
Shared Memory Implementations of Synchronous Dataflow Specifications

Praveen K. Murthy
Angeles Design Systems, San Jose Ca, USA

Shuvra S. Bhattacharyya
University of Maryland, College Park, MD, USA

Abstract

There has been a proliferation of block-diagram environ-
ments for specifying and prototyping DSP systems. These
include tools from academia like Ptolemy [3], and GRAPE
[7], and commercial tools like SPW from Cadence Design
Systems, Cossap from Synopsys, and the HP ADS tool
from HP. The block diagram languages used in these envi-
ronments are usually based on dataflow semantics
because various subsets of dataflow have proven to be
good matches for expressing and modeling signal process-
ing systems. In particular, synchronous dataflow (SDF)[8]
has been found to be a particularly good match for
expressing multirate signal processing systems.

One of the key problems that arises during synthesis from
an SDF specification is scheduling. Past work on schedul-
ing [1] from SDF has focused on optimization of program
memory and buffer memory. However, in [1], no attempt
was made for overlaying or sharing buffers. In this paper,
we formally tackle the problem of generating optimally
compact schedules for SDF graphs, that also attempt to
minimize buffering memory under the assumption that
buffers will be shared. This will result in schedules whose
data memory usage is drastically lower (upto 83%) than
methods in the past have achieved.

1 Introduction
Block diagram environments are proving to be

increasingly popular for developing DSP systems
[1][7][14]. In a block-diagram environment, the user con-
nects up various blocks drawn from a library to form the
system of interest. For simulation, these blocks are typi-
cally written in a high level language like C++. For soft-
ware synthesis, the technique typically used is that of
threading: a schedule is generated, and the code generator
steps through this schedule and substitutes the code for
each actor that it encounters in the schedule. The code for
the actor may be of two types: it may be the HLL code

itself (or behavioral HDL code), obtained from the actor in
the simulation library, or it could be native assembly code.
The overall code may now be compiled for the appropriate
target.

Since the first step in these synthesis flows is the
scheduling of the block diagram, we consider in this paper
scheduling strategies for minimizing memory usage,
where we make use of the restricted control flow in the
SDF specification model. In particular, we describe a tech-
nique for reducing buffering requirements in SDF graphs
based on lifetime analysis and memory allocation heuris-
tics for single appearance looped schedules. Lifetime anal-
ysis techniques for sharing memory are well known in a
number of contexts. The first is for register allocation in
traditional compilers; given a scheduled dataflow graph,
register allocation techniques determine whether the vari-
ables in the graph can be shared by looking at their life-
times. In the simplest form, this problem can be
formulated as an interval graph coloring problem that has
an elegant polynomial-time solution. However, the prob-
lem of scheduling the graph so that the overall register
requirement is minimized is an NP-hard problem. Register
allocation problems are made somewhat simpler because
the variables in question all have the same size. The allo-
cation problem becomes NP-complete if variables are of
differing sizes, as for example, in allocating arrays of dif-
ferent sizes to memory.

In [4], Fabri studies the more general problem of
overlaying arrays and strings in imperative languages. She
models array lifetimes as weighted interval graphs and
uses coloring heuristics for generating memory alloca-
tions. She also studies transformation techniques for low-
ering the overall memory cost; these techniques attempt to
minimize the lower and upper bounds on the extended
chromatic number of the weighted interval graph.

There are important differences between Fabri’s work
and ours. Fabri considers general imperative language

code, and hence has to solve allocation problems for a
more general class of interval graphs. We apply our tech-
niques on SDF graphs, and because the SDF model of
computation is restricted, the interval graphs in our prob-
lem have a more restricted structure, enabling us to use
simpler allocation heuristics more effectively. The SDF
model and SDF schedules present unique problems for
deducing the liveness profiles, and thus the interval
graphs, in an efficient manner; these techniques have not
been presented or studied in any previous work. We show
that for the important class of single appearance schedules,
these deductions can be made in polynomial time in the
size of the SDF graph. We present an optimization tech-
nique for reducing the extended chromatic number by per-
forming loop fusion in a systematic manner; previous
work has not addressed this relationship. While the loop
fusion technique is applicable in a general setting as well,
opportunities for doing it in a general setting do not arise
as frequently and naturally as they do in an SDF setting;
hence, it is a very effective technique here. For example,
determining the applicability of loop fusion is undecidable
in procedural languages; whereas exact analysis is decid-
able and tractable in our context. Finally, even though cer-
tain subsets of the techniques we present in this paper have
been studied in the compilers community, to date they
have not been used in block-diagram compilers. An addi-
tional contribution of this paper is to show that many of
the techniques used in traditional compilers can be special-
ized and applied fruitfully in block diagram based DSP
programming environments.

