Functional Test Generation for Full Scan Circuits

Irith Pomeranz and Sudhakar M. Reddy
Electrical and Computer Engineering Department
University of lowa
lowa City, 1A 52242, U.S.A.

Abstract specify a faulty next-state or output combination as part of the
We study the effectiveness of functional tests for full scan cir- fault model, since any faulty value will be detected.

cuits. Functional tests are important for design validation, and For a circuit withNgr states andNp,c primary input com-

they potentially have a high defect coverage independent of thebinations, the number of state-transitionligNp,c. Therefore,
circuit implementation. The functional fault model we consider a test set that tests each state-transition separately contains
consists of single state-transition faults. The test generation proNgtNpc tests, and requireblstNpc +1 scan-in and scan-out
cedure we describe uses one of two approaches at any given timgperations. Here, we use the following terminology. A test

in order to minimize the number of tests while minimizing the starts and ends with a scan operation, and consists of one or
test application time. (1) It may use scan to set the state of thanore primary input combinations applied between the scan oper-
circuit, and observe fault effects propagated to the next-stateations. The length of a test is the number of primary input com-
variables. (2) It may use transfer sequences to set the circuibinations it applies between the scan operations. When each
state, or unique input-output sequences to propagate fault effectstate-transition is tested by a separate test, the length of each test
to the primary outputs. We present experimental results tois one.

demonstrate the effectiveness of scan-based functional tests. In the procedure proposed here, we attempt to reduce the
. number of tests and the number of scan operations by testing
1. Introduction several state-transitions by the same test. In this way, we achieve

We study the effectiveness of functional testing of full scan cir- several goals. (1) The circuit is tested at-speed during the appli-
cuits. Functional test generation is useful for several reasonscation of test sequences whose length is larger than one. This
(1) It can be used for design verification and validation. In thesemay contribute to the detection of delay defects that are not
applications, full scan can be simulated if it is not already part of detected if each state-transition is tested separately. (2) Longer
the circuit description. (2) It results in a test set that is indepen-test sequences also help reduce the number of scan operations
dent of the circuit implementation, and is expected to be effec-required, and thus the test application time. To achieve these
tive for any implementation. The test set can be generated agoals, we use a functional counterpart of the techniques
early design stages, before an implementation is selected, and described next.
remains valid as the implementation evolves throughout the Test generation procedures for gate-level scan designs
design process. (3) The test set is effective in detecting defectshat attempt to minimize the number of scan operations were
of various types, more than a test set generated for a specifigescribed in [4]-[6]. These test generation procedures decide
gate-level fault model, and more than if scan is not available.whether to continue applying input combinations in order to acti-
We discuss this point with respect to the specific functional fault vate and propagate fault effects, or scan-out the state and scan-in
model we use later on. a new state, based on the number of clock cycles required to
The circuits we consider are described by state tables, andletect target faults. In [7], a static compaction procedure was
the functional fault model we target is the single state-transitionproposed for scan designs described at the gate-level. The proce-
fault model [1]-[3]. Under this model, any single state-transition dure of [7] starts from a given set of tests, and reduces the num-
may result in a faulty next-state or output combination. However, ber of scan operations pmbiningas many tests as possible.
the proposed methodology can be extended to other functionaCombining two tests; andr; results in the removal of the scan-
descriptions. out operation at the end qf, and of the scan-in operation at the
Given a functional description of a circuit in the form of a beginning ofr;. The procedure of [7] attempts to combine every
state table, and given that full-scan will be used for the circuit, it pair of tests, and accepts all the combinations that do not reduce
is possible to test every state-transition as follows. Consider athe fault coverage.

state-transitiors, — s; from a states; under an input combina- _For the functional description considered in this work, our
Bi goal is to develop a test generation procedure that detects as
tion a;, with next states; and output combinatiof;. It is possi- many state-transition faults as possible by the same test. When

ble to test this state-transition by scanning-in the initial Sate
applying the primary input combinatiam;, observing the pri-
mary output combination, and scanning-out the next-state. If thewe need to guarantee that any change in the nextsstalige to
output combination is different frorg; or the next-state is dif- a fault will be detected. We achieve this by using unique input-
ferent froms;, a fault is detected. Note that it is not necessary to output sequences [1] (to the extent that the selected unique input-
output sequences are not aliased due to faults). A unique input-
+ Research supported in part by NSF Grant No. MIP-9725053. output sequence for a stasedistinguishess from every other
state in the circuit. More accurately, let the output sequence pro-

a
we do not scan-out the state following a state transﬁi%ﬁ Sijs
]

duced by the circuit in response to input sequelhaghen the Table 1: State table ofiion
circuit starts in stats be B(A, s). The sequenc®, is a unique
input-output sequence for staté B(Ds, s) # B(Ds, §) for every
state§ £ s.

