
An Efficient Heuristic Approach to Solve the Unate Covering Problem

Roberto Cordone
DEI - Politecnico di Milano

e-mail: cordone@elet.polimi.it

Fabrizio Ferrandi
DEI - Politecnico di Milano

e-mail: ferrandi@elet.polimi.it

Donatella Sciuto
DEI - Politecnico di Milano

e-mail: sciuto@elet.polimi.it

Roberto Wolfler Calvo
ISIS - Joint Research Centre (JRC) - Ispra
e-mail: roberto.wolfler@jrc.it

Abstract
The classical solving approach for two-level logic minimisa-

tion reduces the problem to a special case of unate covering and
attacks the latter with a (possibly limited) branch-and-bound al-
gorithm. We adopt this approach, but we propose a constructive
heuristic algorithm that combines the use of Binary Decision Di-
agrams with the lagrangian relaxation. This technique permits to
achieve an effective choice of the elements to include into the solu-
tion, as well as cost-related reductions of the problem and a good
lower bound on the optimum. The results support the effectiveness
of this approach: on a wide set of benchmark problems, the algo-
rithm nearly always hits the optimum, and in most cases proves it
to be such. On the problems whose optimum is actually unknown,
the best known result is strongly improved.

1. Introduction
The classical solving approach for two-level logic min-

imization in theVLSI literature goes back to Quine’s [20]
and McCluskey’s [17] works. It reformulates the problem
as a special case of theUnate Covering Problemand applies
algorithms conceived for the latter, or even for the more
generalBinate Covering Problem. These are a common
model in most fields of Computer Science (circuit synthesis,
software engineering, artificial intelligence, and so on), so
that optimal solutions would be extremely precious. Unfor-
tunately, both problems areN P -hard, and no efficient algo-
rithm to solve them exactly is known. Conversely, heuristics
can lead to good solutions in a reasonable amount of time,
and yield tight bounds, by means of which even large-size
problems can be solved to optimality by branch-and-bound.

This paper describes a heuristic algorithm that adopts
specialised data structures, namedZero-suppressed binary
Decision Diagrams(ZDDs), in order to provide a compact
representation of the data [18]. The algorithm follows a
greedy constructive approach: it selects one product at a
time, until their sum is equivalent to the given function;
then, redundant products are removed. The choice of each
product is driven by a sophisticated process, exploiting the

integer programming formulation of unate covering [19].
This leads to strong improvements in several fundamental
aspects with respect to the classical approaches adopted in
the VLSI literature. In particular, some well-known prun-
ing techniques can be strengthened and generalised. The
method yields a lower bound which is tighter than the clas-
sical one, so that it is often possible to prove the optimality
of the solution found, or, at least, to give a better estimate
of how far this is from the optimum. Experience proves that
even a single run of the algorithm determines nearly opti-
mal solutions. Yet, the whole process can be repeated, tak-
ing different choices in the intermediate steps and possibly
obtaining better results.

The paper is organised as follows. Next section formally
defines two-level minimisation and its relation to unate cov-
ering. Section 3 presents the approach used to solve the
unate covering problem, while section 4 introduces the al-
gorithm. Experimental results close the paper, together with
some conclusions.

2. Classical solving methods
Most approaches to solving covering problems have

largely followed the pioneering work of Quine and Mc-
Cluskey [20] [17], in which two-level minimisation is
turned into the equivalent covering problem. This leads to
two subsequent bottlenecks. First, the reformulated prob-
lem can have an exponential dimension with respect to the
number of variablesn. In fact, prime implicants are at
most O(3n=

p
n), and can be at leastO(3n=n) [8], while

minterms, of course, vary from 0 to 2n. Second, the cov-
ering problem isN P -hard: in the worst case, it can be
solved only in exponential time with respect to the number
of prime implicants and minterms.

However, the covering formulation is often redun-
dant [10], so that the problem can be hugely reduced by
means of logical remarks. The early works devoted a strong
effort to the development of such reductions: partitioning,
essentiality, row dominance, column dominance, Gimpel’s
reduction, and so on. A good survey on the subject can be

found in [23].

More recent works [4] on reduction methods proposed
implicit techniques, to avoid even generating redundant
rows and columns. In particular, much interest has been
aroused by efficient data structures, which are well suited
to support the solving procedures. In the first attempts [22],
minterms and prime implicants were encoded into a couple
of Binary Decision Diagrams (BDDs), a canonical repre-
sentation for boolean functions [5]. Later on, however, the
use of Zero-suppressed binary Decision Diagrams (ZDDs),
which are a canonical representation for combinational sets,
has proven better [18].