In a synthesis tool called ATOMIUM, De Greef et al.
have developed lifetime analysis and memory allocation
techniques for single-assignment, static control-flow spec-
ifications that involve explicit looping constructs, such as
for loops [6]. The class of specifications addressed by
ATOMIUM exhibits less predictable array accessing
behavior than the buffer access patterns that emerge from
single appearance schedules. We exploit this increased
predictability in our work using an innovative tree-based
schedule representation. The techniques of ATOMIMUM
provide efficient exact detection of inter-array lifetime
conflicts only in a few restricted cases; in general, an exact
analysis has prohibitive complexity [6]. In contrast, our
techniques provide efficient (polynomial-time) and exact
computation of lifetime interference information between
any pair of SDF buffers (that is, between their address
windows).

Bhattacharyya developed a buffer sharing formulation
in [2], using lifetime analysis and intersection graph con-
struction, for arbitrary schedules (not necessarily SASs).
Since non single appearance schedules can be of exponen-
tial length, lifetime analysis and intersection graph con-

struction has much higher complexity in the formulation
of [2]. Also, in [2], buffer sharing is not allowed at the fine
granularity that is allowed in this paper; for example, peri-
odicity is not taken into account. Finally, no attempt is
made in [2] to drive the scheduling algorithm in such a
way that the total (shared) allocated memory is minimized.

Ritz et. al. [14] give an enumerative approach to mini-
mizing buffer memory that operates only on flat SASs
since buffer memory reduction is tertiary to their goal of
reducing code size and context-switch overhead (defined
roughly as the rate at which the schedule switches between
various actors). We do not take context-switch into
account in our scheduling techniques because our primary
concern is memory minimization as avoiding off-chip
memory is often a bottleneck in embedded systems imple-
mentations.

Sung et. al consider expanding the SAS to allow 2 or
more appearances of some actors if the buffering memory
can be reduced [15]. They also explore ways of combining
procedure calls with inline code for cases where the block
diagram contains multiple instances of the same basic
actor (parametrized differently).

Finally, our work is complementary to the ongoing
work being done to improve compilers for DSPs [9] since
the actor blocks themselves have to be compiled or hand-
coded in assembly language in block diagram synthesis
environments. Our scheduling techniques make use of the
restricted nature of the overall control flow; a general pur-
pose compiler is often unable to exploit these system-level
opportunities since it has no knowledge of the particular
model of computation used for the specification.

2 Notation and background
Dataflow is a natural model of computation to use as

the underlying model for a block-diagram language for
designing DSP systems. The blocks in the language corre-
spond to actors in a dataflow graph, and the connections
correspond to directed edges between the actors. These
edges not only represent communication channels, con-
ceptually implemented as FIFO queues, but also establish
precedence constraints. An actor fires in a dataflow graph
by removing tokens from its input edges and producing
tokens on its output edges. The stream of tokens produced
this way corresponds naturally to a discrete time signal in
a DSP system. In this paper, we consider a subset of data-
flow called synchronous dataflow (SDF) [8]. In SDF, each
actor produces and consumes a fixed number of tokens,
and these numbers are known at compile time. Each edge
has a fixed initial number of tokens, called delays.

 Fig. 1 shows a simple SDF graph. Each edge is anno-
tated with the number of tokens produced (consumed) by

its source (sink) actor, and the “D” on the edge from actor
 to actor specifies a unit delay. Each unit of delay is

implemented as an initial token on the edge. Given an SDF
edge , we denote the source actor, sink actor, and delay
of by , , and . Also, and

 denote the number of tokens produced onto by
 and consumed from by .

A schedule is a sequence of actor firings. We compile
an SDF graph by first constructing a valid schedule — a
finite schedule that fires each actor at least once, does not
deadlock, and produces no net change in the number of
tokens queued on each edge. We represent the minimum
number of times each actor must be fired in a valid sched-
ule by a vector , indexed by the actors in (we often
suppress the subscript if is understood). These mini-
mum numbers of firings can be derived by finding the
minimum positive integer solution to the balance equa-
tions for , which specify that must satisfy

, for every edge
 in .