NS zfor x;x, =
PS| 00 01 10 11

. 0 /00 11 00 00
The functional tests produced by the proposed procedure 1 11 11 31 00

have the following form. An initial stats _ is scanned-in. An

. L . . 0 L 2 21 21 31 31

input combinatiory is applied to test the state-transition from 3 11 21 31 31

s, undera;,. Let the next-state of this state-transitionshg,. If o ’ ' o .

S,,j, does not have a unique input-output sequence, then the gen- Unique input-output sequences fbon are shown in
eration of the test must stop, and the final state must be scanned@ble 2. For state 0, the input sequence (00) distinguishes state 0

out. Otherwise, i ;, has a unique input-output sequeiizg (that prodtéces an output of I0) frofml)evsr):j oth?]r state (all ot?oeor)
: .) tates produce an output value of 1). Under the sequence ,
we may apply this sequence and avoid the scan operation. W e final state starting from state O is also state 0. The final state

discuss the considerations behind the decision to abg!)yo is ai - .

]) . given in the last column of Table 2. For state 1, a unique
below. For now, suppose that this sequence is applied. Let thgnput-output sequence does not exist. To see this, we observe that
final state reached after applyiby, , bes;,. We can now testa starting with an input combination 00, it will not be possible to
state-transition starting frorg,, if one exists that has not been distinguish state 1 from state 3; starting with an input combina-
tested yet. For this purpose, we apply an input combinatjgn tion 01 or 11, it will not be possible to distinguish state 1 from
followed by the unique input-output sequence for the next-statestate 0; and starting with an input combination 10, it will not be
s,j,, if it exists. Consequently, the test sequence has the follow-possible to distinguish state 1 from state 2 or 3. For state 2, the

ing form. input combination 00 distinguishes it from state 0, takes states 1
o Dg . Ds « and 3 to state 1, and takes state 2 to state 2. Applying the input
io Sioio i1 i1i1 i2 L . . L 7 .
Sy — Sigio — Sy — Sujy — S, = Sy, combination 11 following the input combination 00 distinguishes
During the test generation process, tketh state- states 1 and 2. This results in the unique input-output sequence

transition tested ends in stag, . Assuming that a unique input- (00,11) for state 2. Under the sequence (00,11), the final state

output sequenc®,, exists, we need to decide whether or not starting from state 2 is state 3. State 3 .does not have a unique

t0 apolv it. Su oské tha), takes the circuit into sta®, _. If input-output sequence. In general, we find at most one unique
ppy. - =>upp Sikik - ket input-output sequence for every state, and use it throughout the

there exists a yet-untested state-transition ous; gf Dy, is test generation process.

applied. If all the state-transitions out ®f,, have been tested, Table 2: Unique input-output sequences folion

one of two options is taken. We look for a transfer sequence

" : > state | unique| f.state
froms, , to a state5, ,, that still has untested state-transitions. If

. . 0 00 0
a transfer sequence can be foubd, is applied and test gener- 1) .
ation continues with the transfer sequence, and an input combi- 2 00 11 3
nation a;,,, that takes the circuit through a yet-untested state 3 - -
transition. If a transfer sequence cannot be found, test generation . o i)
stops at stats, ;,, and the final state is scanned out. During the derivation of unique input-output sequences,

q we limit the length of a sequence to be at mgswherelL is a

We control the overall number of clock cycles require o h
Y d d constant. The reason for this is as follows. A scan-in/scan-out

for test application (including the time for scan-in/scan-out an) . :
the time for application of primary input combinations) by CPeration requiredls, clock cycles, wherdlsy is the number of
restricting the length of the unique input-output sequences westate variables. The application of a unique input-output

allow, and the lengths of the transfer sequences. For a state th quenced; of Iength L requiresL CI.OCk cycles. Assuming that
does not have a unique input-output sequence, it is possible t e clock controlling the scan chain has the same cycle time as

f n with h n istinauishin e clock controlling_ th(_a circuit, we need to uke l_lsv to
use a subset of sequences, with each sequence distinguishing tensure that the application &f; does not take more time than

state from a different subset of states. We do not explore this - t a stat d L tate. The lenath of
option here. The number of clock cycles required for test app”_sbcannlngl;ou atsse an schan?lngf-ntw a n;ew state. The leng Od
cation is discussed in more detail later. s may have to be even shorter if transfer sequences are use

