
-- --

Functional Test Generation for Full Scan Circuits+

Irith Pomeranz and Sudhakar M. Reddy
Electrical and Computer Engineering Department

University of Iowa
Iowa City, IA 52242, U.S.A.

Abstract
We study the effectiveness of functional tests for full scan cir-
cuits. Functional tests are important for design validation, and
they potentially have a high defect coverage independent of the
circuit implementation. The functional fault model we consider
consists of single state-transition faults. The test generation pro-
cedure we describe uses one of two approaches at any given time
in order to minimize the number of tests while minimizing the
test application time. (1) It may use scan to set the state of the
circuit, and observe fault effects propagated to the next-state
variables. (2) It may use transfer sequences to set the circuit
state, or unique input-output sequences to propagate fault effects
to the primary outputs. We present experimental results to
demonstrate the effectiveness of scan-based functional tests.

1. Introduction
We study the effectiveness of functional testing of full scan cir-
cuits. Functional test generation is useful for several reasons.
(1) It can be used for design verification and validation. In these
applications, full scan can be simulated if it is not already part of
the circuit description. (2) It results in a test set that is indepen-
dent of the circuit implementation, and is expected to be effec-
tive for any implementation. The test set can be generated at
early design stages, before an implementation is selected, and it
remains valid as the implementation evolves throughout the
design process. (3) The test set is effective in detecting defects
of various types, more than a test set generated for a specific
gate-level fault model, and more than if scan is not available.
We discuss this point with respect to the specific functional fault
model we use later on.

The circuits we consider are described by state tables, and
the functional fault model we target is the single state-transition
fault model [1]-[3]. Under this model, any single state-transition
may result in a faulty next-state or output combination. However,
the proposed methodology can be extended to other functional
descriptions.

Given a functional description of a circuit in the form of a
state table, and given that full-scan will be used for the circuit, it
is possible to test every state-transition as follows. Consider a

state-transitionsi

α j

β ij
→ sij from a statesi under an input combina-

tion α j , with next statesij and output combinationβ ij . It is possi-
ble to test this state-transition by scanning-in the initial statesi ,
applying the primary input combinationα j , observing the pri-
mary output combination, and scanning-out the next-state. If the
output combination is different fromβ ij or the next-state is dif-
ferent fromsij , a fault is detected. Note that it is not necessary to

+ Research supported in part by NSF Grant No. MIP-9725053.

specify a faulty next-state or output combination as part of the
fault model, since any faulty value will be detected.

For a circuit withNST states andNPIC primary input com-
binations, the number of state-transitions isNSTNPIC. Therefore,
a test set that tests each state-transition separately contains
NSTNPIC tests, and requiresNSTNPIC + 1 scan-in and scan-out
operations. Here, we use the following terminology. A test
starts and ends with a scan operation, and consists of one or
more primary input combinations applied between the scan oper-
ations. The length of a test is the number of primary input com-
binations it applies between the scan operations. When each
state-transition is tested by a separate test, the length of each test
is one.

In the procedure proposed here, we attempt to reduce the
number of tests and the number of scan operations by testing
several state-transitions by the same test. In this way, we achieve
several goals. (1) The circuit is tested at-speed during the appli-
cation of test sequences whose length is larger than one. This
may contribute to the detection of delay defects that are not
detected if each state-transition is tested separately. (2) Longer
test sequences also help reduce the number of scan operations
required, and thus the test application time. To achieve these
goals, we use a functional counterpart of the techniques
described next.

Test generation procedures for gate-level scan designs
that attempt to minimize the number of scan operations were
described in [4]-[6]. These test generation procedures decide
whether to continue applying input combinations in order to acti-
vate and propagate fault effects, or scan-out the state and scan-in
a new state, based on the number of clock cycles required to
detect target faults. In [7], a static compaction procedure was
proposed for scan designs described at the gate-level. The proce-
dure of [7] starts from a given set of tests, and reduces the num-
ber of scan operations bycombiningas many tests as possible.
Combining two testsτ i andτ j results in the removal of the scan-
out operation at the end ofτ i , and of the scan-in operation at the
beginning ofτ j . The procedure of [7] attempts to combine every
pair of tests, and accepts all the combinations that do not reduce
the fault coverage.