The vector , when it exists, is called the repetitions vec-
tor of , and can be computed efficiently [1]. We define

 to be the total number of samples exchanged on
edge by actor ; i.e,

.

3 Constructing memory-efficient loop
structures

In [1], the concept and motivation behind single
appearance schedules (SAS) was defined and shown to
yield an optimally compact inline implementation of an
SDF graph with regard to code size (neglecting the code
size overhead associated with the loop control). A single
appearance schedule is one where each actor appears only
once when loop notation is used. Figure 2 shows an SDF
graph, and valid schedules for it. The notation repre-
sents the firing sequence . Similarly, repre-
sents the schedule loop with firing sequence .

Fig 1. Example of an SDF graph.

A B C
2 1 3 1D

A B

e
e src e() snk e() del e() prod e()

cns e() e
src e() e snk e()

qG G
G

G q

prod e()q src e()() cns e()q snk e()()=
e G

q
G

TNSE e()
e snk e()

TNSE e() q snk e()() cns e()⋅=

Fig 2. An example used to illustrate the interaction
between scheduling SDF graphs and the memory
requirements of the generated code.

20 10 1020
A B C

Valid Schedules

(1): ABCBCCC (2): A(2 B(2 C))

(3): A(2 B)(4 C) (4): A(2 BC)(2 C)

(a)

(b)

2B
BB 2B 2C()

BCCBCC

We say that the iteration count of this loop is , and the
body of this loop is . Schedules 2 and 3 in figure 2
are SASs since actors appear only once. An SAS
like the third one in Figure 2(b) is called flat since it does
not have any nested loops. In general, there can be expo-
nentially many ways of nesting loops in a flat SAS

Scheduling can also have a significant impact on the
amount of memory required to implement the buffers on
the edges in an SDF graph. For example, in Figure 2(b),
the buffering requirements for the four schedules, assum-
ing that one separate buffer is implemented for each edge,
are 50, 40, 60, and 50 respectively.

4 Optimizing for buffer memory
The 2-dimensional design space involving code and

data memory requirements of SDF specifications is
extremely complex [1]. We give priority to code-size min-
imization over buffer memory minimization following the
work in [1][10]. Hence, the problem we tackle is one of
finding buffer-memory-optimal SAS, since this will give
us the best schedule in terms of buffer-memory consump-
tion amongst the schedules that have minimum code size.
Following [1] and [10], we also concentrate on acyclic
SDF graphs since algorithms for acyclic graphs can be
used in the general SAS framework developed in [1]. In
particular, the loose interdependence framework of [1]
constructs an SAS for an arbitrary SDF graph by decom-
posing the SDF graph into strongly connected components
recursively. At each step, the resulting acyclic component
graph can be scheduled by any of these algorithms that
operate on acyclic SDF graphs.

If the SAS restriction is removed, significant reduc-
tions in buffer sizes can result, but at the expense of code
size. The increase in code size will manifest itself even if
inline code-generation is not used and subroutine calls are
used instead. This is because the length of a non-SAS can
be exponential in the size of the graph, and there could be
exponentially many subroutine calls.

For an acyclic SDF graph, any topological sort
 immediately leads to a valid flat SAS given by

. Each such flat SAS leads to a set of
SASs corresponding to different nesting orders.

In [10] and [1], the buffering cost is defined as the
sum of the buffer sizes on each edge, assuming that each
buffer is implemented separately, without any sharing.
With this cost function, a post-processing algorithm called
dynamic programming post optimization (DPPO) is given
that organizes a buffer-optimal nested looped schedule for
any given flat SAS (i.e, performs loop fusion optimally on
the flat SAS). Two heuristics are given for generating
good topological orderings, called APGAN (Acyclic Pair-

2
B 2C()

A B C, ,

a b c…
q a()a() q b()b()…

wise Grouping of Adjacent Nodes) and RPMC (Recursive
Partitioning by Minimum Cuts). APGAN is a bottom-up
approach that generates a topological ordering by repeat-
edly clustering adjacent nodes that communicate heavily,
subject to some constraints for ensuring that deadlock is
not created. RPMC is a top-down approach that generates
orderings by dividing the graph recursively via minimum
cuts.

In this paper, we use an alternative cost for imple-
menting buffers. Our cost is based on sharing buffers
based on their lifetimes. We tackle four issues to enable
this optimization: a model for sharing buffers, an algo-
rithm for performing loop fusion with the shared buffer
cost as the objective function, deducing the buffer life-
times from the graph and schedule efficiently, and effec-
tive allocation heuristics for sharing the buffers given a
nested SAS.

