
Abstract

The Boolean satisfiability problem (SAT) has various 
applications in electronic design automation (EDA) fields 
such as testing, timing analysis and logic verification. SAT 
has been typically applied to EDA as follows: 1) formula-
tion of the given problem as a SAT instance 2) solution of 
the SAT instance. In this paper, we present a method to 
simultaneously solve several closely related SAT instances 
using incremental satisfiability (ISAT). In ISAT, the deci-
sion sequence made for a “ prefix”  function is used to solve 
another set of functions which have a number of new con-
straints (extensions) added to the prefix function. Our 
experiments show that we can achieve significant gains in 
total runtime when we use this methodology as opposed to 
resetting the decision sequences and solving each instance 
from scratch. Application of ISAT to delay fault testing is 
presented by formulating incremental path sensitization as 
an ISAT problem. Non-robust tests for the combinational 
portion of ISCAS 89 circuits are generated using this 
method.

I. Introduction

Many electronic design automation (EDA) problems can
be cast as instances of Boolean satisfiability (SAT): given a
Boolean function , find an assignment

 such that  or prove that no such assignment ex-
ists. The function  is typically expressed in conjunctive
normal form (CNF) and the problem is usually solved by a
backtracking search algorithm that systematically explores
the n-dimensional Boolean space of the variables. Even
though it is well known that SAT is NP-complete, recent ad-
vances in this field, e.g. [1][13][14], have made it possible to
apply SAT to problems of considerable size.

Incremental satisfiability was first considered in [7] but
its application was limited to solving one large problem by
partitioning it into m partitions where m is the number of
clauses and solving them incrementally by adding one clause
at a time. In this paper we propose a modification to the incre-
mental satisfiability problem suggested in [7], and a corre-
sponding modification to the search algorithm, to address a
situation that frequently arises in many application domains.
The incremental satisfiability (ISAT) problem is: determine
the satisfiability of each function  in a set of m Boolean
functions  that share a
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common prefix function  but have different suffix
functions . We will refer to each such function 
as an extension of the common prefix . This problem
can be obviously cast and solved as m independent SAT
problems. Significant computational savings can be realized,
however, by solving them “ together.”  Specifically, a solution
is found for the common prefix, which is then extended or
slightly modified to obtain solutions to each of the m exten-
sions. The maximum benefit from such an approach accrues
when  is unsatisfiable since that obviates the need to
even consider the suffixes to prove that all of the m exten-
sions are unsatisfiable. The satisfiability of , on the
other hand, is a necessary but not sufficient condition for the
satisfiability of its m extensions. The potential savings in this
case are harder to predict. In particular, significant savings
are still possible if the solutions to each of the m extensions
can be found by augmenting the partial solution obtained for
the prefix with assignments to previously unassigned vari-
ables. A more likely scenario, however, is that the solution to
at least some of the extensions can only be obtained by re-
versing existing assignments in the solution found for the
prefix. Fortunately, in the EDA application domain, the size
of the prefix is usually much larger than the sizes of each of
the suffixes. This means that the performance gain obtained
by incremental SAT can be larger than the performance loss
from reversing current assignments. 

Boolean satisfiability has been widely used for both
stuck-at fault testing [9] and delay fault testing [2] of combi-
national circuits. In this paper we will apply ISAT to prove
the untestability of non-robust delay faults in logic circuits. 

Test pattern generation for path delay fault has been re-
searched heavily recently. Various classifications of delay
faults (e.g., robust, non-robust, validatable non-robust etc.)
exist. Although robust test is preferred to non-robust test in
general, there have been some research results that prove the
importance of non-robust test [4][12]. 

It should be noted that the objective of this paper is not to
advocate a certain kind of delay fault model. Non-robust de-
lay fault generation was chosen in this paper since it allows
for straightforward application of ISAT to EDA problems.

This paper is organized as follows. In Section II incre-
mental satisfiability is introduced. The application of ISAT
to delay fault testing is presented in Section III. Experimental
results and conclusions are presented in Section IV and Sec-
tion V, respectively.
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II. Incremental Satisfiability

In this paper we consider Boolean functions represented
in Conjunctive Normal Form (CNF). A literal is an occur-
rence of a variable or its complement. A clause is a disjunc-
tion (OR) of literals. A CNF formula is a conjunction (AND)
of clauses.