For the functional description considered in this work, our
goal is to develop a test generation procedure that detects as
many state-transition faults as possible by the same test. When

we do not scan-out the state following a state transitionsi

α j

β ij
→ sij ,

we need to guarantee that any change in the next-statesij due to
a fault will be detected. We achieve this by using unique input-
output sequences [1] (to the extent that the selected unique input-
output sequences are not aliased due to faults). A unique input-
output sequence for a states distinguishess from every other
state in the circuit. More accurately, let the output sequence pro-

-- --

duced by the circuit in response to input sequenceA when the
circuit starts in states be B(A, s). The sequenceDs is a unique
input-output sequence for states if B(Ds, s) ≠ B(Ds, ŝ) for every
stateŝ ≠ s.

The functional tests produced by the proposed procedure
have the following form. An initial statesi0 is scanned-in. An
input combinationα j0 is applied to test the state-transition from
si0 underα j0. Let the next-state of this state-transition besi0 j0. If
si0 j0 does not have a unique input-output sequence, then the gen-
eration of the test must stop, and the final state must be scanned-
out. Otherwise, ifsi0 j0 has a unique input-output sequenceDsi0 j0

,
we may apply this sequence and avoid the scan operation. We
discuss the considerations behind the decision to applyDsi0 j0

below. For now, suppose that this sequence is applied. Let the
final state reached after applyingDsi0 j0

be si1. We can now test a
state-transition starting fromsi1, if one exists that has not been
tested yet. For this purpose, we apply an input combinationα j1,
followed by the unique input-output sequence for the next-state
si1 j1, if it exists. Consequently, the test sequence has the follow-
ing form.

si0

α j0→ si0 j0

Dsi0 j0→ si1

α j1→ si1 j1

Dsi1 j1→ si2

α j2→ si2 j2
. . ..

During the test generation process, thek-th state-
transition tested ends in statesik j k . Assuming that a unique input-
output sequenceDsik j k

exists, we need to decide whether or not
to apply it. Suppose thatDsik j k

takes the circuit into statesik+1
. If

there exists a yet-untested state-transition out ofsik+1
, Dsik j k

is
applied. If all the state-transitions out ofsik+1

have been tested,
one of two options is taken. We look for a transfer sequence
from sik+1

to a statêsik+1
that still has untested state-transitions. If

a transfer sequence can be found,Dsik j k
is applied and test gener-

ation continues with the transfer sequence, and an input combi-
nation α j k+1

that takes the circuit through a yet-untested state
transition. If a transfer sequence cannot be found, test generation
stops at statesik j k , and the final state is scanned out.

We control the overall number of clock cycles required
for test application (including the time for scan-in/scan-out and
the time for application of primary input combinations) by
restricting the length of the unique input-output sequences we
allow, and the lengths of the transfer sequences. For a state that
does not have a unique input-output sequence, it is possible to
use a subset of sequences, with each sequence distinguishing the
state from a different subset of states. We do not explore this
option here. The number of clock cycles required for test appli-
cation is discussed in more detail later.

Functional test generation for state-transition faults in
non-scan designs was shown in [2] and [3] to result in high cov-
erage of gate-level stuck-at faults. Full-scan is expected to allow
complete fault coverage to be achieved by functional tests.
Experimental results reported below support this claim.

In the following sections, we present an example to
demonstrate the proposed procedure. We then provide experi-
mental results to show the number of tests obtained, and the cov-
erage of gate-level stuck-at faults and bridging faults.

2. The procedure
In Table 1, we show the state table of MCNC finite-state
machine benchmarklion. The machine has four states labeled 0,
1, 2 and 3, two inputs and one output. The input and output val-
ues are given as binary values.

Table 1: State table oflion

NS, z for x1x2 =
PS 00 01 10 11
0 0,0 1,1 0,0 0,0
1 1,1 1,1 3,1 0,0
2 2,1 2,1 3,1 3,1
3 1,1 2,1 3,1 3,1

Unique input-output sequences forlion are shown in
Table 2. For state 0, the input sequence (00) distinguishes state 0
(that produces an output of 0) from every other state (all other
states produce an output value of 1). Under the sequence (00),
the final state starting from state 0 is also state 0. The final state
is given in the last column of Table 2. For state 1, a unique
input-output sequence does not exist. To see this, we observe that
starting with an input combination 00, it will not be possible to
distinguish state 1 from state 3; starting with an input combina-
tion 01 or 11, it will not be possible to distinguish state 1 from
state 0; and starting with an input combination 10, it will not be
possible to distinguish state 1 from state 2 or 3. For state 2, the
input combination 00 distinguishes it from state 0, takes states 1
and 3 to state 1, and takes state 2 to state 2. Applying the input
combination 11 following the input combination 00 distinguishes
states 1 and 2. This results in the unique input-output sequence
(00,11) for state 2. Under the sequence (00,11), the final state
starting from state 2 is state 3. State 3 does not have a unique
input-output sequence. In general, we find at most one unique
input-output sequence for every state, and use it throughout the
test generation process.

