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Abstract

We address the problem of inserting repeaters, selected
from a library, at feasible locations in a placed and routed
network to meet user-specified delay constraints. We use
minimal repeater area by taking advantage of slacks avail-
able in the network. Specifically, we transform the prob-
lem into an unconstrained optimization problem and solve
it by iterative local refinement. We show that the optimal
repeater locations and sizes that locally minimize the objec-
tive function in the unconstrained problem can be efficiently
computed. We have implemented our algorithm and tested it
on a set of benchmarks; experimental results are promising.

1. Introduction

The difficulties associated with dealing with deep sub-
micron (DSM) effects in designing integrated circuit have
been the challenges to the continuation of Moore’s law [16,
17]. Among these effects, rising RC delay on on-chip
wiring, increasing noise susceptibility due to coupling, de-
lay prediction considering inductance and noise effects, and
power and reliability concerns due to increasing current
density are commonly mentioned. How to deal with these
DSM issues remains to be an active research area. In this
paper, we focus on coping with RC delay on global net
wiring by minimal repeater insertion.

It is indicated in [17] that RC delay on on-chip wiring
is a critical component in determining chip performance in
DSM. One major reason is that, with the scaling of pro-
cess technology, while wire capacitance per unit length is
roughly constant, wire resistance per unit length tends to
increase. As a result, although device delay tends to de-
crease, wire delay, particularly on global nets, tends to in-
crease. This has made wire delay more dominant in chip
performance than device delay in recent VLSI design. To
alleviate this problem, in VLSI design stages, after mod-
ule assembly and global net routing, it is often imperative
to further reduce the delay on global nets to enhance chip
performance. Among various interconnect delay optimiza-
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tion methods, repeater insertion is one of the most effective
techniques [8].

There has been considerable previous research in re-
peater insertion. Van Ginneken [18] proposes a dynamic-
programming based algorithm which finds an optimal re-
peater placement in a distributed RC tree that gives mini-
mum delay. It has been since then generalized to other ap-
plications, for example, buffer insertion for low power [12],
buffered Steiner tree construction [14], buffered maze rout-
ing [19], etc. On the other hand, Kang and Dai [11] address
the problem of delay bounded buffered tree construction.
Chu and Wong [7] propose a quadratic programming ap-
proach to size a wire and insert repeaters for efficient de-
lay and area optimization. The authors in [4, 6] integrate
moment and driving point admittance matching into [18]
for accurate delay and noise computation. Furthermore, on-
chip inductance is taken into account in [10] for designing
a RLC wire.

Our major concern is that all these papers only consid-
ered the optimization of individual nets or wires. An op-
timal procedure for placing repeaters in RC trees for min-
imum delay can be used to obtain a design which is tim-
ing optimum by inserting repeaters on each individual net.
However, in such an approach the repeater area used is usu-
ally wasteful. In addition, excess repeaters make the incre-
mental update of existing placement and routing difficult.
In [13], we propose an efficient algorithm to repeater inser-
tion in a network. We showed that area saving is significant,
taking advantage of slacks available in a network. However,
the repeaters are of one size and there is no consideration
about the feasibility of repeater locations.

This work is a continuation of [13]. In this paper, we
address the problem of inserting repeaters, selected from a
library, at feasible locations in a placed and routed network
to meet user-specified delay constraints. We use minimal
repeater area by taking advantage of slacks available in the
network. Specifically, we transform the problem into an un-
constrained optimization problem and solve it by iterative
local refinement. We show that the optimal repeater loca-
tions and sizes that locally minimize the objective function
can be efficiently computed by quadratic programming or
dynamic programming, depending on the restrictions on re-
peater locations. We have implemented our algorithm and
tested it on a set of benchmarks; experimental results are
promising.
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Figure 1. Graph representing a network.

The remainder of this paper is organized as follows. In
Section 2, we give notations, definitions and problem for-
mulations. In Section 3, we present algorithms to finding
repeater locations and sizes so as to minimize a linear com-
bination of area and delay. In Section 4, we use our algo-
rithms developed in Section 3 to solve the delay constrained
minimal repeater insertion problem. We present experimen-
tal results in Section 5 and conclude in Section 6.

2. Preliminary

The input to our problem is a placed and routed netlists
of modules, with designer specified input drivers and output
loads. Our goal is to inserting repeaters, selected from a li-
brary, at feasible locations such that total repeater area used
is minimal while specified timing constraints are satisfied.

We model a placed and routed network by a directed
acyclic graph (DAG), as shown in Figure 1. The nodes in
the graph correspond to the primary inputs, primary outputs,
tree junctions, and module inputs and outputs in the net-
work. The edges connecting these nodes ( ) correspond to
the wires connecting the modules ( ) and the input-output
pairs associated with the modules ( ).