- . . . during the construction of the tests. However, we may also allow
Functional test generation for state-transition faults in g ! y

non-scan designs was shown in [2] and [3] to result in high cov- D; to be longer tharsy in order to take advantage of at-speed

erage of qate-level stuck-at faults. Full-scan is expected 1o aIIOWtesting when tests include multiple state-transitions. In addition,
9 9 o pect there are cases where scan is done at a slow speed. If the scan
complete fault coverage to be achieved by functional tests.

Exoerimental results reported below suoport this claim clock is M times slower than the circuit clock, unique input-
P P pp : output sequences and transfer sequences th &érees longer

In the following sections, we present an example {0 can he accommodated without increasing the test application
demonstrate the proposed procedure. We then provide expefigme.

mental results to show the number of tests obtained, and the cov-

S Next, wi nstr for singl -transition faults in
erage of gate-level stuck-at faults and bridging faults. ext, we construct tests for single state-transition faults

lion using the unique input-output sequences of Table 2. We start
2. The procedure the first test with the state-transition-00. We follow it by the

In Table 1, we show the state table of MCNC finite-state Unique input-output sequence of state 0, which is (00). The final
machine benchmarlion. The machine has four states labeled 0, state is state 0, and we can test another state-transition starting

1, 2 and 3, two inputs and one output. The input and output valfrom state 0. For this purpose, we add the state-transitiorL0
ues are given as binary values. State 1 does not have a unique input-output sequence, and we

stop the construction of the test at this point. We will verify that Next, we consider the detection of faults in a gate-level imple-
state 1 is reached by scanning-out the last state. Our first test imentation ofion.

70 =(0, (00,00, 01), 1), with initial state O, test sequence If all the functional tests are of length one, then the func-
(00,00,01), and final state 1. Up to this point, we considered thetional test set is equivalent to an exhaustive test set for the com-
binational logic of the circuit. In this case, the test set is guaran-
teed to detect every fault that does not increase the number of
10 circuit states. However, delay faults that require at-speed testing
transition 0— 0. We follow it by the unique input-output are not guaranteed to be detected. When longer tests are used,
sequence of state 0, which is (00). The final state is state 0, anthe likelihood of detecting delay faults is increased; however, it
we can test another state-transition starting from state 0. For thigs possible that a gate-level fault would remain undetected even

purpose, we add the state-transition @. If we add the unique If it does not require at-speed testing. This is because some gate-
level faults are equivalent to multiple state-transition faults, and

input-output sequence for state 0, we will end up in state 0 again.

There are no additional state-transitions to test out of state o€ not detected by tests for single state-transition faults, even if

Therefore, we check whether a transfer sequence exists fronmihe tests detect all the single state-transition faults. However, due
state 0 into a state with untested state-transitions. We find that ifo the use of scan, this is expected to be rare. We use fault simu-
is possible to take the circuit from state O to state 1 by applying ation on the gate-level circuit to determine the coverage of gate-

the input combination 01. Therefore, we apply the unique input- |€V€l non-delay faults belonging to two fault models, stuck-at
faults and bridging faults.

