLSI Physical Design
Automation, Kluwer Academic Publ., pp. 228-36, 1993

[24] J. Soukup, Fast maze router, Proc. Design Automation
Conference, pp. 100-102, 1978

[25] Z. A. Syed and A. Gamal, Single Layer Routing of Power
and Ground Networks in Integrated Circuits, Journal of
Digital Systems, vol. VI, no. 1, pp. 53-63, 1982

[26] Y.-F. Wu, P. Widmayer, M. D. F. Schlag and C. K. Wong,
Rectilinear shortest paths and minimum spanning trees in
the presence of rectilinear obstacles, IEEE Trans.
Comput., vol. C-36, pp. 321-31, 1987

[27] S. Q. Zheng, J. S. Lim and S. S. Iyengar, Finding
Obstacle-Avoiding Shortest Paths Using Implicit
Connection Graphs, IEEE TCAD, vol. CAD-15, no. 1, pp.
103-110, Jan. 1996

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