A CNF formula is said to be satisfiable when there is at
least one truth assignment to its variables that makes all
clauses equal to 1. A CNF formula is said to be unsatisfiable
when no such assignment exists.

Let us consider a case when the given Boolean function
 is found to be satisfiable. If a set of addition-

al clauses which represent the function is added to ,
what can we say about the satisfiability of the overall func-
tion ? Note that the satisfiability of  is a neces-
sary, but not sufficient condition for the satisfiability of .
Instead of “ resetting”  all the decisions made in deriving the
solution for , we can resume the search by updating the
status of the clauses in  against the assignments that were
made for the problem for the overlapping portion of the
support set. 

When we update the new clauses against the current as-
signment, there is no need to reverse current assignments un-
less some new clause becomes unsatisfied as the following
example illustrates.

Example 1 
Consider a prefix boolean function

. A possi-
ble decision tree of the satisfying assignment

for this problem is shown in Figure
1(a). Now let us add the clauses

 and solve a new prob-
lem . The current assignment can be used to up-
date the status of the new clauses. As a result, the first clause
of ,  becomes a unit clause (an unresolved
clause with only one free literal) and the second clause

 becomes satisfied. The resulting decision se-
quence after satisfying the unit clause is shown in Figure
1(b).

Now let us consider adding a different set of clauses to
the prefix function. Let 
and . The first clause  becomes unsat-
isfied when we update the clause with the current assign-
ment. The conflict analysis procedure [13] will be triggered
and generate a conflict induced clause , which “as-
serts”  the value of to be 0 under the assignment

.The decision sequence for this problem is shown in
Figure 1(c) with assignment . 

Finally let us consider adding
 to obtain the function

 (Figure 1 (d)). Not only does the addition of
function  conflict with current assignments, it makes the
overall function unsatisfiable under any assignment. ■

III. ISAT Applied to Delay Fault Testing

Delay fault testing is performed after fabrication of an in-
tegrated circuit. There are two widely used fault models, gate
delay faults and path delay faults. We will consider the path
delay fault model [11] [3] in this paper.

A path delay fault models distributed fault effects on a
given path which causes the delay of the path to exceed a
specified limit. For each structural path, two path delay faults
can be considered, rising and falling transition at the output
of the path.

To detect a delay fault, it is common to apply a pair of
vectors  at the inputs of the circuit and sample the
output of the circuit after one clock period. The interval be-
tween v1 and v2 must be long enough so that all signals in the
circuit can stabilize.

A test for a given delay fault is called robust if the test can
detect the given fault independent of the presence of other
delay faults in the circuit. A test is called non-robust if the
given fault can be masked by the presence of other delay
faults in the circuit. 

Our experimental results are based on the non-robust de-
lay fault testing model. Note that the side input condition of
v2 for non-robust faults is exactly the same as the static sen-
sitization criterion in timing analysis. Hence if we have an ef-
ficient way of checking static sensitizability, it can be readily
used as a test pattern generator for non-robust faults.

The approach used in [2] extracts a fan-in cone for each
primary output and finds a test for each path to that primary
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Figure 1: Incremental Search example
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output. This improves on the simplistic path-by-path ap-
proach since extraction is performed only once for each pri-
mary output. However, both the size of each SAT problem
and the number of paths for each primary output can become
very large for most practical circuits.

Instead of explicitly enumerating all paths, we can use in-
cremental satisfiability to prune away large portions of un-
testable faults by applying ISAT to incremental path
sensitization as proposed in [5]. Consider a partial path

 that starts from a primary input g0. If
the path P is untestable for delay faults, then all other paths
that have P as a prefix can be removed from consideration
since these faults are untestable as well. We can use depth
first search when choosing paths, backtracking when an un-
testable fault is identified. The algorithm is illustrated in Fig-
ure 2. We generate consistency functions which enforce
consistent assignments to the inputs and output of each gate
according to its functionality. 

For a gate  which realizes a function , we
can generate the consistency function by deriving a CNF rep-
resentation of .

Example 2
Consider a two input AND gate . The consistency

function for this gate can be derived as follows.