5 R-Schedules and the Schedule Tree
As shown in [10], it is always possible to represent

any single appearance schedule for an acyclic graph as

(EQ 1)

where and are SASs for the subgraphs consisting
of the actors in and in , and and are loop fac-
tors for iterating these schedules. In other words, the graph
can be partitioned into a left subset and a right subset so
that the schedule for the graph can be represented as in
equation 1. SASs having this form of the loop hierarchy
are called R-schedules [10].

Given an R-schedule, we can represent it naturally as
a binary tree. The internal nodes of this tree will contain
the iteration count of the subschedule rooted at that node.
The leaf nodes will contain the actors, along with their
residual iteration counts. Figure 3 shows schedule trees for
the SAS in figure 2. Note that a schedule tree is not unique
since if there are iteration counts of 1, then the split into
left and right subgraphs can be made at multiple places. In
figure 3, the schedule tree for the flat SAS in figure 2(b)(3)
is based on the split . However, we could also
take the split to be . The cost function will not
be sensitive to which split is used as they both represent
the same schedule. A somewhat similar tree-like represen-
tation is used for different analysis and optimization objec-
tives in [15].

iLSL() iRSR()

SL SR
SL SR iL iR

1

A 2

B 2C

Fig 3. Schedule trees for schedules in figure 2(b)(2), (3).

1

A 1

2 B 4 C

TBC

A{ } B C,{ }
A B,{ } C{ }

Define to be the iteration count of the node in
the schedule tree. If is a node of the schedule tree, then

 is the (sub)tree rooted at node . If is a
subtree, define to be the root node of .

6 The shared buffer model
Buffer sharing for looped schedules can be done at

many different levels of “granularity”. At the finest level
of granularity, we can model the buffer on an edge as it
grows over the execution of the loop, and then falls as the
sink actor on that edge consumes the data. The maximum
number of live tokens would give a lower bound on how
much memory would be required. An alternative model
would be at the coarsest level, where we assume that once
the source actor for an edge starts writing tokens, a
buffer of size immediately become live, and stays live
until the number of tokens on the edge becomes zero. The
size is simply the maximum number of tokens queued
on that edge in the schedule. In other words, even if there
is one live token on the edge, we assume that an array of
size has to be allocated and maintained until there are
no live tokens. Figure 4 shows these two alternatives pic-
torially.Initial tokens on edges can be handled very natu-
rally in this model by having a buffer be live immediately
when the schedule begins.

In this paper, we assume the coarsest level of buffer
modeling. The finer levels, although requiring less mem-
ory theoretically, are more difficult to represent implicitly
in the lifetime analysis framework we use, and will in gen-
eral have greatly increased complexity due to the non-rect-
angular packing problem involved during memory
allocation. It is important to note that the finest level of
buffer modeling is only infeasible in the lifetime analysis/
graph coloring approach that we use in this paper. We have
presented an algebraic technique called buffer merging
that can be used to capture overlaying opportunities at the
finest level [13]. This technique is similar in spirit to the
array merging technique presented in [6]; however, it is
faster because it exploits distinguishing characteristics of
SDF schedules in a novel way.

lf v() v
v

subtree v() v T
root T() T

e
B

B

B

A B C
3

D
5 5 2 3 5

2(5A 3B) 3(5C 3D)
A
A
A
A
A
B
B
BF

in
e

-g
ra

in
e

d

C
oa

rs
e

-g
ra

in
e

d

Fig 4. The fine-grained and coarse-grained models of
buffer sharing illustrated on edge AB.

15

7 SDPPO formulation
In order to apply loop fusion to reduce the overall

memory cost, we first consider the problem of performing
loop fusion given a topological ordering of the actors in
the SDF graph; this ordering can be generated using the
APGAN or RPMC heuristics for instance. Let the set of
actors be topologically ordered. The
basic idea behind the DPPO formulation is to determine
where the split should occur in this chain of actors, so that
the SAS for it may be represented as

. If and are known to
be optimal for those subchains, then all we have to do to
compute is to determine the where the split
should occur; this is done by examining the cost for each
of these . In order for the resulting to be optimal, the
problem must have the optimum substructure property: the
cost computed at the interfaces (at the split point) should
be independent of the schedules and . If each
buffer is implemented separately, the optimum substruc-
ture property holds and the algorithm is optimal [10].