.01
output sequence of state 0, then take the state-transitiori O We observe that not all the tests may be necessary to

into state 1, followed by the state-transition 11 that has not detect gate-level faults. To eliminate unnecessary tests, we simu-
been tested yet. State 1 does not have a unique input-outpUdte the tests in decreasing order of length, where the length of a
sequence, and we stop the construction of the test at this pointest is the number of primary input combinations it includes. The

Our second test is; = (0, (10, 00, 11, 00, 01, 00), 1). Up to this Premise behind this order is that longer tests detect more faults,
and it will be possible to remove a large number of short tests by

starting from the longer ones (the removal of each test results in

state-transitions 8? 0 and ch 1.
We start the construction of the second test with the state

. . .. 00 01 10
point, we considered the state-transitions @, 0 —~ 1, 0 - 0O,

0 o 0 and 103 1. the removal of a scan operation regardless of the length of the
) .. 01 . test, thus reducing the test application time). The results of
We skip over the state-transition -L11. This state- gy ck-at fault simulation fdion, using the testsy, - - -, 75 gener-

transition ends in state 1 that does not have a unigue input-outpUWiaq aphove. are shown in Table 3. The circuit has 40 stuck-at
sequence. Consequently, considering it next will result in a testgy 1. The tests in Table 3 are ordered by the order of simula-
sequence of length one, (1,(01),1). By postponing its considerasjon from the longest to the shortest. For every test, we show its

tion, it is possible that it will be tested later as part of anothe_r teStIength, and the total number of stuck-at faults detected after it is
of length larger than one. In general, we postpone the consideragjmyated. In the last column, we mark the test as effective if

a
tion of a state-transitios, — s; as the first state-transition of a any new faults are detected when it is simulated. Of the nine

test ifs; does not have a unigue input-output sequence. functional tests we generated, four tests are needed to detect all
1 the stuck-at faults in the circuit. None of the length one tests is
The third testz,, starts from the state-transition_1 0. required in this case.
We add the unique input-output sequence for state 0 that takes us Table 3: Stuck-at fault simulation for lion
back to state 0, followed by the transfer sequence (01) into state .
ot i test | length detected effective
1. We now test the state-transition-11. The final state, 1, does 7a 7 17 1
not have a unique input-output sequence. Therefore, we must 7 6 37 1
scan out the final state. We haye= (1, (11, 00, 01, 01), 1). 7 4 39 1
The construction ofr; starts with the state-transition I3 4 40 1
00 . .
2 5 2, and followed by the unique input-output sequence of To 3 40 0
state 2, which is (00,11). The final state is 3, and we test the state Ts 1 38 8
T
transition 3% 1. We obtairr; = (2, (00, 00, 11, 00), 1). r 1 40 0
The construction ofr, starts with the state-transition Tg 1 40 0

2 % 2. We add the unique input-output sequence (00,11) of state

2, and end at state 3. Next, we test the state-transitior23We 3. Experimental results
add the unique input-output sequence (00,11) of state 2, and endihe results of tlhe pfOEEdlfre dﬁscrifbecri] above are reported in this
. ... 10 section. We limit the length of the unique input-output
at state _3 again. Next, we test the state-transition 3 We sequences to be at most equal to the number of state variables,
obtainz, = (_2' (01,00, 11,01, 00, 11, 10)_’ ?’)‘ . and we limit the length of the transfer sequences to be at most
The final four tests for the remaining state-transitions are gpe |n selecting these parameters, we use the following consid-
75 = (1,(10),3), 76 = (2,(10),3), 77 = (2,(11),3) andrg = erations. Allowing longer unique input-output sequences and
(3, (12),3).) o] longer transfer sequences will allow us to obtain longer test
The tests obtained above foion include every single sequences that test more state-transitions by the same test. This
state-transition in its state table (We do not claim that all the Sin-is advantageous for at-speed testing that enhances the detection
gle state-transition faults are detected, since faults may affect thef delay defects. However, it may also increase the test applica-
unique input-output sequences; however, this is expected taion time since the application of a unique input-output sequence
affect the coverage of SIngIe state-transition faults onIy rarely).f0||owed by a transfer sequence may take a larger number of

clock cycles than that required for scanning out the final stateunder subcolumnlén. On the average, less than 50% of the
and scanning in a new initial state. The parameters we chosatate-transitions are tested by tests of length one. The other state-
ensure that a unique input-output sequence followed by a transtransitions are tested by tests that detect at least two state-
fer sequence will require at most one clock cycle more thantransitions.