Table 2: Unique input-output sequences forlion

state unique f.state
0 00 0
1 - -
2 00 11 3
3 - -

During the derivation of unique input-output sequences,
we limit the length of a sequence to be at mostL, whereL is a
constant. The reason for this is as follows. A scan-in/scan-out
operation requiresNSV clock cycles, whereNSV is the number of
state variables. The application of a unique input-output
sequenceDs of lengthL requiresL clock cycles. Assuming that
the clock controlling the scan chain has the same cycle time as
the clock controlling the circuit, we need to useL ≤ NSV to
ensure that the application ofDs does not take more time than
scanning-out a state and scanning-in a new state. The length of
Ds may have to be even shorter if transfer sequences are used
during the construction of the tests. However, we may also allow
Ds to be longer thanNSV in order to take advantage of at-speed
testing when tests include multiple state-transitions. In addition,
there are cases where scan is done at a slow speed. If the scan
clock is M times slower than the circuit clock, unique input-
output sequences and transfer sequences that areM times longer
can be accommodated without increasing the test application
time.

Next, we construct tests for single state-transition faults in
lion using the unique input-output sequences of Table 2. We start

the first test with the state-transition 0
00
→ 0. We follow it by the

unique input-output sequence of state 0, which is (00). The final
state is state 0, and we can test another state-transition starting

from state 0. For this purpose, we add the state-transition 0
01
→ 1.

State 1 does not have a unique input-output sequence, and we

-- --

stop the construction of the test at this point. We will verify that
state 1 is reached by scanning-out the last state. Our first test is
τ0 = (0, (00, 00, 01), 1), with initial state 0, test sequence
(00,00,01), and final state 1. Up to this point, we considered the

state-transitions 0
00
→ 0 and 0

01
→ 1.

We start the construction of the second test with the state-

transition 0
10
→ 0. We follow it by the unique input-output

sequence of state 0, which is (00). The final state is state 0, and
we can test another state-transition starting from state 0. For this

purpose, we add the state-transition 0
11
→ 0. If we add the unique

input-output sequence for state 0, we will end up in state 0 again.
There are no additional state-transitions to test out of state 0.
Therefore, we check whether a transfer sequence exists from
state 0 into a state with untested state-transitions. We find that it
is possible to take the circuit from state 0 to state 1 by applying
the input combination 01. Therefore, we apply the unique input-

output sequence of state 0, then take the state-transition 0
01
→ 1

into state 1, followed by the state-transition 1
00
→ 1 that has not

been tested yet. State 1 does not have a unique input-output
sequence, and we stop the construction of the test at this point.
Our second test isτ1 = (0, (10, 00, 11, 00, 01, 00), 1). Up to this

point, we considered the state-transitions 0
00
→ 0, 0

01
→ 1, 0

10
→ 0,

0
11
→ 0 and 1

00
→ 1.

We skip over the state-transition 1
01
→ 1. This state-

transition ends in state 1 that does not have a unique input-output
sequence. Consequently, considering it next will result in a test
sequence of length one, (1,(01),1). By postponing its considera-
tion, it is possible that it will be tested later as part of another test
of length larger than one. In general, we postpone the considera-

tion of a state-transitionsi

α j
→ sij as the first state-transition of a

test if sij does not have a unique input-output sequence.

The third test,τ2, starts from the state-transition 1
11
→ 0.

We add the unique input-output sequence for state 0 that takes us
back to state 0, followed by the transfer sequence (01) into state

1. We now test the state-transition 1
01
→ 1. The final state, 1, does

not have a unique input-output sequence. Therefore, we must
scan out the final state. We haveτ2 = (1, (11, 00, 01, 01), 1).