Consistency functions of simple two input gates are
shown in Table I. Side input constraints are then added to en-
force the static sensitization condition which requires side in-
puts to assume non-controlling values. Side input conditions
of complex gates can be generated using the Boolean differ-
ence of the gate function with respect to the on-path input.

The next example illustrates the application of ISAT to
the path sensitization problem.

Example 3
Consider the path  with a rising input at 

in Figure 3. The function  that captures non-robust de-
lay fault testability of  is:

Note that these clauses consist of 

• the consistency function of :

• on-path transition constraints: 

• side input conditions: 

can be satisfied by . Con-
sider next path . Five additional
clauses must be added to  yielding:

gate type consistency function for z=f(x,y)

AND

OR

NAND

NOR

TA BL E I :  Consi stency f unct i ons of  basi c gates

x z+( ) y z+( ) x y z+ +( )

x z+( ) y z+( ) x y z+ +( )

x z+( ) y z+( ) x y z+ +( )

x z+( ) y z+( ) x y z+ +( )

P g0 l0 … l i 1– gi,, ,( )=

z f x1 … xn, ,( )

z f⊕

incremental_search (){
for each PI x

recurse(x, rising);
recurse(x, falling);

}

recurse(x, direction){
for each fanout(x) y
if y is PO

sensitizable path found;
else

if (test_sensitization() == SUCCESS) 
if x is non-inverting

recurse(y, direction);
else

recurse(y, inverse(direction));
else 

return;
}

Figure 2: Outline of incremental search
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Figure 3: Example of partial path sensitization
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This function can easily be shown to be unsatisfiable.
Hence we can conclude that all paths that extend from ,
namely  and , are unsensitizable and can be
removed from further consideration. The next set of paths
considered by the incremental search algorithm would now
extend  through x8. ■

It is worth noting that there are other approaches to iden-
tify non-robust untestable faults such as [6] [10] which use
logic implication to identify untestable faults. Even though
they are substantially faster than the methods which target
paths, they are not complete in that they cannot guarantee
100% identification of untestable faults. A similar method is
used in [8] to identify robust dependent and functionally un-
sensitizable faults.

IV. Experimental Results

The prototype of the presented algorithm is implemented
in C++ and integrated with the SAT solver GRASP [13]. It
was run on a workstation with Intel Pentium II 300 MHz
CPU and 256 MB of memory running Linux. The result of

the experiment is shown in Table II. 
The first four columns present general information about

the benchmark circuits. In the remaining columns, the num-
ber of SAT calls and average problem size in terms of num-
ber of variables and clauses for both incremental method and
the method in [2] are presented. Average execution time per
each SAT call as well as total execution time is also reported.

We implemented the algorithm used in [2] for compari-
son with our method within our framework; for each path in
a circuit, we identify a corresponding formula, add con-
straints clauses and solve the SAT problem. Note that in the
actual implementation, the CNF formula for the entire circuit
is generated only once. 

From the experimental results, we can observe that the
savings we gain by using incremental satisfiability accrue for
circuits with a large number of untestable faults such as s713,
s1238, s1423, s9234.1 and below.

Note that our method can generate complete test sets for
three circuits (s13207.1, s38417, s38584.1) which we could
not finish within the given time limit (30,000 seconds) using
the explicit path enumeration method. 

It is also worthwhile to note that even though our method
requires more SAT calls in general, the time per each SAT
call (reported in milliseconds in the table) of our method is
significantly smaller than that of the explicit method because
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x7( ) x4 x7+( ) x5 x7+( ) x4 x5 x7+ +( ) x5( )

P1
P1 x11,( ) P1 x12,( )

Pp
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 Time(s)
Time 
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sat call