Logical reductions can be iteratively applied, until they
produce a stable covering matrix, calledcyclic core. If
this is empty, the essential columns found form a mini-
mal solution. Otherwise, the problem can be solved ex-
actly by branch-and-bound algorithm [11]. In this scheme,
a high lower bound and a low upper bound on the opti-
mal solution are extremely effective in terminating useless
searches. Most algorithms in theVLSI literature compute
lower bounds by maximal independent sets [23]. A the-
oretically better lower bound is presented in [11], but in
practice this is worse than the classical one, apart from
ill-conditioned or high-density problems. Liao and De-
vadas [15] show that a tighter lower bound may be obtained
by formulating unate covering as an integer linear program
and relaxing the integrality constraint. This bound is com-
putationally more expensive, but unsuccessful branches are
pruned at earlier stages. Liao and Devadas also present
a faster technique,dual ascent, based on the heuristic so-
lution of the dual problem [19]. The resulting bound is
weaker than, or at most equal to the linear relaxation one.
In particular, if the costs are uniform (which is the com-
mon case inVLSI), a simple dual ascent yields the classi-
cal independent-set based bound. In [14] a two phases ap-
proach is adopted: first the upper bound of the solution is
strengthened by searching a set of promising solutions with
the classical branching rules, second, when no further bet-
ter solutions are expected, the maximum independent set
lower bound is incrementally strengthened by adding suit-
able rows to the set and determining the optimum of this
reduced problem.

As for heuristics and the computation of upper bounds, a
simple greedy algorithm for unate covering problems was
proposed by Johnson and Lov´asz [16] and extended by
Chvátal [9] to non uniform cost problems. Improved vari-
ants, were proposed by Balas and Ho, who combined them
with dual heuristics in a cutting plane exact algorithm [1].
Beasley [2] adopted several reduction procedures, in addi-
tion to a lagrangian approach similar to the one we describe
in Section 3. Fisher and Kedia [13] added dual heuristics to
this framework, which has been recently improved by Ce-
ria, Nobili and Sassano [7]. Caprara, Fischetti and Toth [6]

used a lagrangian heuristic coupled with a dynamic pric-
ing scheme, in order to determine a good relaxation in short
time, even in large-scale problems.

3. The proposed approach
This section presents an integer formulation of the unate

covering problem and describes how to improve its la-
grangian relaxation through a subgradient scheme, so as to
derive useful information on the original problem. First,
we introduce the formulation and the concept of lagrangian
relaxation. Then, we describe the subgradient method to
tighten this relaxation and the way to exploit the dual prob-
lem in order to proceed more quickly. As the process re-
quires feasible solutions both to the primal and the dual
problem, we discuss the heuristics used to build them. The
following subsection deals with penalty procedures, allow-
ing to fix or discard some of the columns, without affecting
the optimum. In the end, the whole information is summed
up into two heuristic rules to determine which columns are
likely to be optimal, and should therefore be fixed in order
to proceed.

3.1. The linear and the lagrangian relaxation

The unate covering problem(M;P;R;c) can be formu-
lated as an integer linear programming problem [19] by as-
sociating to setP a cost coefficient vectorc and a binary
variable vectorp, so thatcj be the cost of columnj, pj = 1
if column j belongs to the current solution,pj = 0 other-
wise.

minz= c0p

s.t. Ap� e p2 f0;1gjPj (UCP)

wheree stands for a suitable all-one vector (ei = 1; i =
1;2; :::; jMj) andA is the covering matrix. Vector inequali-
ties are meant to be componentwise, so thatAp� e repre-

sents the covering constraints∑jPj
j=1ai j pj � 1, for all i: each

row must be covered by at least one column.
ThisN P -hard problem can be simplified by turning con-

straintpj 2 f0;1g into 0� pj � 1 (linear programming re-
laxation):

minz= c0p

s.t. Ap� e 0� p� e (P)

If an optimal solution of (P) is integer, it is optimal for
(UCP), as well. In general, however, they are all fractionary
and yield a lower boundz�P � z�UCP.

The linear relaxation, though efficiently solvable, is still
a rather difficult problem. A simpler one, calledlagrangian
problemis obtained by removing all of its constraints and
combining them to the objective function with suitable mul-
tipliersλ j � 0, so as to penalise their violation:

minz= c̃0p+λ0e s.t. 0� p� e (LP)

wherec̃= c�A0λ is named thelagrangian costvector.