scanning out a state and scanning in a new state; in most cases, Table 5: Functional test generation

fewer clock cycles will be required. Thus, the test application funct tests
time will not be increased, or not be significantly increased, Yet circuit trans tests len) 1len time
several state-transitions will be tested by the same test. bbara 556 505 134 6378 5.10
In Table 4, we show the parameters of the circuits we con-) .
sider. After the circuit name, we show the number of primary bg;s;;a 20;28 152185 2%{4 7%2(‘)20 35(.)%)8
inputs. We then show the number of states, and the number OEeecount 64 32 153 40' 62 0 04
states for which unique input-output sequences were found. 2048 1436 3141 59.96 60.06
Next, we show the number of state variables of the circuit, anddk14 64 51 82 64 66 0 (')3
the maximum length of any unique input-output sequence. lndk15 32 11 76 15.62 0'01
the last column of Table 4, we show the time to generate unique ' '
input-output sequences. Time is given in seconds on an HP J21 k16 128 63 slr 26,56 0.22
workstation. k17 32 20 53 43.75 0.01
Table 4: Circuit parameters gtgz ég 2% é% ?ég%% %%11
circuit pi | states uniqueg sv m.lep time dvram 16384 12088 33891 61.71 907.91
bbara 4 16 4 4 4 11.49 ex2 128 93 256 53.91 0.12
bbsse 7 16 13 4 3 7.64 ex3 64 41 130 54.69 0.04
bbtas 2 8 1 3 3 0.08 ex4 512 384 1006 55.86 0.83
beecount 3 8 5 3 3 0.05 ex5 32 17 73 21.88 0.01
cse 7 16 15 4 3 36.21 ex6 256 76 501 15.23 0.63
dk14 3 8 1 3 1 0.08 ex7 64 44 125 57.81 0.04
dk15 3 4 3 2 2 0.02 fetch 16384 11347 26100 55.40 1272.69
dk16 2 32 23 5 3 4.70 keyb 4096 3528 5312 82.35 172.71
dk17 2 8 6 3 2 0.03 lion 16 9 28 25.00 0.00
dk27 1 8 5 3 3 0.01 lion9 32 22 56 46.88 0.01
dk512 1 16 6 4 4 0.14 log 16384 11520 34560 51.42 533.81
dvram 8 64 48 6 6| 5649.94 mark1l 256 109 653 35.16 0.38
ex2 2 32 14 5 4 2.36 mc 32 9 57 25.00 0.01
ex3 2 16 10 4 3 0.26 nucpwr 262144| 172032 446464 44.53 373906.81
ex4 5 16 9 4 4 18.98 opus 512 378 698 54.10 0.23
ex5 2 8 7 3 3 0.08 rie 16384 11037 31457 57.50 2311.50
ex6 5 8 8 3 1 0.11 shiftreg 16 13 27 75.00 0.00
ex7 2 16 10 4 3 0.29 tav 64 33 125 25.00 0.01
fetch 9 32 24 5 4 473.35 trainl1l 64 53 93 65.62 0.02
keyb 7 32 21 5 4 266.42 average 48.59
lion 2 4 2 2 2 0.00
lion9 2 38 2 3 2 0.01 In Table 6, we report on the coverage of stuck-at faults
log 9 32 13 5 5 639.51 and bridging faults in gate-level implementations. Under col-
markl 4 16 12 4 4 2.82 umns. a. tsts we show the number of tests effective in detecting
me 3 4 4 2 1 0.00 gate-level stuck-at faults, followed by the total length of all these
nucpwr 13 32 20 5 5| 1887.44 tests. Under columms. a. faults, we show the total number of
opus 5 16 7 4 1 278 stuck-at faults, the number of faults detected by the generated
rie 9 32 28| 5 5| 3042.78 tests, and the fault coverage. All the circuits with lower than
shiftreg 1 8 8 3 3 0.01 100% fault coverage have combinationally redundant faults that
tav 4 4 21 2 2 0.07 cannot be detected under full-scan. All the detectable faults in all
train1l 2 16 2 4 3 0.11 the circuits are detected by the proposed procedure. It can be

