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integer programming formulation of unate covering [19].
_ _ Abstract ~_ This leads to strong improvements in several fundamental
The classical solving approach for two-level logic minimisa- aspects with respect to the classical approaches adopted in
tion reduces the problem to a special case of unate covering andthe VLS| literature. In particular, some well-known prun-
attacks the latter with a (possibly limited) branch-and-bound al- |ng techniques can be Strengthened and genera”sed_ The
gorithm. We adopt this approach, but we propose a constructive method yields a lower bound which is tighter than the clas-
heuristic algorithm that combines the use of Binary Decision Di- sjcal one, so that it is often possible to prove the optimality
agrams with the lagrangian relaxation. This technique permits to of the solution found, or, at least, to give a better estimate
achieve an effective choice of the elements to include into the solu-of how far this is from the optimum. Experience proves that
tion, as well as cost-related reductions of the problem and a good even a single run of the algorithm determines nearly opti-
lower bound on the optimum. The results support the effectivenessnal solutions. Yet, the whole process can be repeated, tak-
of this approach: on a wide set of benchmark problems, the algo- ing different choices in the intermediate steps and possibly
rithm nearly always hits the optimum, and in most cases proves itobtaining better results.

to be such. On the problems whose optimum is actually unknown,  The paper is organised as follows. Next section formally

the best known result is strongly improved. defines two-level minimisation and its relation to unate cov-
ering. Section 3 presents the approach used to solve the
1. Introduction unate covering problem, while section 4 introduces the al-

The classical solving approach for two-level logic min- gorithm. Experimental results close the paper, together with
imization in theVLSI literature goes back to Quine’s [20] some conclusions.
and McCluskey's [17] works. It reformulates the problem . .
as a special case of thinate Covering Problerand applies 2 Classical solving methods
algorithms conceived for the latter, or even for the more  Most approaches to solving covering problems have
generalBinate Covering Problem These are a common largely followed the pioneering work of Quine and Mc-
model in most fields of Computer Science (circuit synthesis, Cluskey [20] [17], in which two-level minimisation is
software engineering, artificial intelligence, and so on), so turned into the equivalent covering problem. This leads to
that optimal solutions would be extremely precious. Unfor- two subsequent bottlenecks. First, the reformulated prob-
tunately, both problems aié P -hard, and no efficientalgo- lem can have an exponential dimension with respect to the
rithm to solve them exactly is known. Conversely, heuristics number of variables. In fact, prime implicants are at
can lead to good solutions in a reasonable amount of time,mostO(3"/,/n), and can be at lea(3"/n) [8], while
and yield tight bounds, by means of which even large-size minterms, of course, vary from 0 td'2 Second, the cov-
problems can be solved to optimality by branch-and-bound.ering problem isN P-hard: in the worst case, it can be
This paper describes a heuristic algorithm that adoptssolved only in exponential time with respect to the number
specialised data structures, nanto-suppressed binary  of prime implicants and minterms.
Decision DiagramgZDDs), in order to provide a compact However, the covering formulation is often redun-
representation of the data [18]. The algorithm follows a dant [10], so that the problem can be hugely reduced by
greedy constructive approach: it selects one product at ameans of logical remarks. The early works devoted a strong
time, until their sum is equivalent to the given function; effort to the development of such reductions: partitioning,
then, redundant products are removed. The choice of eaclessentiality, row dominance, column dominance, Gimpel's
product is driven by a sophisticated process, exploiting thereduction, and so on. A good survey on the subject can be



found in [23]. used a lagrangian heuristic coupled with a dynamic pric-

More recent works [4] on reduction methods proposed ing scheme, in order to determine a good relaxation in short
implicit techniques, to avoid even generating redundanttime, even in large-scale problems.
rows and columns. In particular, much interest has been
aroused by efficient data structures, which are well suited3' The proposed approach
to support the solving procedures. In the first attempts [22],  This section presents an integer formulation of the unate
minterms and prime implicants were encoded into a couplecovering problem and describes how to improve its la-
of Binary Decision DiagramsBDDs), a canonical repre- grangian relaxation through a subgradient scheme, so as to
sentation for boolean functions [5]. Later on, however, the derive useful information on the original problem. First,
use of Zero-suppressed binary Decision DiagrafiBiXs), we introduce the formulation and the concept of lagrangian
which are a canonical representation for combinational sets felaxation. Then, we describe the subgradient method to
has proven better [18]. tighten this relaxation and the way to exploit the dual prob-