The construction ofτ3 starts with the state-transition

2
00
→ 2, and followed by the unique input-output sequence of

state 2, which is (00,11). The final state is 3, and we test the state

transition 3
00
→ 1. We obtainτ3 = (2, (00, 00, 11, 00), 1).

The construction ofτ4 starts with the state-transition

2
01
→ 2. We add the unique input-output sequence (00,11) of state

2, and end at state 3. Next, we test the state-transition 3
01
→ 2. We

add the unique input-output sequence (00,11) of state 2, and end

at state 3 again. Next, we test the state-transition 3
10
→ 3. We

obtainτ4 = (2, (01, 00, 11, 01, 00, 11, 10), 3).
The final four tests for the remaining state-transitions are

τ5 = (1, (10), 3), τ6 = (2, (10), 3), τ7 = (2, (11), 3) and τ8 =
(3, (11), 3).

The tests obtained above forlion include every single
state-transition in its state table (we do not claim that all the sin-
gle state-transition faults are detected, since faults may affect the
unique input-output sequences; however, this is expected to
affect the coverage of single state-transition faults only rarely).

Next, we consider the detection of faults in a gate-level imple-
mentation oflion.

If all the functional tests are of length one, then the func-
tional test set is equivalent to an exhaustive test set for the com-
binational logic of the circuit. In this case, the test set is guaran-
teed to detect every fault that does not increase the number of
circuit states. However, delay faults that require at-speed testing
are not guaranteed to be detected. When longer tests are used,
the likelihood of detecting delay faults is increased; however, it
is possible that a gate-level fault would remain undetected even
if it does not require at-speed testing. This is because some gate-
level faults are equivalent to multiple state-transition faults, and
are not detected by tests for single state-transition faults, even if
the tests detect all the single state-transition faults. However, due
to the use of scan, this is expected to be rare. We use fault simu-
lation on the gate-level circuit to determine the coverage of gate-
level non-delay faults belonging to two fault models, stuck-at
faults and bridging faults.

We observe that not all the tests may be necessary to
detect gate-level faults. To eliminate unnecessary tests, we simu-
late the tests in decreasing order of length, where the length of a
test is the number of primary input combinations it includes. The
premise behind this order is that longer tests detect more faults,
and it will be possible to remove a large number of short tests by
starting from the longer ones (the removal of each test results in
the removal of a scan operation regardless of the length of the
test, thus reducing the test application time). The results of
stuck-at fault simulation forlion, using the testsτ0, . . . ,τ8 gener-
ated above, are shown in Table 3. The circuit has 40 stuck-at
faults. The tests in Table 3 are ordered by the order of simula-
tion, from the longest to the shortest. For every test, we show its
length, and the total number of stuck-at faults detected after it is
simulated. In the last column, we mark the test as effective if
any new faults are detected when it is simulated. Of the nine
functional tests we generated, four tests are needed to detect all
the stuck-at faults in the circuit. None of the length one tests is
required in this case.

Table 3: Stuck-at fault simulation for lion

test length detected effective
τ4 7 17 1
τ1 6 37 1
τ2 4 39 1
τ3 4 40 1
τ0 3 40 0
τ5 1 40 0
τ6 1 40 0
τ7 1 40 0
τ8 1 40 0

3. Experimental results
The results of the procedure described above are reported in this
section. We limit the length of the unique input-output
sequences to be at most equal to the number of state variables,
and we limit the length of the transfer sequences to be at most
one. In selecting these parameters, we use the following consid-
erations. Allowing longer unique input-output sequences and
longer transfer sequences will allow us to obtain longer test
sequences that test more state-transitions by the same test. This
is advantageous for at-speed testing that enhances the detection
of delay defects. However, it may also increase the test applica-
tion time since the application of a unique input-output sequence
followed by a transfer sequence may take a larger number of

-- --

clock cycles than that required for scanning out the final state
and scanning in a new initial state. The parameters we chose
ensure that a unique input-output sequence followed by a trans-
fer sequence will require at most one clock cycle more than
scanning out a state and scanning in a new state; in most cases,
fewer clock cycles will be required. Thus, the test application
time will not be increased, or not be significantly increased, yet
several state-transitions will be tested by the same test.

In Table 4, we show the parameters of the circuits we con-
sider. After the circuit name, we show the number of primary
inputs. We then show the number of states, and the number of
states for which unique input-output sequences were found.
Next, we show the number of state variables of the circuit, and
the maximum length of any unique input-output sequence. In
the last column of Table 4, we show the time to generate unique
input-output sequences. Time is given in seconds on an HP J210
workstation.