We introduce two additional nodes, and , in the graph:
the source node is connected to the primary inputs, and
the primary outputs are connected to the sink node . While
the edges leaving the source node ( ) correspond the input
drivers of the network, the edges incident the sink node ( )
correspond the output load of the network.

2.1. Repeater Solution

We use Elmore delay [9] and the following RC models.
We model wires by their equivalent -model. Given a wire
, , , and are the length, capacitance, and resistance

of , respectively. Let and be the unit length wire ca-
pacitance and resistance. We have and .
We use a switch-level RC model for repeaters. Given a re-
peater , , and are the capacitance, resistance and
intrinsic delay of , respectively. We characterize a mod-
ule by modeling the critical path between each input-output
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Figure 2. Variables associated with the repeater solution
of a wire.

pair. That is, we model each input-output pair by the capac-
itance of the input driver, the resistance of the output driver,
and the critical path delay between the input-output pair.

We represent the repeater solution associated with a wire
as the illustration in Figure 2. Let be the number of re-
peaters on . When , are the repeaters
from the input to the output spatially. Let
be the area of , respectively, and be
the length of wire segments separated by those repeaters.
Clearly, the total repeater area is equal to

and the wirelength is equal to .

An element in is called a com-
ponent. Given a component , is the delay through
and is the arrival time at , is the fanins of and

the fanouts of . For an input driver, is the (user-
specified) arrival time at the driver. Similarly, for an output
load, is the (user-specified) required time at the load.
Following this, we can express the problem of minimal re-
peater insertion under input and output timing constraints as
below:

s.t.
and

We call the above the primal problem. Our goal is to
solve the problem by finding repeater locations and sizes on
all wires in the network. However, the large number of de-
lay constraints make this problem difficult to solve directly.

2.2. Problem Transformation

Following [5, 13], we transform the primal problem into
an unconstrained optimization problem (sometimes called a
dual problem) by Lagrange relaxation [15], Specifically, we
relax the constraints by multiplying the amount each con-
straint is violated by a nonnegative real number (sometimes
called a “Lagrangian multiplier”) and adding them to the
objective function as penalties. Thus, instead of solving the
primal problem, we solve the following dual:

where is the vector of multipliers and is the minimum
possible value of



over all repeater locations and sizes.

Our goal is to find values for the multipliers such that
is maximized. At an optimal solution, the slope with respect
to each variable must be zero (This is referred to as Kuhn-
Tucker conditions [15]). These conditions can be simplified
to

Let be the set of vectors, , which satisfy this constraint.
We use the crucial observation in [5, 13] that using these
relationships between the multipliers, the objective function
can be simplified to

Denoting by , and observing that for

a fixed vector , the last term in the above expression is a
constant, simplifies to

which is a linear combination of area and delay.

3. Local Refinement

In order to solve the dual problem, we first consider
the problem of computing , i.e., minimizing

, given a fixed set . Our procedure for
computing proceeds by iterative local refinement. That
is, we iteratively computes the repeater locations and sizes
that locally minimize until we cannot make further im-
provement.

Focusing on an wire , the objective can be considered as
the sum of two parts: a function of the variable associated
with and terms independent of those parameters. That
is, , in which depends on the repeater
solution of but other terms (o.t.) do not. When is being
minimized with respect to , we only need to concentrate
on .

3.1. Repeater Insertion — by QP

We first consider repeater insertion using variable re-
peater sizes for minimizing when there are no restric-
tion (or very limited restrictions) on repeater locations. We
show that under this condition, the repeater solution that

gives minimum can be computed efficiently via solving
a quadratic program.

To simplify to exposition, we use the following abbre-
viations. We use to represent the resistance of that
is not isolated from downstream components, and the
capacitance of that is not isolated from upstream com-
ponents. Take a wire as an example: when , we
have and ; when , we have

and .

Let be the set of the downstream components
not isolated from of and be the set of upstream
components not isolated from . Let be the sum
of upstream resistances and let be

the sum of downstream capacitances .

Let be the sum of the weighted upstream resistances
.

Following the abbreviations, we have

...

This expression can be compactly written as

where , where is the identity matrix,

...
and ...

where .

Observe that is positive definite and so is a convex
function in . It was noted in [7], when the quadratic pro-
gram is convex, it can be solved extremely fast. Here, the
is even simpler (in fact, it is simply an identity matrix multi-
plied by a constant, so no matrix inversion will be required).
Since the program can be solved efficiently, it can be called
with different values of and repeater sizes, so as to pick
the repeater solution which gives minimum .

3.2. Repeater Insertion — by DP

In the previous section, we allowed repeaters to be
placed anywhere on a wire. However, in many scenarios,



Algorithm local-refinement
input: a wire and feasible repeater locations
output: repeater locations and sizes
1. ;
2. for from down to
3. for each solution in
4. ;
5. for each buffer in library
6.