Logical reductions can be iteratively applied, until they €m in order to proceed more quickly. As the process re-
produce a stable covering matrix, callegclic core If quires feaS|bI§ solutions both to the primal and the dual
this is empty, the essential columns found form a mini- proble_m, we dISCl_JSS the heu_ristics used to build them. The
mal solution. Otherwise, the problem can be solved ex- following subsection deals with penalty procedures, allow-
actly by branch-and-bound algorithm [11]. In this scheme, N9 O fI_X or discard some of the colu_mns, wﬂ_hogt affecting
a high lower bound and a low upper bound on the opti- the.optlmum. In _thg end, the whole |_r1f0rma}t|on is summed
mal solution are extremely effective in terminating useless UP into two heuristic rules to determine which columns are
searches. Most algorithms in thLSl literature compute likely to be optimal, and should therefore be fixed in order
lower bounds by maximal independent sets [23]. A the- t0 proceed.
oretigally b.ett.er lower bound is presgnted in [11], but in 3 1 The linear and the lagrangian relaxation
practice this is worse than the classical one, apart from
ill-conditioned or high-density problems. Liao and De- The unate covering probleiiM,P,R c) can be formu-
vadas [15] show that a tighter lower bound may be obtainedlated as an integer linear programming problem [19] by as-
by formulating unate covering as an integer linear program sociating to seP a cost coefficient vectoc and a binary
and relaxing the integrality constraint. This bound is com- variable vectomp, so thatc; be the cost of colump, p; =1
putationally more expensive, but unsuccessful branches aréf column j belongs to the current solutiop; = O other-
pruned at earlier stages. Liao and Devadas also presenwise.
a faster techniquejual ascentbased on the heuristic so-
lution of the dual problem [19]. The resulting bound is
weaker than, or at most equal to the linear relaxation one.

In particular, if the costs are uniform (which is the com- ~ Wheree stands for a suitable all-one vectey € 1,i =
mon case ifVLSI), a simple dual ascent yields the classi- 1,2.---|M|) andAis the covering matrix. Vector inequali-
cal independent-set based bound. In [14] a two phases apti€S are meant to be componentwise, so fat> e repre-
proach is adopted: first the upper bound of the solution is sents the covering constrairg#illa;j pj > 1, for alli: each
strengthened by searching a set of promising solutions withrow must be covered by at least one column.

the classical branching rules, second, when no further bet- ThisN P -hard problem can be simplified by turning con-
ter solutions are expected, the maximum independent sestraintp; € {0,1} into 0< p; < 1 (linear programming re-
lower bound is incrementally strengthened by adding suit- laxation):

able rows to the set and determining the optimum of this minz=¢p

reduced problem. st Ap>e o<p<e ®)

As for heuristics and the computation of upper bounds, a | g optimal solution of P) is integer, it is optimal for
simple greedy algorithm for unate covering problems was (ycp), as well. In general, however, they are all fractionary
proposed by Johnson and lasZ [16] and extended by ;.4 yield a lower bound: < 7cp.

Chvatal [9] to non uniform cost problems. Improved vari- g inear relaxation, though efficiently solvable, is still
ants, were proposed by Balas and Ho, who combined themy, \iher difficult problem. A simpler one, callegrangian
with dual heuristics in a cutting plane exact algorithm [1]. ‘nroplemis obtained by removing all of its constraints and
Beasley [2] adopted several reduction procedures, in addi-compjining them to the objective function with suitable mul-
tion to a lagrangian approach similar to the one we descr'betipliers)\j > 0, s0 as to penalise their violation:

in Section 3. Fisher and Kedia [13] added dual heuristics to -
this framework, which has been recently improved by Ce-

ria, Nobili and Sassano [7]. Caprara, Fischetti and Toth [6] wherec’= c— A'A is named théagrangian costvector.

minz=c'p

st. Ap>e pe {0,1} (ucp)

minz=¢&p+2ANe st. 0<p<e (LP)



An optimal solution to I(P) is trivially pj* = 0whencj >
0, pj* =1 whencj <0. Itis integer and, though it violates
some of the covering constraints, it is often a good starting
point to build a feasible solutiop™ (A) for (UCP). Its value
is, for all A > 0, a lower bound on the linear relaxation:
Z'p(N) <z < Zjcp- The lagrangian approach consists in
determiningh so thatz (A) be as high as possible, since
it is likely that in this way the heuristic solution obtained
will be better. A technique known agubgradient ascent
permits to start from an arbitrary valg and to improve it,

potentially up tozs.
3.2. Subgradient ascent

The main idea is to updafe, step by step, based on the
result of the current lagrangian probléa (Ay). Its optimal
solutionp; = p{p (Ak) violates the covering constraints by
S\ = €—Ap and its cost iy, = Z'p (Ak). This drives the
update ofAk through the following formula [19]

k
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At the next step, the violated constraints (correspond-
ing to the positive elements o), ) will be penalised
more strongly by increasing the corresponding multiplier,