Table 4: Circuit parameters

circuit pi states unique sv m.len time
bbara 4 16 4 4 4 11.49
bbsse 7 16 13 4 3 7.64
bbtas 2 8 1 3 3 0.08
beecount 3 8 5 3 3 0.05
cse 7 16 15 4 3 36.21
dk14 3 8 1 3 1 0.08
dk15 3 4 3 2 2 0.02
dk16 2 32 23 5 3 4.70
dk17 2 8 6 3 2 0.03
dk27 1 8 5 3 3 0.01
dk512 1 16 6 4 4 0.14
dvram 8 64 48 6 6 5649.94
ex2 2 32 14 5 4 2.36
ex3 2 16 10 4 3 0.26
ex4 5 16 9 4 4 18.98
ex5 2 8 7 3 3 0.08
ex6 5 8 8 3 1 0.11
ex7 2 16 10 4 3 0.29
fetch 9 32 24 5 4 473.35
keyb 7 32 21 5 4 266.42
lion 2 4 2 2 2 0.00
lion9 2 8 2 3 2 0.01
log 9 32 13 5 5 639.51
mark1 4 16 12 4 4 2.82
mc 3 4 4 2 1 0.00
nucpwr 13 32 20 5 5 1887.44
opus 5 16 7 4 1 2.78
rie 9 32 28 5 5 3042.78
shiftreg 1 8 8 3 3 0.01
tav 4 4 2 2 2 0.07
train11 2 16 2 4 3 0.11

In Table 5, after the circuit name, we show the number of
state-transitions. This is also the number of tests if each state-
transition is tested by a separate test. Under columnfunct. tests
we show the results of functional test generation by the proposed
procedure. We show the number of tests, and the total length of
all the tests. Next, we show the percentage of state-transitions
tested by tests of length one (such tests detect a single state-
transition). Finally, we show the test generation time. Compar-
ing the number of tests to the number of state-transitions, it can
be seen that the proposed procedure succeeds in testing several
state-transitions by the same test. This can also be seen from the
percentage of state-transitions tested by tests of length one, given

under subcolumn 1len. On the average, less than 50% of the
state-transitions are tested by tests of length one. The other state-
transitions are tested by tests that detect at least two state-
transitions.

Table 5: Functional test generation

funct.tests
circuit trans tests len 1len time
bbara 256 202 434 63.28 0.10
bbsse 2048 1515 2914 62.70 35.18
bbtas 32 28 44 75.00 0.00
beecount 64 32 153 40.62 0.04
cse 2048 1436 3141 59.96 60.06
dk14 64 51 82 64.06 0.03
dk15 32 11 76 15.62 0.01
dk16 128 63 317 26.56 0.22
dk17 32 20 53 43.75 0.01
dk27 16 8 40 31.25 0.01
dk512 32 25 58 59.38 0.01
dvram 16384 12088 33891 61.71 907.91
ex2 128 93 256 53.91 0.12
ex3 64 41 130 54.69 0.04
ex4 512 384 1006 55.86 0.83
ex5 32 17 73 21.88 0.01
ex6 256 76 501 15.23 0.63
ex7 64 44 125 57.81 0.04
fetch 16384 11347 26100 55.40 1272.69
keyb 4096 3528 5312 82.35 172.71
lion 16 9 28 25.00 0.00
lion9 32 22 56 46.88 0.01
log 16384 11520 34560 51.42 533.81
mark1 256 109 653 35.16 0.38
mc 32 9 57 25.00 0.01
nucpwr 262144 172032 446464 44.53 373906.81
opus 512 378 698 54.10 0.23
rie 16384 11037 31457 57.50 2311.50
shiftreg 16 13 27 75.00 0.00
tav 64 33 125 25.00 0.01
train11 64 53 93 65.62 0.02
average 48.59

In Table 6, we report on the coverage of stuck-at faults
and bridging faults in gate-level implementations. Under col-
umn s. a. tsts, we show the number of tests effective in detecting
gate-level stuck-at faults, followed by the total length of all these
tests. Under columns. a. faults, we show the total number of
stuck-at faults, the number of faults detected by the generated
tests, and the fault coverage. All the circuits with lower than
100% fault coverage have combinationally redundant faults that
cannot be detected under full-scan. All the detectable faults in all
the circuits are detected by the proposed procedure. It can be
seen that relatively small numbers of tests are required.