 # SAT 
calls

avg # of 
clauses 
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avg # of 
variables 
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 Time(s)
Time 
(ms)/ 

sat call

s344 654 710 92.1% 3,620 78.6 31.9 0.6 0.17 710 92.5 37.5 0.8 1.17

s349 656 730 89.9% 3,640 78.4 31.8 0.6 0.18 730 91.3 36.9 0.9 1.18

s382 734 800 91.8% 2,235 45.1 20.2 0.5 0.23 800 62.2 27.0 0.8 0.99

s386 414 414 100.0% 2,646 53.4 23.0 0.6 0.21 414 74.8 31.6 0.6 1.38

s400 753 896 84.0% 2,446 47.0 20.8 0.6 0.26 896 64.9 27.6 0.9 1.05

s420 738 738 100.0% 4,348 117.7 54.2 1.0 0.23 738 158.8 71.6 1.3 1.72

s444 813 1,070 76.0% 3,369 49.8 21.7 0.9 0.25 1,070 69.7 29.2 1.2 1.13

s510 738 738 100.0% 3,224 79.1 32.4 1.3 0.39 738 148.2 58.3 1.3 1.79

s526 720 820 87.8% 2,241 44.9 19.3 0.8 0.36 820 71.9 29.0 1.0 1.26

s641 2,231 3,444 64.8% 14,421 270.7 115.3 5.7 0.39 3,444 325.4 135.7 13.4 3.90

s713 4,922 43,624 11.3% 32,124 310.8 125.5 17.2 0.53 43,624 391.7 152.2 234.3 5.37

s820 984 984 100.0% 4,570 84.8 33.2 2.3 0.49 984 143.8 54.8 2.4 2.44

s832 996 1,012 98.4% 4,705 85.8 33.1 2.4 0.50 1,012 147.4 55.1 2.5 2.50

s838 2,018 2,018 100.0% 13,374 197.0 93.2 5.3 0.39 2,018 346.3 160.0 7.2 3.54

s953 2,312 2,312 100.0% 9,876 102.3 44.5 4.0 0.41 2,312 178.1 73.5 5.1 2.22

s1238 3,684 7,118 51.8% 19,262 248.7 94.0 19.5 1.01 7,118 487.8 177.0 41.5 5.83

s1423 45,198 89,452 50.5% 174,188 395.0 165.7 74.0 0.42 89,452 450.2 186.5 553.6 6.19

s1488 1,916 1,924 99.6% 15,043 119.6 46.6 6.5 0.43 1,924 187.3 71.1 6.9 3.60

s1494 1,927 1,952 98.7% 15,194 119.7 46.4 6.6 0.43 1,952 187.6 70.9 7.0 3.60

s5378 21,890 27,046 80.9% 129,996 415.6 181.3 98.7 0.76 27,046 472.8 206.6 214.9 7.95

s9234.1 59,854 489,708 12.2% 921,161 713.5 309.7 1,856.8 2.02 489,708 1,348.4 584.9 15,632.0 31.92

s13207.1 476,145 2,690,738 17.7% 6,035,082 3,186.6 1,249.1 14,560.0 2.41 - - - >30,000 -

s35932 58,657 394,282 14.9% 1,181,808 120.4 42.7 6,920.3 5.86 394,282 251.9 93.4 24,964.0 63.32

s38417 1,138,194 2,783,158 40.9% 9,759,983 1043.9 449.6 29,225.0 4.42 - - - >30,000 -

s38584.1 334,927 2,161,446 15.5% 3,500,558 1,608.4 699.3 15,455.0 4.42 - - - >30,000 -

TA BL E I I :  Generat i on of  non-robust tests f or  the combi nat i onal  port i on of  I SCA S 89 ci rcui ts



of the application of ISAT which uses the decision sequence
from previous problems.

Also note that average problem size in terms of number
of clauses and variables of incremental method is substan-
tially smaller than that of explicit method. Although the size
of a SAT problem is not necessarily a measure of the diffi-
culty of the problem, it is generally considered that larger
SAT problems are harder to solve than smaller problems.

V. Conclusions

In this paper, we presented a method of solving incre-
mental satisfiability problems (ISAT) which can check the
satisfiability of a family of related functions. The application
of ISAT to delay fault testing is also presented. Promising re-
sults were obtained when we applied this method to the gen-
eration of non-robust tests for the combinational part of
ISCAS 89 benchmark circuits. 

Incremental satisfiability can be applied to the problems
in other EDA domains, such as timing analysis and logic ver-
ification. We are currently working on applying this method
to timing analysis of sequential circuits.

Also, the application of ISAT is not limited to solving
CNF based satisfiability problems but can be applied to prob-
lems where there are general constraints on Boolean vari-
ables that are not expressed in CNF. We are presently
implementing the extension of ISAT to general constraints.
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