Formally, in order to compute the minimum buffer
memory requirement associated with an -
actor subchain , we determine a value
of that minimizes

, (EQ 2)

where for all and , the memory cost
at the split if we split the subsequence between and

 is given by [10]:

, (EQ 3)

where gcd denotes the greatest common divisor, and

(EQ 4)

is the set of edges that cross the split.

To take into account the sharing, we modify equation
2 in the following way:

(EQ 5)

Ai Ai 1+ … Aj, , ,

Sij
Sij iLSik() iRSk 1j+()= Sik Sk 1j+

Sij i k j<≤

k Sij

Sik Sk 1j+

b i j,[] r 1+
Ai Ai 1+ … Aj, , ,()

i k j<≤

b i k,[] b k 1+ j,[] ci j, k[]+ +

b x x,[] 0= x ci j, k[]
Ak

Ak 1+

ci j, k[]

TNSE e()
e Es∈
∑

GCD qG Ax() i x j≤ ≤(){ }()
---=

Es e
src e() Ai … Ak, ,{ } AND∈

snk e() Ak 1+ … Aj, ,{ }∈ 
 
 

 
 
 

=

B uffers w ith live

B u ffers on righ t s ide

B uffers on left s ide

Fig 5. The intuition for a revised DPPO formulation.

tokens crossing
the cut.

o f the cut: tokens
cannot be l ive a t the
sam e tim e as buffers
on the left s ide o f cu t.

o f the cut: tokens
cannot be live at the
sam e tim e as buffers
on right side o f the cut.

max b i k,[] b k 1+ j,[],{ } ci j, k[]+

The intuition behind this is shown in figure 5. How-
ever, it can be shown that for this sharing cost function, the
interface cost does depend on what and are,
and hence this DPPO formulation is not optimal. It is a
greedy heuristic that attempts to give a good approxima-
tion to the minimum.

In [10], it is shown that factoring a SAS by merging
loops by the greatest extent possible is not harmful to
buffer memory reduction, and that the buffering require-
ments in a fully factored looped schedule are less than or
equal to the requirements in the non-factored loop. Unfor-
tunately, this does not hold true for the shared cost func-
tion. Hence, we use the following rule of thumb about
when to merge loops: we do not factor a loop if there are
no internal edges (that is, edges whose terminal points are
all actors that are being merged). We factor if there are
internal edges, even though this might sometimes be sub-
optimal.

We name this formulation of DPPO as SDPPO, with
the S referring to “shared”.

8 Deducing the lifetimes efficiently
Given an SAS, we have to solve the problem of deriv-

ing the set of intervals corresponding to the buffer life-
times. Using the schedule tree representation of the SAS,
we can compute the buffer lifetimes efficiently.

For determining the lifetimes, we have to determine
the start time and end time of each buffer. “Time” here is
defined to be a step of execution, where a step is the exe-
cution of invocations of actor in a leaf node of the
schedule tree. For example, in figure 4, the execution of

 would be a step. A buffer can become live many times
during the schedule, and is not necessarily live for a con-
tiguous amount of time; this could happen, for example, if
the buffer is in a nested loop with three or more actors.
However, the pattern with which the buffer becomes live
is “periodic” in the sense that it depends on the iteration
counts of all loops that contain the actors constituting the
edge of the buffer. This periodicity also needs to be deter-
mined for maximum efficiency in sharing unused space. It
would be desirable to represent the periodicity implicitly,
without having to physically create an interval for each
occurrence. For allocating periodic intervals, we assume
that all instances of a particular lifetime are allocated at the
same block of memory. Hence, it suffices to allocate the
first instance.

Define a parent node of a buffer to be any node in
the schedule tree that is the root of a subtree containing the
nodes that constitute the edge on which is located. The
start and end times can be computed using depth first
search on the schedule tree. First, the duration times,

Sik Sk 1j+

lf v() v

5C

b

b

, are computed for all nodes (i.e, loop nests) in
the schedule tree by depth-first-search on the tree:

(EQ 6)

where () is the right (left) child of node
. For leaf nodes, . The start and stop times

are computed from the leftmost node in the tree; for a left
child, it is and for a right
child, . The stop time
is given by .