Under columnsbridg. tstsandbridg. faultsof Table 6, we
show the results of simulating gate-level bridging faults under
the functional tests generated here. We consider non-feedback
bridging faults between every pair of linesg1 andg2 that satisfy
the following conditions. (1)g1 and g2 are outputs of multi-
input gates. (2)g1 andg2 are inputs of different gates. (3) There
is no path in the circuit fromg1 to g2 or from g2 to g1. We con-
sider both AND-type and OR-type bridging faults between every
such pair of lines. It can be seen that for most of the circuits, the
coverage of bridging faults is 100%. For the remaining circuits,
we verified by simulating an exhaustive test set for the combina-
tional logic of the circuit that all the bridging faults that remain

-- --

Table 6: Simulation of gate-level faults

s.a.tsts s.a.faults bridg.tsts bridg.faults
circuit tsts len tot det f.c. tsts len tot det f.c.

bbara 29 133 138 138 100.00 9 85 192 192 100.00
bbsse 36 765 238 238 100.00 15 673 656 656 100.00
bbtas 12 28 63 63 100.00 6 22 64 64 100.00
beecount 5 93 112 110 98.21 2 83 166 166 100.00
cse 42 959 357 355 99.44 20 703 1604 1597 99.56
dk14 29 60 208 207 99.52 13 40 362 362 100.00
dk15 8 69 151 151 100.00 2 40 140 140 100.00
dk16 30 266 532 530 99.62 8 169 1942 1942 100.00
dk17 10 43 128 128 100.00 2 24 120 120 100.00
dk27 2 22 67 67 100.00 1 18 50 50 100.00
dk512 14 41 124 124 100.00 2 17 136 136 100.00
dvram 18 696 425 425 100.00 19 826 2672 2672 100.00
ex2 27 148 312 312 100.00 6 74 802 799 99.63
ex3 10 82 153 153 100.00 1 52 242 241 99.59
ex4 20 248 176 176 100.00 9 231 288 288 100.00
ex5 9 42 152 138 90.79 6 39 210 210 100.00
ex6 9 324 229 229 100.00 6 310 660 658 99.70
ex7 15 85 160 159 99.38 5 71 238 238 100.00
fetch 34 863 345 342 99.13 44 1628 1564 1564 100.00
keyb 62 1161 470 470 100.00 30 1084 3194 3177 99.47
lion 4 21 40 40 100.00 4 21 18 17 94.44
lion9 7 32 62 59 95.16 3 25 52 51 98.08
log 24 1141 313 312 99.68 37 1685 1618 1617 99.94
mark1 9 400 204 203 99.51 4 392 532 532 100.00
mc 3 51 73 73 100.00 2 50 54 54 100.00
nucpwr 39 300 447 447 100.00 91 752 3238 3237 99.97
opus 22 97 181 181 100.00 14 82 452 451 99.78
rie 42 1145 552 548 99.28 58 1876 4214 4213 99.98
shiftreg 2 16 28 28 100.00 1 15 8 8 100.00
tav 2 62 64 64 100.00 2 64 86 86 100.00
train11 11 39 104 104 100.00 6 32 132 132 100.00

undetected are undetectable. Thus, complete coverage of
detectable bridging faults is achieved for all the circuits.

In Table 7, we show the numbers of clock cycles required
for test application in the following cases. (1) When every state-
transition is included in a separate test (columntrans). (2) When
the functional tests produced by the proposed procedure are used
(column funct. tests). (3) When only the effective tests found
after stuck-at fault simulation of the functional tests are used
(columns. a. tests). (4) When only the effective tests found after
bridging fault simulation of the functional tests are used (column
bridg. tests). For a circuit withNSV state variables,NT tests, and
a total of NPIC primary input combinations included in these
tests, the number of clock cycles is computed as
NSV(NT + 1) + NPIC. In this formula,NSV(NT + 1) is the contri-
bution of scan operations forNT tests, andNPIC clock cycles are
required to apply all the input combinations. Here, we assume
that the clock controlling the scan chain and the clock control-
ling the circuit operation have the same cycle time. In practice,
the scan clock may be much slower than the circuit clock, and
then it is necessary to multiply the contribution of the scan oper-
ations by the ratio of the two clock cycles. The percentages in
Table 7 are given out of the number of clock cycles required
when every state-transition is included in a separate test. It can
be seen that in most cases, the proposed procedure does not
increase the number of clock cycles required for the application
of functional tests. An increase in the number of clock cycles
may occur because the total length of unique input-output
sequences and transfer sequences (applied using the circuit

clock) exceeds the number of state variables (which is the num-
ber of clock cycles for scan-in/out). This can be corrected by
restricting the lengths of the unique input-output sequences as
discussed above, or eliminating transfer sequences, as we show
below.