% — 2,

Ais1 = Max ()\k +5 1)

The initial value forA is arbitrary, as far as non nega-
tive, but experience shows that the better it is, the quicker
the method converges. If the current problem results from
fixing some columns in a previous one, the optimal value
of A is likely to be only slightly different. Therefore, the
best value determined for the previous problem is assumed
as the initial one in the new problem. At the first step, when
no information is available, a good estimatgis provided
by the dual problem.

3.3. The dual problem

Given the linear problent), its dual problemis

maxw = €m

s.t. Am<c 0<m<c (D)

wherem s the dual variable vector améminj;aj=1 Cj.
The dual problemD) is strictly related to the primal la-
grangian problemL(P): if a dual feasible solutiomis used
as a lagrangian multiplier vector, the corresponding opti-
mumzp (M) equals the value/(m) of the dual solution.
c—Am=¢&(m)>0= pp(m=0=

=zp(m =nme=€em=wp(m)

Thus, any good dual solution is a good lagrangian mul-
tiplier vector. In particular, any optimal dual solution is

whereas the respected ones will be penalised less strongly?" OPtimal lagrangian multiplier, sin@g, (") = wp (M),

by decreasing it, though never below zero.

The gap(z — z,,) measures how faky is from its op-
timal value: the larger it is, the larger the update should
be. This aims at improving,,, but the resulting process is
not monotonousz, oscillates from step to step. Only its
best known valu&B progressively rises, getting closer and
closer toz;. At the same time, the best valueXfncludes
more and more information on the problem.

Formula (1) theoretically guarantees convergence. How-

ever, in practicezs is unknown, and it is replaced by an
upper boundJB. The use of an upper bound could pre-
vent the method to converge, sinfegB—z, ) can be al-
ways positive. Therefore, a decreasing “step” coefficignt
is added: this is halved each timh8 does not improve for
a suitable numbex; of consecutive steps, since the lack of
improvements is likely due to an excessively large update.
This results in a slightly different updating formula:

‘UB—ZAK‘

,0
M )

The process ends when eithg| is very close toUB
(i.e. the gap is lower than a given threshaldor tx has
become too small to allow further chang#és < tmin). A
third stopping condition holds when the cost functois
integer, as we assume in the following. In this cggss is
integer, too: if a known integer solution cogts,, |, it is
optimal, since no other one can be better.

Ak+1 = Max ()\k +Sy, )

and it is a well-known consequence of the duality theo-
rem [19] thatw}y = z5. This is why a dual heuristic is used
to determine an initial estimate fag.

Of course, solving the dual problem is approximately as
hard as solving the primal one. Yet, one can relax it in a
lagrangian fashion:

maxw = &m-+pc s.t. o<m<c (LD)

where€= e— AL, and the optimum ofl(D) is an upper
boundw{y (1) > W} = Z5. This bound possibly improves
the valueUB used in the subgradient updating formula (2)
as an estimate af, and it is updated step by step through
the subgradient process. Of course, the initial estimate for
Ho is determined by a primal heuristic.

In short, the subgradient method is applied both to the
primal and the dual lagrangian problem. Each of them im-
proves the bound og; used in the other one, so that the
lagrangian multipliers are optimised in a lower number of
steps.

3.4. Relations between different lower bounds

In this section, we prove a proposition about the relative
strenght of the four lower bounding techniques described
in this paper. In particular, we discuss the case of uniform
costs, which is rather commonYA_SIdesign.