In Table 5, after the circuit name, we show the number of

seen that relatively small numbers of tests are required.
Under columndridg. tstsandbridg. faultsof Table 6, we

state-transitions. This is also the number of tests if each stateshow the results of simulating gate-level bridging faults under
transition is tested by a separate test. Under coléumot tests
we show the results of functional test generation by the proposedridging faults between every pair of lingsandg, that satisfy
procedure. We show the number of tests, and the total length othe following conditions. (1)g; and g, are outputs of multi-

all the tests. Next, we show the percentage of state-transitionsnput gates. (2, andg, are inputs of different gates. (3) There
tested by tests of length one (such tests detect a single statés no path in the circuit frorg, to g, or fromg, to g;. We con-
transition). Finally, we show the test generation time. Compar- sider both AND-type and OR-type bridging faults between every
ing the number of tests to the number of state-transitions, it cansuch pair of lines. It can be seen that for most of the circuits, the
be seen that the proposed procedure succeeds in testing seververage of bridging faults is 100%. For the remaining circuits,
state-transitions by the same test. This can also be seen from thge verified by simulating an exhaustive test set for the combina-
percentage of state-transitions tested by tests of length one, givetional logic of the circuit that all the bridging faults that remain

the functional tests generated here. We consider non-feedback

Table 6: Simulation of gate-level faults clock) exceeds the number of state variables (which is the num-
ber of clock cycles for scan-in/fout). This can be corrected by

- s-atsts s-afaults b”dg'tT bridg.faults restricting the lengths of the unique input-output sequences as
circuit tsts len| tot det f.c.| tsts le tot det f.c. K R
discussed above, or eliminating transfer sequences, as we show

bbara 29 133 138 138 10000 9 |85 192 192 100.00 pelow.
bbsse | 36 765 238 238 100,00 15 673 656 656 100.00 Table 7: Numbers of clock cycles
bbtas 12 2 63 63 100.00 6 2 64 64 100.00
beecount 5 98 112 110 98p1 2 (83 166 166 100.00 funct.tests s.a.tests bridg.tests
cse 42 959 357 355 99.44 20 703 1604 1597 99.56 Circuit trans | cycles % | cycles %| cycles %
dk14 29 6Q 208 207 99.52 13 0 362 362 100.00 bbara 1284 1246 97.04 253 1970 125 10.03
dk15 8 69 151 151 100.00 2 0 140 140 100.00 bbsse 10244 8978 87.64 913 891 737 821
dk16 30 266 532 530 99.62 8 1b9 1942 1942 100.00 bbtas 131 131 100.00 67 51.15 43 32.82
dk17 10 43 128 128 100.00 2 4 120 120 100.00 beecount 259 252 97.30 111 42.86 92 36.51
dk27 2 22 67 67 100.00 1 8 50 50 100.00 cse 10244 8889 86.77 1131 1104 787 8.85
dk512 14 41 124 124 100.00 2 7 136 136 100.00 dki4 259 238 91.89 150 57.92 82 34.45
dvram 18 696 425 425 100.00 19 26 2672 2672 100.00 dk15 98 100 102.04 87 88.78 46 46.00
ex2 27 148 312 312 100.00 6 4 802 799 99.63 dkl16 773 637 8241 421 5446 214 33.59
ex3 10 82 153 153 100.00 1 2 242 241 99.59 dk17 131 116 88.55 76 58.02 33 28.45
ex4 20 248 176 176 100.00 9 231 288 288 100.00 dk27 67 67 100.00 31 46.27 24 35.82
ex5 9 42 152 138 90.719 6 9 210 210 100.00 dk512 164 162 98.78 101 61.59 29 17.90
ex6 9 324 229 229 100.00 6 310 660 658 99.70 dvram 114694 106425 92.79 810 0/71 946 0.89
ex7’ 15 85 160 159 99.38 5 1 238 238 100.00 ex2 773 726 93.92 288 37.26 109 15.01
fetch 34 863 345 342 99.13 44 1628 1564 1564 100.00 ex3 324 298 9198 126 38.89 60 20.13
keyb 62 1161 470 470 100.00 30 1084 3194 3177 99.47 ex4 2564 2546 99.30 332 12.95 271 10.64
lion 4 21 40 40 100.00 4 1 18 17 94.44 ex5 131 127 96.95 72 54.96 60 47.24
lion9 7 32/ 62 59 9516 3 5 52 51 98.08 ex6 1027 732 7128 354 34.47 331 45.22
log 24 1141 313 312 99.68 37 1685 1618 1617 99.94 ex7 324 305 94.14 149 45.99 95 31.15
markl 9 400 204 203 99.51 4 392 532 532 100.00 fetch 98309 82840 84.26 1038 1.06 1853 2.24
mc 3 51 73 73 100.00 2 0 54 54 100.00 keyb 24581 22957 93.39 1476 6.00 1239 5.40
nucpwr | 39 300 447 447 100.00 91 52 3238 3237 99.97 lion 50 48 96.00 31 62.00 31 64.58
opus 22 97 181 181 100.00 14 82 452 451 99.78 lion9 131 125 95.42 56 42.75 37 29.60
rie 42 1145 552 548 99.28 58 1876 4214 4213 99.98 log 98309 92165 93.76 1266 1.29 1875 2.03
shiftreg 2 1 28 28 100.900 1 5 8 8 100.00 markl 1284 1093 85.12 440 34.27 412 37.69
tav 2 62 64 64 100.00 2 4 86 86 100.00 mc 98 77 78.57 59 60.20 56 72.73
train1l | 11 39 104 104 100.00 6 2 132 132 100.00 nucpwr | 1572869 1306629 83.07 500 0j03 1212 0.09
undetected are undetec_table._ Thus, comple@e coverage O?izus 9823?(?; ségi;l ggfi 1;28 Zig 21‘7% 24511
detectable bridging faults is achieved for all the circuits. shiftreg 67 69 102.99 o5 3741 21 3043