Table 7: Numbers of clock cycles

funct.tests s.a.tests bridg.tests
circuit trans cycles % cycles % cycles %

bbara 1284 1246 97.04 253 19.70 125 10.03
bbsse 10244 8978 87.64 913 8.91 737 8.21
bbtas 131 131 100.00 67 51.15 43 32.82
beecount 259 252 97.30 111 42.86 92 36.51
cse 10244 8889 86.77 1131 11.04 787 8.85
dk14 259 238 91.89 150 57.92 82 34.45
dk15 98 100 102.04 87 88.78 46 46.00
dk16 773 637 82.41 421 54.46 214 33.59
dk17 131 116 88.55 76 58.02 33 28.45
dk27 67 67 100.00 31 46.27 24 35.82
dk512 164 162 98.78 101 61.59 29 17.90
dvram 114694 106425 92.79 810 0.71 946 0.89
ex2 773 726 93.92 288 37.26 109 15.01
ex3 324 298 91.98 126 38.89 60 20.13
ex4 2564 2546 99.30 332 12.95 271 10.64
ex5 131 127 96.95 72 54.96 60 47.24
ex6 1027 732 71.28 354 34.47 331 45.22
ex7 324 305 94.14 149 45.99 95 31.15
fetch 98309 82840 84.26 1038 1.06 1853 2.24
keyb 24581 22957 93.39 1476 6.00 1239 5.40
lion 50 48 96.00 31 62.00 31 64.58
lion9 131 125 95.42 56 42.75 37 29.60
log 98309 92165 93.75 1266 1.29 1875 2.03
mark1 1284 1093 85.12 440 34.27 412 37.69
mc 98 77 78.57 59 60.20 56 72.73
nucpwr 1572869 1306629 83.07 500 0.03 1212 0.09
opus 2564 2214 86.35 189 7.37 142 6.41
rie 98309 86647 88.14 1360 1.38 2171 2.51
shiftreg 67 69 102.99 25 37.31 21 30.43
tav 194 193 99.48 68 35.05 70 36.27
train11 324 309 95.37 87 26.85 60 19.42

average 92.09 33.60 24.91

A gate-level stuck-at test generation procedure applied to
the full-scan circuits may yield numbers of tests and numbers of
clock cycles that are better than the ones of Tables 6 and 7. How-
ever, it is not guaranteed to detect all the bridging faults. Simi-
larly, a gate-level bridging fault test generation procedure
applied to the full-scan circuits may not detect all the stuck-at
faults. With the functional tests generated here, all the detectable
faults of both models are detected.

In Table 8, we report the results of the proposed test gen-
eration procedure when transfer sequences are not allowed. In
this case, if the state reached after a unique-input output
sequence for a statesik j k is sik , and all the state-transitions out of
sik have been tested, the test sequence is terminated at statesik j k .
We only report on circuits for which the percentage of clock
cycles for application of the functional tests is 100% or higher in
Table 7. Comparing the results in Table 8 to the results in Tables
5 and 7, it can be seen that, overall, fewer state-transitions are
tested by the same test when transfer sequences are not allowed;
however, eliminating the transfer sequences allows us to reduce
the test application time.

-- --

Table 8: Test generation without transfer sequences

circuit trans tests len 1len cycles %
bbtas 32 28 44 75.00 131 100.00
dk15 32 23 46 59.38 94 95.92
dk27 16 12 26 62.50 65 97.01
shiftreg 16 14 22 81.25 67 100.00

It is possible to explore other solutions by imposing dif-
ferent constraints on the lengths of unique input-output
sequences and transfer sequences. In Table 9, we show the
results obtained for several circuits when the length of the trans-
fer sequences is limited to one, and the lengths of the unique
input-output sequences are limited to 1, 2, 3,. . ., until a further
increase in the upper bound on the length of a unique input-
output sequence does not increase the number of states for which
we can find unique input-output sequences. The results for each
length are shown on a separate line in Table 9. The results of
Table 9 demonstrate the effects of the unique input-output
sequence length on the number of state-transitions that can be
tested by the same test, and on the number of clock cycles
required for test application.