Let us consider the example in Figure 3.4. If MIS is a
maximum independent set of rows, the corresponding lower
bound isLBy s = zieM,Sminj;aj=1cj = 1: in fact, every



e=l i l2 2] 1] 3.5. Lagrangian heuristics

This section describes the primal and dual auxiliary
heuristics used to estimaldg and iy and to improve the
best-known upper and lower boundsznU B andLB. Un-
like the linear relaxationR), both the primal and the dual
lagrangian relaxationsl.P) and (D), have an integer solu-
tion. This is usually unfeasible, but often proves useful as
a starting point to build good feasible solutions. In fact, if
nearly optimal multipliers are available, the corresponding
lagrangian solution is likely to be nearly optimal and the la-
grangian costs should give a good information on how to

row intersects with every other one, and the minimal col- Modify itin order to reach feasibility [2].

umn covering each row costs 1. However, the dual feasi- The auxiliary primal heuristic folloyvs a simplified ver-
ble solutionm = (1,1,0,0) yields a lower bound equal to  Sion of the greedy scheme that drives the whole algo-
LBpa = w(m) = 2. In the end, the optimal solution of the rithm [1]. Stqrtmg frqn_w the unfeaS|t_>Ie solution, it selects a
linear relaxation i = (0.5,0.5,0.5,0,0.5), and the corre- column at a time until it finds a feasible one; then rgducta_mt
sponding lower boundlBg = z* (P) = 2.5 can be raised columns are removed. It chooses the column which min-

up to 3, taking into account that the cost function is integer. IMises a suitable combinatiop of the lagrangian cost, ~
If all the costs were equal to 1, the maximum independent@nd the numben; of currently uncovered rows. Experience
set and the dual ascent bound would B s = LBpa = 1, shows that using the lagrangian costs instead of the original

whereas the linear relaxation bound wouldUBz = 2. ones leads to better results, because they weigh the impor-
tance of the rows, through the multipliexs Four different

versions of this heuristic are used in our algorithm. The first
Proposition 1 The linear relaxation bound always domi- three, respectively, defing ascj/nj, €j/lg,(n; +1) and
nates the lagrangean lower bound. This, if properly initial- €j/n;jlg, (nj+1). The fourth one furtherly keeps into ac-
ized, dominates the dual ascent bound, which dominates the&€ount the importance of the rows, by counting how many
independent set bound. In uniform cost problems, the twocolumns cover them: rows covered by few columns are
latter bounds are equal. more important [10]:
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Figure 1. An example about independent-set,
dual ascent and linear bounds

Yi = —611
. . . . > TP mRA 1
Proof. The linear relaxation boung; is the optimum of . ol {p €P:MREY—1 N _
the linear relaxation, which is higher than the value of any ~Moreover, it applies reductions at each fixing step. Since
feasible dual solution by the weak duality theorem [19]. But it iS slower, it is applied only to the initial problem, when
the dual ascent bound is by definition such a value. determiningo. o _
On the other hand, any independent set of rbtisorre- The dual heuristic, known atual ascentis the counter-
sponds to a dual feaéible solutien(m = mini.a _1 ¢; for part of the primal one. During the first phase, the variables
i €M, m =0 fori ¢ M'): each row variablé'?ﬁithej inde. are decreased until all of the constraints get satisfied. The

pendent set is assigned its maximum feasible value, the costoWs cov_ered_ by the maximum num_ber of _cql_umns are con-
of the cheapest covering column, whereas the other Vari_&dered first, in order to reduce the infeasibility as much as

ables are set to zero. In general, though the independent seﬁoss'_lt_):]e with the;nwmum decrease in the objective func-
variables cannot increase without violating some constraint, lon. Then, we set.

Fhe other ones can. Therefore, dual ascent can improve the m = max{m _max{max(%‘ajm _Cj> ,o] ,o}
independent set bound. 1\~
In case the cost function is uniforraj(= 1, for all j), all Termy ™, aijm —cj, if positive, is the amount by which

integer dual solutions correspond to independent sets. Sincelual constraing is violated by solutiorm. We determine

m < minj;aij:]_Cj =1, eithermy =1 orm; = 0. If rowsi and the most violated constraint including the current variable

i" intersect in column, & = ayj = 1, andm andmy cannot my. Then, we reducey until either the constraint is satis-

be both set to 1. The rows whose dual variables are set to Ified orm; gets equal to zero. In either case, the constraints

always form an independent set. become somewhat more respected; in the end, they will all
The lagrangean lower bougf}, (\) depends on the mul- be hor!oured, possibly by setting all yariables tozero.

tipliers A employed. If these derive from a dual heuristic, it~ During the second phase, the variables are increased, im-

is equal to the dual ascent bound. Step by step, however, itgroving the objective function, but keeping the solution fea-
value grows and, theoretically, reactzss m sible. They are taken into account in increasing occurrence



order, so that the effect is maximum on the objective and occuring in it. If the value of a dual heuristic solution is not

minimum on the constraints. Since teln— zi‘g‘la;jm

measures how respected the constraints are, we set:
M|
m = m +min (Cj —i;aajm>

3.6. Penalty conditions

lower thanz,es;, (UCP1) can be pruned:

Wy = Wplg;=0+Cj > Zest= P = 0. (6)

These conditions generalize a well-known pruning tech-
nigue, thdimit bound theorenfi10].