To determine the periodicity, the iteration counts of all
parent nodes of the buffer is determined. In addition, the
function for each
of these parent nodes is computed. Given these numbers, it
is possible to characterize the intervals where a buffer is
live by the vector equation:

,

where is a vector of the values, ranges over all
non-negative vectors , and is the vector of itera-
tion counts of the parent nodes. Using this characteriza-
tion, it is possible to determine if two periodic buffers
intersect (are live simultaneously) efficiently.

Once the above parameters have been computed, we
can construct an intersection graph where there is a node
for each buffer, and an edge between two nodes iff the cor-
responding buffers intersect.

9 Dynamic storage allocation (DSA)
This is the problem of actually allocating memory to a

set of buffers whose sizes and lifetimes are all known. For-
mally, the DSA problem is the following (we assume non-
periodic buffers for clarity; the definition can be easily
extended to handle the above periodic case using the effi-
cient periodicity modeling discussed in section 8):

Definition 1: Let be the set of intervals (corresponding
to the buffers on each edge). For each , is the
time at which it becomes live, is the time at which it
dies, and is the size of interval . Given the
values for each , and an integer , is there an allo-
cation of these intervals that requires total storage of
units or less? By an allocation, we mean a function

 such that for
each , and if two intervals and intersect; i.e,
if or , then

 or .

DSA is NP-complete even if all the widths are 1 and 2 [5].

First fit (FF) is the well-known algorithm that per-
forms allocation for an enumerated interval instance by
assigning the smallest feasible location to each interval in
the order it is presented to FF. It does not reallocate inter-

dur v() v

dur v() lf v() dur left v()() dur right v()()+()=

right v() left v()
v dur v() 1=

start v() start parent v()()=
start v() stop left parent v()()()=

stop v() start v() dur v()+=

D v() dur left v()() dur right v()()+=

start b() aT p start b() aT p dur b()+⋅+,⋅+[]

a D v() p
p L< L

B
b B∈ s b()

e b()
w b() b s e w, ,

b B∈ K
K

A:B 0 … K 1–, ,{ }→ 0 A b() K w b()–≤≤
b B∈ b1 b2

s b1() s b2() e b1()≤≤ s b2() s b1() e b2()≤≤
A b1() w b1() A b2()≤+ A b2() w b2() A b1()≤+

vals, and it does not consider intervals not yet assigned. It
runs in time .

9.1 FF experimental results

We tested FF on thousands of random instances and
compared it to the maximum clique weight (MCW) [12].
The MCW is a lower bound on the allocation achievable;
it is the maximum clique weight in the associated intersec-
tion graph. We found that FF ordered by arrival times gave
a packing of 1.1x the MCW on average, and 1.5x the
MCW in the worst case. For FF ordered by decreasing
durations, the results were 1.05x on average and 1.4x in
the worst case. So FF by durations works very well in
practice, and is very close to the lower bound on average.
Based on these results, we also conclude attempting to
improve upon the FF heuristic will have a very small pay-
off since FF is already very close to optimum in practice.

10 Experimental results
We have tested these algorithms on several practical

benchmark examples; table 1 shows these results. The

entire suite of algorithms can be shown to run in time
, where is the number of actors in the SDF

graph. The first three systems are quadrature mirror filter-
bank systems used for audio and image coding. The fourth
example is a satellite receiver from [14]. The last three
examples are a block vocoder, an overlapped-add FFT
implementation, and a phased array system for detecting
signals. The second column gives the better DPPO cost
when applied to the RPMC and APGAN schedules. This
column represents the best cost obtainable when no buffer
sharing is used. The third column gives the costs given by
the modified DPPO algorithm for the shared buffer model
(again, the better of APGAN and RPMC generated sched-
ules). The fourth column (mco) gives a lower bound on the
allocation achievable for the schedule of column three.
This lower bound is essentially an estimate of the MCW of

Table 1. Performance on practical systems

 dppo sdppo mco shd % Imp

q23 1271 498 489 492 61.3

q12 342 72 56 58 83.0

q235 8967 5690 5560 5690 36.5

satrec 1542 1200 960 991 35.7

blVox 409 138 130 135 67.0

FFT 1222 704 514 514 57.9

phArr 2496 2075 2064 2071 17.0

O N2 N()log⋅()

O N3() N

the interference graph of the buffer lifetimes obtained
from the schedule in column 3. While the MCW can be
computed efficiently for instances of DSA where the
buffer lifetimes are not fragmented, it apparently cannot
be computed exactly when the lifetimes are fragmented.
However, we can efficiently compute optimistic and pessi-
mistic bounds for the MCW; the column mco gives opti-
mistic lower bounds meaning that the actual MCW cannot
be smaller than the mco value. Hence, the mco is a lower
bound on the allocation achievable. The fifth column gives
the best shared implementation by applying the two forms
of FF on the schedules generated by APGAN and RPMC,
each post-processed by the SDPPO algorithm. As can be
seen, the improvement of the techniques in this paper over
previous work is on average more than 50% (last column),
and as high as 83%.