An optimal solution to (LP) is trivially p�
j = 0 whenc̃j >

0, p�
j = 1 whenc̃j � 0. It is integer and, though it violates

some of the covering constraints, it is often a good starting
point to build a feasible solutionpH (λ) for (UCP). Its value
is, for all λ � 0, a lower bound on the linear relaxation:
z�LP (λ) � z�P � z�UCP. The lagrangian approach consists in
determiningλ so thatz�LP (λ) be as high as possible, since
it is likely that in this way the heuristic solution obtained
will be better. A technique known assubgradient ascent
permits to start from an arbitrary valueλ0 and to improve it,
potentially up toz�P.

3.2. Subgradient ascent

The main idea is to updateλk step by step, based on the
result of the current lagrangian problemLP(λk). Its optimal
solutionp�

k = p�
LP (λk) violates the covering constraints by

sλk
= e�Ap�k and its cost iszλk

= z�LP (λk). This drives the
update ofλk through the following formula [19]

λk+1 = max

0
B@λk+sλk

���z�P�zλk

���

sλk

2 ;0

1
CA (1)

At the next step, the violated constraints (correspond-
ing to the positive elements ofsλk

) will be penalised
more strongly by increasing the corresponding multiplier,
whereas the respected ones will be penalised less strongly,
by decreasing it, though never below zero.

The gap
�
z�P�zλk

�
measures how farλk is from its op-

timal value: the larger it is, the larger the update should
be. This aims at improvingzλk

, but the resulting process is
not monotonous:zλk

oscillates from step to step. Only its
best known valueLB progressively rises, getting closer and
closer toz�P. At the same time, the best value ofλ includes
more and more information on the problem.

Formula (1) theoretically guarantees convergence. How-
ever, in practicez�P is unknown, and it is replaced by an
upper boundUB. The use of an upper bound could pre-
vent the method to converge, since

�
UB�zλk

�
can be al-

ways positive. Therefore, a decreasing “step” coefficienttk
is added: this is halved each timeLB does not improve for
a suitable numberNt of consecutive steps, since the lack of
improvements is likely due to an excessively large update.
This results in a slightly different updating formula:

λk+1 = max

0
B@λk+ tksλk

���UB�zλk

���

sλk

2 ;0

1
CA (2)

The process ends when eitherzλk
is very close toUB

(i.e. the gap is lower than a given thresholdδ) or tk has
become too small to allow further changes (tk < tmin). A
third stopping condition holds when the cost functionc is
integer, as we assume in the following. In this casez�UCP is
integer, too: if a known integer solution costs

�
zλk

�
, it is

optimal, since no other one can be better.

The initial value forλ is arbitrary, as far as non nega-
tive, but experience shows that the better it is, the quicker
the method converges. If the current problem results from
fixing some columns in a previous one, the optimal value
of λ is likely to be only slightly different. Therefore, the
best value determined for the previous problem is assumed
as the initial one in the new problem. At the first step, when
no information is available, a good estimateλ0 is provided
by the dual problem.

3.3. The dual problem

Given the linear problem (P), its dual problemis

maxw= e0m

s.t. A0m� c 0�m� c̄ (D)

wherem is the dual variable vector and ¯ci = min j :ai j=1cj .
The dual problem (D) is strictly related to the primal la-

grangian problem (LP): if a dual feasible solutionm is used
as a lagrangian multiplier vector, the corresponding opti-
mumz�LP (m) equals the valuew(m) of the dual solution.

c�A0m= c̃(m)� 0) p�LP (m) = 0)

) z�LP (m) = m0e= e0m= wD (m)

Thus, any good dual solution is a good lagrangian mul-
tiplier vector. In particular, any optimal dual solution is
an optimal lagrangian multiplier, sincez�LP (m

�) = wD (m�),
and it is a well-known consequence of the duality theo-
rem [19] thatw�

D = z�P. This is why a dual heuristic is used
to determine an initial estimate forλ0.

Of course, solving the dual problem is approximately as
hard as solving the primal one. Yet, one can relax it in a
lagrangian fashion:

maxw= ẽ0m+µ0c s.t. 0�m� c̄ (LD)

whereẽ= e�Aµ, and the optimum of (LD) is an upper
boundw�

LD (µ) � w�
D = z�P. This bound possibly improves

the valueUB used in the subgradient updating formula (2)
as an estimate ofz�P, and it is updated step by step through
the subgradient process. Of course, the initial estimate for
µ0 is determined by a primal heuristic.