The lagrangian and dual information permits to reduce Theorem 2 Let M' be an independent set of rows for the
the problem, by determining whether a given column be- Unate covering probleniM,P,R,c) and LBy the corre-
longs or not to the optimal solution. The concept is to ac- sSponding lower bound on the optimum. Lgészbe any

complish an implicit branching on this variable and imme-

upper bound on the optimum. If column gioes not cover

diately prune one of the two subproblems. Let us branch onany element of Mand

pj, by setting, respectivelg; = 0 andp; = 1, and generat-
ing problemgUCP0) and(UCP1).

The lagrangian relaxationdP0) and (P1) are equal
to problem [P), apart from the additional branching con-
straint.

minz=¢&p+A'e

s.t. pj=0 0<p<e (LPO)
minz=&p+Ae
s.t. pi=1 0<p<e (LP1)

If ¢; <0, problem [P1) has the same optimal solution as

LBy + Cj > Zpest
then column pcan be removed from the problem.

Proposition 3 The limit bound theorem is a special case of
the dual penalties.

Proof. Any independent set of rows!’ corresponds to
a feasible dual solutiom, whose valuew(n') equals
LByy. If the hypothesis of the limit bound theorem hold,

(LP), since this satisfies the additional constraint. In prob- W(M) +Cj > Zsest.  Since columnp; does not cover any

lem (LPO), on the contrary, the value @ is different, but
the other variables are not affected. Thgg, = Z'p — ;.
This is a lower bound fofUCPO): no feasible solution with
pj = 0 costs less. If the best known heuristic solutmast
is not worse, subproblef CP0) can be pruned:

th 751' > Zpest= pr =1 (3)
Conversely, ifc] > 0 andz'py = Z'p + €j > Zyest, SUb-
problem(UCP1) can be pruned:

Zp+Cj > Zpest= pf =0 (4)

Dual penalties exploit the same principle, but with a dif-
ferent lower bound and cost vector. L&0) and(P1) de-
note the linear relaxations ¢JCPO) and (UCP1). We
reformulate their dual problem@®0) and (D1), so as to
obtain the same variables as ID)( though one more con-
straint is imposed. As fofP0), p; can be forced to zero by
settingcj = 4. The dual problen{DO0) is identical toD,
but constrain{ is relaxed, since its right-hand side has risen
to 0. Any feasible solution t¢DO0) yields a lower bound on
Z)cpo- SO, if a better solutiodpes; €xists, problenfU CPO)
can be pruned:

Who = Wplg= e > Zoest= Pf = 1. ®)
Conversely, setting; = 1 (P1) is equivalent to adding a

constant; to the objective and imposing = 0. The dual

problem Q1) is identical to D), but the right-hand side of

row in M’, m' is feasible for the dual problem modified
by imposingc;j = 0. Therefore,w*D|Cj:O > w(m'), and the
dual penalty condition for removing colurmpy, which is
Wp|c;—0+Cj = Zesy holds. However, if the cost function is

not uniform, better dual solutions tham can be found, and
dual penalties can also fix columna.

3.7. Fixing conditions

Each step of the algorithm adds a number of columns to
the current solution. The choice is based on the information
deriving both from the primal and the dual lagrangian relax-
ation. In fact, a column is likely to be optimal whenever it
has a low lagrangian cost and whenever the corresponding
dual lagrangian multiplier is close to 1. The variables which
have both a very low lagrangian cosj € ¢ = 0.001) and
adual lagrangian value very close topf & {1=0.999) are
added to the current solution.

In any case, the algorithm always adds a column, to guar-
antee convergence. This column is the one which minimises
a suitable combination afj andy;:

Oj =Cj—a,

where parametear needs to be experimentally tuned (we
seta = 2).