Table 9: Results with different parameters
(a) dk512

unique m.len tests len 1len cycles %
0 1 32 32 100.00 164 100.00
1 2 29 39 81.25 159 96.95
4 3 23 60 46.88 156 95.12
6 4 25 58 59.38 162 98.78
8 5 24 67 56.25 167 101.83

(b) ex4

unique m.len tests len 1len cycles %
0 1 512 512 100.00 2564 100.00
5 2 400 800 56.25 2404 93.76
7 3 352 992 37.50 2404 93.76
9 4 384 1006 55.86 2546 99.30

11 5 384 1101 67.38 2641 103.00
13 6 384 1197 72.85 2737 106.75
16 7 384 1197 72.85 2737 106.75

(c) mark1

unique m.len tests len 1len cycles %
2 1 222 306 75.00 1198 93.30
6 2 123 610 35.55 1106 86.14

11 3 111 649 35.55 1097 85.44
12 4 109 653 35.16 1093 85.12

(d) rie

unique m.len tests len 1len cycles %
3 1 13961 19888 73.87 89698 91.24

17 2 12048 24544 59.35 84789 86.25
24 3 11036 30434 57.49 85619 87.09
25 4 11036 30946 57.50 86131 87.61
28 5 11036 31458 57.50 86643 88.13
29 6 11036 31586 57.50 86771 88.26
30 7 10952 32640 59.25 87405 88.91
32 8 10882 35079 61.16 89494 91.03

4. Concluding remarks
We described a procedure for generating functional tests for fully
scanned finite-state machines. The functional fault model we
considered consisted of single state-transitions resulting in faulty
next-states or output combinations. The proposed procedure used
scan to set the initial state of the circuit. It then applied an input
combination to take the circuit through a state-transition that has
not been tested yet. If possible, a unique input-output sequence
for the final state was used for testing the final state. Following
this sequence, another input combination was applied to take the
circuit through another state-transition that has not been tested
yet. Alternatively, a transfer sequence was first used to take the
circuit into an appropriate state. A test ended with a scan-out
operation to test the final state of the last state-transition consid-
ered. In this procedure, unique input-output sequences and trans-
fer sequences were used instead of scan operations as much as
possible to obtain fewer, longer test sequences while keeping the
test application time about the same. Experimental results
showed that the functional tests achieve complete coverage of
stuck-at faults and bridging faults in gate-level implementations.
Earlier procedures that did not use scan did not report complete
fault coverage of gate-level faults. This points to the effective-
ness of scan-based functional tests.

References
[1] K. Sabnani and A.T. Dahbura, "A Protocol Test Generation Pro-

cedure", Computer Networks, 1988, pp. 285-297.

[2] K.-T. Cheng and J.Y. Jou, "Functional Test Generation for Finite
State Machines", in Proc. Intl. Test Conf., 1990, pp. 162-168.

[3] I. Pomeranz and S. M. Reddy, "On Achieving Complete Fault
Coverage for Sequential Machines", IEEE Trans. on Computer-
Aided Design, March 1994, pp. 378-386.

[4] D. K. Pradhan and J. Saxena, "A Design for Testability Scheme
to Reduce Test Application Time in Full Scan", in Proc. 10th
VLSI Test Symp., April 1992, pp. 55-60.

[5] S. Y. Lee and K. K. Saluja, "An Algorithm to Reduce Test Appli-
cation Time in Full Scan Designs", in Proc. 1992 Intl. Conf. on
Computer-Aided Design, Nov. 1992, pp. 17-20.

[6] S. Y. Lee and K. K. Saluja, "Test Application Time Reduction for
Sequential Circuits with Scan", IEEE Trans. on Computer-Aided
Design, Sept. 1995, pp. 1128-1140.

[7] I. Pomeranz and S. M. Reddy, "Static Test Compaction for Scan-
Based Designs to Reduce Test Application Time", in Proc. 7th
Asian Test Symp., Dec. 1998, pp. 198-203.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