In Table 7, we show the numbers of clock cycles required {5, 194 193 99.48 68 35.05 70 36.27
for test application in the following cases. (1) When every state-;in11 324 309 95.37 87 26.85 60 19.42
transition is included in a separate test (coldrans). (2) When ayerage 92.06 33.60 24.91

the functional tests produced by the proposed procedure are use
(column funct testy. (3) When only the effective tests found A gate-level stuck-at test generation procedure applied to
after stuck-at fault simulation of the functional tests are usedthe full-scan circuits may yield numbers of tests and numbers of
(columns. a.testy. (4) When only the effective tests found after cjock cycles that are better than the ones of Tables 6 and 7. How-
bridging fault simulation of the functional tests are used (column ever, it is not guaranteed to detect all the bridging faults. Simi-
bridg. test§. For a circuit withNsy state variablesNr tests, and |arly, a gate-level bridging fault test generation procedure
a total of Npc primary input combinations included in these applied to the full-scan circuits may not detect all the stuck-at
tests, the number of clock cycles is computed as faults. With the functional tests generated here, all the detectable
Nsy(Nt +1) + Npic. In this formula,Ngy(Ny +1) is the contri- faults of both models are detected.
bution of scan operations fdy tests, andNp,c clock cycles are In Table 8, we report the results of the proposed test gen-
required to apply all the input combinations. Here, we assuMegration procedure when transfer sequences are not allowed. In
that the clock controlling the scan chain and the clock control-ihis case, if the state reached after a unique-input output
ling the circuit operation have the same cycle time. In practice, saquence for a st is s, and all the state-transitions out of
the scan clock may be mu_ch slower th_an t_he circuit clock, andS have been testedjkthe tést sequence is terminated & state
th_en It Is necessary to multiply the contribution of the scan ope_r-v\;e only report on (,:ircuits for which the percentage okfkclock
'?'ggres ? yaigegrisgg ?)L:hgf tz?']g ﬂgfnkbgc(l)?élo?llecsilrggnrt:(gl?i?eldncydes for application of the functional tests is 100% or higher in
L - Table 7. Comparing the results in Table 8 to the results in Tables
when every state-transmon is included in a separate test. It ca% and 7, it can be seen that, overall, fewer state-transitions are
be seen that in most cases, the proposed procedure does "Asted by the same test when transfer sequences are not allowed;

increase the number of clock cycles required for the application e
- . . however, eliminating the transfer sequences allows us to reduce
of functional tests. An increase in the number of clock cycles the test application time.

may occur because the total length of unique input-output
sequences and transfer sequences (applied using the circuit