4. The algorithm

In this section, we assemble all the elements we have
presented so far into an outline of the algorithm (Figure 4).

the j-th constraint is null and forces to zero all the variables Essentially, the algorithm follows a greedy constructive



Algorithm ZDD_SCG f,c)

Begin

(ZDDr,ZDDc) = Encodéf); {Turn f into a couple oZDDs}

p=0; { Start from an empty solutich
Repeat

ZDD'r = ZDDr; ZDD'c = ZDDg,

(ZDDr,ZDDc, p) = ZDD-ReductiongZDD'r,ZDD'c, p) ;

until (zDD'r = ZDDr and ZDD/ ¢ = ZDDc) or (Card(ZDDr) < MaxRand Card(ZDDc) < MaxC);
{The covering matrix is a cyclic core or it is small

A= Decod¢ZDDr,ZDDc); {Turn theZDDs into a sparse matrjx

A= Explicit ReductiongA) ; {Perform explicit reductioris

(A K LB, Ppest Znest P) = SubgradientAsce(®, c) ;

If Zyegt=[LB] thenreturn ppegy

Ae=Ape=p;

For Iter:= 1 to Numlter do

{The optimal solution has been fouhd

{Save the exact cyclic core and the essential colgmns

columns, proven optimal, are added pp some others,
proven non optimal, are removed. As dual penalties are
computationally heavier, they are executed only once
during each subgradient phase and they are skipped if the
number of columns exceeds a given valDeélPen= 100).

At each stepSubgradientAscentields a heuristic solu-
tion and a lower bound on the optimum. The best heuristic
solution is saved appes; and its value agnes. The best
lower bound,LB, is used to measure the quality pfest
if Zpest= [LB], ppest is surely optimal and the process ter-
minates. Otherwise, a number of “promising” columns,
which satisfy suitable conditions on the primal and the
dual problem, are added tp, even though this cannot

Repeat {Fixing step}

be strictly proven to be correct. In the end, procedure

Add the promising columns tp;

o=c—m—ap {Rate the columrs Explicit Reductiongemoves redundant rows and columns
g';gz:fa"a"d"m°”e°“h”5“‘s‘°°'°°'“m”“"dad”“"” from the covering matrix, through classical reduction al-
Non gorithms. SubgradientAscenthe heuristic fixing andex-

A= ExplicitReduction§A’, p) ;

plicit_Reductionare cyclically executed, until eithg@rgets
feasible oLB exceedzyes: In the latter case, in facp can-
not become better thaphes; and any further fixing would
be of no use.

The algorithm is rurNumltertimes. During the first
run, the column fixing strictly chooses the best-rating col-
umn; in the following ones, it is partly stochastic, so that
presumably different solutions are obtained, without recur-
ring to specific data structures: the best-ratdagtColcan-

End didates are taken into account and one of them, at random,
Figure 2. Pseudocode of the algorithm is fixed. Whereas a depth-first branch-and-bound algorithm
punctiliously visits solutions near one another, this heuristic
scheme: starting from an empty solutipn columns are ~ @pproach first explores the most promising choices, so that
subsequently added, until all of the rows are covered: then,possmly better results are obt_amed earlier. The val_ue of
pis made irredundant by discarding as many of its elementsBestColgrows from run to run, in order to explore a wider
as possible. First of all, the minterms and the prime impli- r€gion of the solution space. Of course, each run needs not
cants of functionf are derived from a given circuit imple-  Start from the beginning: it is enough to retrieve the ex-
mentation and encoded into a couple of decision diagrams&ct cyclic core of the problem (matrbe) and the essential
respectivelyZDDr for the former (rows) an@DDc for the columns (vectome), saved before any heuristic choice is
latter (columns). ProceduZDD_Reductionsuns the re-  taken.
duction procedures [10] as long as they have any effect on .
ZDDr andZDDc or the size of the esplicit representation ©- EXperimental results
is small enough (i.e. less thamaxR= 5000 rows and less In this section, we compare the results obtained by
thanMaxR= 10000 columns). The essential columnsfound zpp_SCG to the best-known results for 72 benchmark
are added t@. Then, the resulting problemis convertedinto poolean minimisation problems in the Berkeley Pro-
a sparse matrid and reduced using the standard routines grammed Logic ArrayRLA) test set. Some of them have
for row and column dominance. don't caresets and their size varies from 4 to 128 inputs,

Procedure SubgradientAscentrates the remaining from 1 to 109 outputs, while the initial cover size extends
columns in order to determine which of them should be from 4 to 2406 terms. The cost function is assumed to be the
added top. In short, the underlying concept is to solve number of products producing a cover of the circuit func-
a lagrangian relaxation of both the primal and the dual tionality, with only a secondary concern given to the num-
problem and to update the corresponding multipligrand ber of literals. As for their complexity, these problems are
K, so that the relaxations be as tight as possible. Whendivided into five categories, based on the state of the art at
this is achieved) andu contain a good deal of precious the time they were proposedasy cycliqthe cyclic core is
information about the optimal solution. If lagrangian or not empty and the covering problem had been solved - 49
dual penalty conditions are satisfied (Section 3.6), someinstances)difficult cyclic (the cyclic core is not empty and

until A=A';
(A LB, Ppest Znest P) = SubgradientAscefa, c) ;
until A=00r e < [LB];