;
7. prune inferior solutions in ;
8. find in that gives minimum

and store at ;
9. construct an optimal repeater solution for based on ;

Figure 3. Algorithm local-refinement.

after placement and routing, repeaters cannot be inserted
arbitrarily. For example, after chip-level module (macro
block) assembly, there are regions corresponding to macro
blocks. A wire may be run over such regions; however, in-
serting repeaters in such regions is forbidden. Therefore,
macro blocks constitute a routing resource but an obstacle
for repeater insertion.

We solve this problem by dynamic programming to find
repeater locations and sizes that minimize under loca-
tion restrictions. We use to represent the set of library
buffers and to represent no buffer. Given a wire ,

are the feasible repeater locations on and
and are the locations of nodes and , respectively.
We represent a repeater solution by partial repeater so-
lutions recursively. A partial repeater solution at is a
quadruple , where is the contribution of
the wire segment, from to , to , is the total
downstream capacitance at , is the selected buffer from

, and is a partial repeater solution at .

Theorem 3.1 A partial repeater solution
is inferior to another partial repeater solution

at a feasible repeater location if (1)
and or (2) and .

Let be the sets of partial repeater solutions,
corresponding to , respectively. Given a wire
, we first store a partial repeater solution in

to characterize the initial cost and the downstream ca-
pacitance at . Following this, we bottom-up generate a
set of candidate partial repeater solutions for each feasi-
ble repeater location . We consider all combinations of the
repeater sizes at and the partial repeater solutions stored
in . Specifically, We generate a partial repeater solu-
tion for each repeater size and downstream repeater solution
combination and store it in . After this, we remove the in-
ferior solutions according to Theorem 3.1 to keep the num-
ber of partial repeater solutions tractable. Among all partial
repeater solutions in , we select the partial repeater solu-

tion that gives the minimum value, and then we
create the partial repeater solution
and store it at . Figure 3 shows our algorithm local-
refinement which solves repeater locations and sizes that
gives minimum under location restrictions.

Theorem 3.2 The partial repeater solution generated by
Algorithm local-refinement constructs an optimal repeater
solution that gives minimum .

4. Algorithm to the Dual Problem

In order to solve the dual problem, we need to compute
, given a fixed set . However, we do not know how

to solve exactly. Thus, we approximate by iterative
greedy local refinement. That is, for each wire we greed-
ily compute the repeater solution that locally minimizes
exactly once. Specifically, for each wire, we first compute
the downstream capacitance and the weighted upstream re-
sistance, and then use them to compute the optimal repeater
solution by Algorithm local-refinement. We iterate this pro-
cess until there is no improvement.

We solve the dual problem as following: we first find a
vector of initial multipliers , which can be any vector in

. After this, we inductively deduce multipliers based on
previous multiplier values and repeater solutions. That is,
we compute from and the repeater solutions for

. Specifically, we compute by (1) for all ,
, (2) for all and

, , and
(3) for all , .
(This is sometimes called sub-gradient update [2]. The step
size is set to .) Following this, we project to the
nearest vector in . Based on , we compute repeater
solutions for . We keep repeating this process until
there is no further improvement.

5. Experimental Results

We implemented our algorithm using DP to solve for
repeater locations and sizes in C and experimented with
it on a 64MB Pentium-II-2.8 running Linux. The experi-
ments are performed on a technology predicted in
NTRS’97 [1]. We have generated a set of placed and routed
network to serve as benchmarks and run our experiments on
them.

Figure 4 shows the sequence of repeater areas of a net-
work consisting of components, of which are wires,
during a delay-constrained repeater area optimization. The
areas are in terms of min-size repeaters. In this experiment,
we observed the repeater area after each updating of multi-
pliers. We see the solutions converge in a stable manners.
In fact, most of the optimization is achieved in the first two
hundred iterations, taking only 200 seconds.
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Figure 4. Area vs. # of iterations.
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Figure 5. Area-delay tradeoff.

Figure 5 shows the repeater area-delay tradeoff of a net-
work consisting of components, of which are wires.
The areas are in terms of min-size repeaters and delays are
in nanoseconds. In this experiment, we varied delay con-
straints, and observed resulting repeater areas. The results
show that a tight constraint yields a result with minimal de-
lay, at cost of a large repeater area. When the delay con-
straint is more relaxed (by increasing the max-delay bound),
we observed that a much less repeater area is required.

6. Conclusion

We address the problem of repeater insertion and sizing
in a placed and routed network to meet user-specified delay
constraints using minimal repeater area. We transform the
problem into an unconstrained optimization problem and
solve it by iterative local refinement. We show that the op-
timal repeater locations and sizes that locally minimize the
objective function in the unconstrained problem can be ef-
ficiently computed. In the future, we plan to experiment
with techniques for meeting delay constraints by minimal
restructuring of the physical design, e.g., simultaneous con-
structing routing tree at the same time as inserting repeaters.
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