Table 8: Test generation without transfer sequences 4. Concluding remarks

circuit ‘ trans ‘ tests len 1Ien\ cycles % We descril_)e_d a procedure _for generating fu_nctional tests for fully
bbtas 3o 28 24 75.0 131 100.00 scan_ned flnlte-syate mac_hlnes. The func_t!onal fault' quel we
dk15 32 23 46 593 94 95 92 considered consisted of single state-transitions resulting in faulty
dk27 16 12 26 62.5 65 97'01 next-states or output comblnatlons._Th(_e proposed prpcedurt_e used
shiftreg 16 14 22 81..2 67 100'.00 scan to set the initial state of the circuit. It then applied an input

combination to take the circuit through a state-transition that has
It is possible to explore other solutions by imposing dif- not been tested yet. If possible, a unique input-output sequence
ferent constraints on the lengths of unique input-output for the final state was used for testing the final state. Following
sequences and transfer sequences. In Table 9, we show thidis sequence, another input combination was applied to take the
results obtained for several circuits when the length of the trans<ircuit through another state-transition that has not been tested
fer sequences is limited to one, and the lengths of the uniqueyet. Alternatively, a transfer sequence was first used to take the
input-output sequences are limited to 1, 2,-3, until a further circuit into an appropriate state. A test ended with a scan-out
increase in the upper bound on the length of a unique input-operation to test the final state of the last state-transition consid-
output sequence does not increase the number of states for whiggred. In this procedure, unique input-output sequences and trans-
we can find unique input-output sequences. The results for eaclfier sequences were used instead of scan operations as much as
length are shown on a separate line in Table 9. The results opossible to obtain fewer, longer test sequences while keeping the
Table 9 demonstrate the effects of the unique input-outputtest application time about the same. Experimental results
sequence length on the number of state-transitions that can behowed that the functional tests achieve complete coverage of
tested by the same test, and on the number of clock cyclestuck-at faults and bridging faults in gate-level implementations.

required for test application. Earlier procedures that did not use scan did not report complete
Table 9: Results with different parameters fault coverage of gate-level faults. This points to the effective-
(a) dk512 ness of scan-based functional tests.
unigue m.en| tests len 1len| cycles % References
g_) % gg gg 1g:?_gg i'gg 1gggg [1] K. Sabnani and A.T. Dahbura, "A Protocol Test Generation Pro-
4 3 23 60 46.88 156 95'12 cedure", Computer Networks, 1988, pp. 285-297.
6 4 25 58 59:38 162 98:78 [2] K.-T. Cheng and J.Y. Jou, "Functional Test Generation for Finite
8 5 24 67 56.25 167 101.83 State Machines", in Proc. Intl. Test Conf., 1990, pp. 162-168.
[3] |. Pomeranz and S. M. Reddy, "On Achieving Complete Fault
(b) exa Coverage for Sequential Machines", IEEE Trans. on Computer-
unique m.en| tests len llen| cycles % Aided Design, March 1994, pp. ,,378'38§' .
0 1 512 512 1000 2564 100.00 [4] D. K. Pradhan and J.'Sa.xena,_ A I?esngn for Testgblllty Scheme
5 2 400 800 56.25 2404 93.76 to Reduce Test Application Time in Full Scan", in Proc. 10th
7 3 352 092 37:50 2404 93:76 VLSI Test Symp., April 1992, pp. 55-60.
9 4 384 1006 55.8 2546 99.30 [5] S. Y. Lee and K. K. Saluja, "An Algorithm to Reduce Test Appli-
1 5 384 1101 67.3 2641 103.00 cation Time in Full Scan Designs", in Proc. 1992 Intl. Conf. on
16 7 384 1197 72.8 2737 106.75 6] S. Y. Lee and K. K. Saluja, "Test Application Time Reduction for
Sequential Circuits with Scan", IEEE Trans. on Computer-Aided
(c) markl Design, Sept. 1995, pp. 1128-1140.
unique m.Ien\ tests len llen\ cycles % [7] |. Pomeranz and S. M. Reddy, "Static Test Compaction for Scan-
Based Designs to Reduce Test Application Time", in Proc. 7th
é % igg 228 ;gg ﬁgg ggig Asian Test Symp., Dec. 1998, pp. 198-203.
11 3 111 649 3555 1097 85.44
12 4 109 653 351 1093 85.12
(d) rie
unique m.len tests len 1Ien\ cycles %
3 1| 13961 19888 73.8 89698 91.24
17 2| 12048 24544 59.3 84789 86.25
24 3| 11036 30434 57.4 85619 87.09
25 4| 11036 30946 57.5 86131 87.61
28 5| 11036 31458 57.5 86643 88.13
29 6 | 11036 31586 57.5 86771 88.26
30 7| 10952 32640 59.2 87405 88.91
32 8| 10882 35079 61.1 89494 91.03

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