It Zpest> [LB] then ppegt=p;
While ppegtis redundantdo

{Eitherp or ppegtis the best solution fourid

Remove the highest cost redundant column figgasg
EndWhile
A=Ae;p= pe;
EndFor;

{Restore the exact cyclic cofe

Return ppegt



ZDD_SCG Espresso Espr. Strong ZDD_SCG Espresso Espr. Strong

Name Sol CC(s) T(s) M Sol | T(s) Sol T(s) Name Sol | CC(s) T(S) M Sol T(s) Sol T(s)

benchl 121 | 1.90 | 14.26 | 13 || 139 | 1.01 || 127 | 2.83 ex1010 || 239 | 146 1501 | 23 || 284 | 9.25 || 262 | 16.83

ex5 65 | 186.40 | 29466 | 51 || 74 | 054 || 74 | 1.15 exa* 279 | 1038 | 1038 | 13 || 279 | 3.79 || 279 | 4.22

exam 63 0.49 699 | 12 || 67 | 211 || 64 | 5.46 ibm* 173 | 4356 | 4356 | 48 || 173 | 0.28 || 173 | 0.31

max1024 || 260 | 051 | 36.55 | 11 || 274 | 4.32 || 267 | 5.39 jbp* 122 | 7456 | 7458 | 15 || 122 | 0.98 || 122 | 1.11

prom2 287 | 893 | 1891 | 29 || 287 | 6.77 || 287 | 7.23 misg* 69 | 0.60 0.60 9 69 | 011 || 69 | 0.17

tl 100* | 6.27 6.69 | 18 || 102 | 0.62 || 102 | 0.93 mish* 82 | 0.76 0.76 9 82 | 019 || 82 | 0.25

test4 96 | 24.83 | 617.54| 15 || 120 | 6.70 || 104 | 17.48 misj* 35 | 0.16 0.16 9 35 | 002 || 35 | 0.04

pdc 96 | 7256 | 77.54 | 51 145 | 12.61 || 119 | 15.46

shift: 100 | 73.16 | 73.16 | 51 100 | 0.04 || 100 | 0.04

Table_ 1 Result; for ZDD.SCGand Espressmn soarpla || 352 | 4294 | 4333 | 158 || 353 | 8.84 || 352 | 11.16

the difficult cyclic problems test2 865 | 19105 | 108058 | 414 || 1103 | 128.7 || 946 | 356.2

test3 436 | 7978 | 16145 | 218 || 541 | 70.73 || 489 | 129.6

ti* 213 | 955 | 954.88 | 88 || 213 | 3.28 || 213 | 3.37

. . ts10* 128 | 1.11 111 | 10 || 128 | 0.05 || 128 | 0.06

the covering problem was unsolved - 7 instances)cad- x2dn* || 104 | 10.24 | 10.24 | 13 || 104 | 054 || 104 | 0.63

lenging(the prime implicants had not even been completely Lxparc” || 254 | 297 | 29731 | 89 || 254 | 6.11 || 254 | 6.26
enumerated - 16 instances). Table 2. Results for ZDD_SCGand Espressmn

For a fewchallenginganddifficult cyclic problems the

] the challenging problems
optimal value has not yet been fourtiench] exam test4

ex1010 test2andtest3 Only an upper bound on the opti- ~BDSCG Scherzo
mum of these problems is known and in particular we report Name Sol T(s) | Maxiter [[ Sol [ T(s)
the ones published in [10]. At the best of our knowledge e Ee) | | iz || a2 aius
they are the best solution identified up to now, with the ex- exam 63(59) | 6.50 1 63H
ception oftest2whereEspressa@ives a better upper bound. 3}";‘,?“13 2 52925222 3{59084 i 523 l4511111O
The algorithm described in this paper has been imple- 1 100* 0.42 1 100 | 0.02
test4 96(78) | 592.71 1 100H

mented in C language, exploiting ti@JDD library from
the University of Boulder, Colorado [21], for the manage-  Taple 3. Results on the difficult cyclic prob-
ment ofZDDs. All the CPU times are obtained by running lems
the experiments on a UtraSparc30/248 with 1Gbyte RAM.
The first experiment considers teasy cycligoroblems.
In short, the algorithm, though heuristic, solves to optimal- mode.
ity all of the problems. The total cost on all the 49 instances ~ The last experiment concerns the quality of the solution
is 5225, and the total lagrangian lower bound is 5213, with proposed by DD_SCGwith respect to the exact one. Table

a gap from the optimum equal toZ2%. Espressd3] ob- 3 and Table 4 compare the results obtained by our approach
tains a total cost of 5330 with its normal heuristic mode and With respect tdScherzd10]. SinceZDD_SCGandScherzo
5281 with theEspressatrong mode. adopt the same algorithm in the implicit part, we only com-