Unlike most previous SDF loop scheduling tech-
niques for buffer memory reduction, the techniques
described in this paper are also effective for homogenous
(where) SDF graphs because of the
allocation techniques.

11 Conclusion
In this paper, we have developed a powerful SDF

compiler framework that improves upon previous efforts
dramatically. By incorporating lifetime analysis into all
aspects of scheduling and allocation, the framework is
able to generate schedules and allocations that reuse buffer
memory, thereby reducing the overall memory usage. New
techniques we have developed include a model of buffer
sharing, a new dynamic programming formulation that
post-processes flat single appearance schedules, several
polynomial-time algorithms for extracting the buffer life-
times from this post-processed single appearance sched-
ule, and heuristics for the NP-complete problem of
memory allocation of periodic, arbitrary width intervals.
All our algorithms are polynomial-time algorithms in the
size of the SDF graph. We have presented extensive exper-
imental results on the performance of this suite of tech-
niques on practical systems. We have shown that the
improvement over previous techniques on practical sys-
tems averages more than 50%. A much more detailed
treatment of the work presented in this paper can be found
in [11] and [12].

12 References
[1] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Syn-

thesis from Dataflow Graphs, Kluwer, 1996.
[2] S. S. Bhattacharyya, E. A. Lee, “Memory Management for

Dataflow Programming of Multirate Signal Processing
Algorithms,” IEEE Transactions on Signal Processing,
Vol. 42, No. 5, pp. 1190-1201, May 1994.

prd e() cns e() e∀=

[3] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy:
a Framework for Simulating and Prototyping Heteroge-
neous Systems”, Intl. J. of Computer Simulation, Jan 1995.

[4] J. Fabri, Automatic Storage Optimization, UMI Press,
1982.

[5] M. C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press, 1980.

[6] E. De Greef, F. Catthoor, H. De Man, “Array Placement for
Storage Size Reduction in Embedded Multimedia Sys-
tems,” Intl. Conf. on Application Specific Systems, Archi-
tectures, and Processors, pp. 66-75, July 1997.

[7] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete.
“Geometric Parallelism and Cyclo-static Data Flow in
GRAPE-II.” Proc. IEEE Wkshp Rapid Sys. Proto., 1994.

[8] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Syn-
chronous Dataflow Programs for Digital Signal Process-
ing,” IEEE Transactions on Computers, Feb., 1987.

[9] P. Marwedel, G. Goossens (editors), Code Generation for
Embedded Processors, Kluwer, 1995.

[10] P. K. Murthy, S. S. Bhattacharyya, E. A. Lee, “Joint Code
and Data Minimization for Synchronous Dataflow
Graphs,” J. on Formal Methods in Sys. Design, July 1997.

[11] P. K. Murthy, S. S. Bhattacharyya, “Shared Memory Imple-
mentations of Synchronous Dataflow Specifications Using
Lifetime Analysis Techniques,” UMIACS TR-99-32, Uni-
versity of Maryland, College Park, June 1999. http://
www.cs.umd.edu/TRs/TRumiacs.html

[12] P. K. Murthy, S. S. Bhattacharyya, “Approximation Algo-
rithms and Heuristics for the Dynamic Storage Allocation
Problem,” UMIACS TR-99-31, Institute for Advanced
Computer Studies, University of Maryland, College Park,
June 1999. http://www.cs.umd.edu/TRs/TRumiacs.html

[13] P. K. Murthy, S. S. Bhattacharyya, “Buffer Merging—A
Powerful Technique for Reducing Memory Requirements
in SDF Specifications,” Proc. ISSS, Nov. 1999.

[14] S. Ritz, M. Willems, H. Meyr, “Scheduling for Optimum
Data Memory Compaction in Block Diagram Oriented
Software Synthesis,” ICASSP 95, May 1995.

[15] W. Sung, J. Kim, S. Ha, “Memory Efficient Synthesis from
Dataflow Graphs,” Proc. ISSS, Hinschu, Taiwan, 1998.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