The second experiment (see Table 1 and Table 2) com-pare the solution cost and the time required to solve the
paresZDD_SCGto Espressan the heuristic normal and ~ cyclic core. As before, a single starred value marks a proved
strong modes, not in thExactor Signaturemode. The optimum. Otherwise, a lower bound in parenthesis follows
tables report the cost of the solution, the tiGE(s) to the heuristic solution. When the optimal value is unknown,
compute the cyclic core (summing the implicit and explicit the last column contains the previous best-known result,
phases), the CPU total tin#(s) and the memory required marked by an “H”, which is only an upper bound. In par-
by ZDD_SCG in megabytes. All times are measured in sec- ticular, we report the one published in [10], for which no
onds. A star marks the solution cost when it is proved to be CPU time is given.
optimal. The solution cost and the total analysis time are  Concerningdifficult cyclic problems, all but one of
also reported foEspressan both modes. these are solved to optimality: for the industrial problem

In some cases the memory requirement is quite high butmax1024he gap is equal to 1. On the other hand, improved
this is mainly due to the cyclic core computation. Note that solution costs have been found for two instantest4and
[12] has a much lower memory requirement for the same benchl
cyclic core computation (roughly, less than MB). For thechallengingproblems, 11 instances are proved to

From the CPU time point of viewEspressas alway be optimal while on three unsolved problems, we obtain a
faster thanzZDD_SCGand this is mainly due to the time large improvement over the best-known results. Our result
required by the cyclic core computation. Note that, for for ex1010is 239 against 246. We obtain a lower bound
all benchmarchs wheiZDD_SCGandEspressaletermine  equal to 220 and an upper bound equatiig, = 239; the
equivalent solutions (with the exclusionmbm2 we prove old heuristic result was equal lz§',d = 246. So, the error
that this is an optimal solution. In all other caséBD_SCG has been reduced from at most 26 to at most 19, which is
always identifies better solutions thBspressan heuristic  a (Z}y — Z) / (Z}q — LB) = 7/26% 100= 27% decrease.



ZDD_SCG Scherzo 4]
Name Sol T(s) Maxlter Sol T(s)
ex1010 || 239 (220) | 1355.56 1 246H
ex4 279* 0.00 1 279 0.00
jbp 122* 0.02 1 122 | 0.00
pdc 96(92) 5.21 1 96 1.80 [5]
soar.pla || 352(350) 39.87 1 352 56.83
test2 865(756) 88956 1 995H
test3 436(390) | 8167.62 1 477H 6]
ti 213* 0.50 1 213 0.15
xparc 254* 0.03 1 254 0.02
Table 4. Results on the challenging problems (7]
- : : (8]
This is an underestimate: should the optimufp., be
higher tharn_B, the error reduction would be stronger. Our (9]

result fortest2is 865 against 946 (obtained in less than 25
hours). As the lower bound is equal to 756, the error has g,
been reduced at least by 43%. In the end, our result for
test3is 436 against 477 (in less than 3 hours). As the lower |,
bound is equal to 390, the error has been reduced at least
by 47%. Finally the exact solvekura [14] analyzesdg
soar.plaandex5 prom2 max1024in 1.81, 56.37, 1994.1,
3853.1 and 8174.10 seconds, respectively.

[12]

6. Conclusion [13]

We have presented a heuristic algorithm for unate cover-,,
ing problems, specifically for two-level logic minimisation.
The algorithm proves extremely effective and fast, obtain-
ing in a tolerable amount of time results which are nearly
always optimal. On some problems, whose exact solution,
is unknown, our results are much better than the best-known
ones. The algorithm is heuristic, but it also gives an estimate
of the quality of the solution attained, through the evaluation [16]
of a lower bound. On most benchmark problems, this lower
bound equals the value of the solution, thus proving its op- [17]
timality. In most of the other cases, the gap reduces to few
units. [18]
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