In short, the subgradient method is applied both to the
primal and the dual lagrangian problem. Each of them im-
proves the bound onz�P used in the other one, so that the
lagrangian multipliers are optimised in a lower number of
steps.

3.4. Relations between different lower bounds

In this section, we prove a proposition about the relative
strenght of the four lower bounding techniques described
in this paper. In particular, we discuss the case of uniform
costs, which is rather common inVLSIdesign.

Let us consider the example in Figure 3.4. If MIS is a
maximum independent set of rows, the corresponding lower
bound isLBMIS = ∑i2MISminj :ai j=1cj = 1: in fact, every

2 1

1

1 0

1 1

1

2 1

0 1 0

0 0

0 0

0 1 1

1

1

0

1

1
A =

c ' =

Figure 1. An example about independent-set,
dual ascent and linear bounds

row intersects with every other one, and the minimal col-
umn covering each row costs 1. However, the dual feasi-
ble solutionm= (1;1;0;0) yields a lower bound equal to
LBDA = w(m) = 2. In the end, the optimal solution of the
linear relaxation isp= (0:5;0:5;0:5;0;0:5), and the corre-
sponding lower boundLBLR = z� (P) = 2:5 can be raised
up to 3, taking into account that the cost function is integer.
If all the costs were equal to 1, the maximum independent
set and the dual ascent bound would beLBMIS = LBDA = 1,
whereas the linear relaxation bound would beLBLR = 2.

Proposition 1 The linear relaxation bound always domi-
nates the lagrangean lower bound. This, if properly initial-
ized, dominates the dual ascent bound, which dominates the
independent set bound. In uniform cost problems, the two
latter bounds are equal.

Proof. The linear relaxation boundz�P is the optimum of
the linear relaxation, which is higher than the value of any
feasible dual solution by the weak duality theorem [19]. But
the dual ascent bound is by definition such a value.

On the other hand, any independent set of rowsM0 corre-
sponds to a dual feasible solutionm (mi = minj :ai j=1cj for
i 2 M0, mi = 0 for i =2 M0): each row variable in the inde-
pendent set is assigned its maximum feasible value, the cost
of the cheapest covering column, whereas the other vari-
ables are set to zero. In general, though the independent set
variables cannot increase without violating some constraint,
the other ones can. Therefore, dual ascent can improve the
independent set bound.

In case the cost function is uniform (cj = 1, for all j), all
integer dual solutions correspond to independent sets. Since
mi �minj :ai j=1cj = 1, eithermi = 1 ormi = 0. If rowsi and
i0 intersect in columnj, ai j = ai0 j = 1, andmi andmi0 cannot
be both set to 1. The rows whose dual variables are set to 1
always form an independent set.

The lagrangean lower boundz�LP (λ) depends on the mul-
tipliers λ employed. If these derive from a dual heuristic, it
is equal to the dual ascent bound. Step by step, however, its
value grows and, theoretically, reachesz�P.

3.5. Lagrangian heuristics

This section describes the primal and dual auxiliary
heuristics used to estimateλ0 and µ0 and to improve the
best-known upper and lower bounds onz�P, UB andLB. Un-
like the linear relaxation (P), both the primal and the dual
lagrangian relaxations, (LP) and (LD), have an integer solu-
tion. This is usually unfeasible, but often proves useful as
a starting point to build good feasible solutions. In fact, if
nearly optimal multipliers are available, the corresponding
lagrangian solution is likely to be nearly optimal and the la-
grangian costs should give a good information on how to
modify it in order to reach feasibility [2].

The auxiliary primal heuristic follows a simplified ver-
sion of the greedy scheme that drives the whole algo-
rithm [1]. Starting from the unfeasible solution, it selects a
column at a time until it finds a feasible one; then reductant
columns are removed. It chooses the column which min-
imises a suitable combinationγ j of the lagrangian cost ˜cj

and the numbernj of currently uncovered rows. Experience
shows that using the lagrangian costs instead of the original
ones leads to better results, because they weigh the impor-
tance of the rows, through the multipliersλ. Four different
versions of this heuristic are used in our algorithm. The first
three, respectively, defineγ j as c̃j=nj , c̃j= lg2 (nj +1) and
c̃j=nj lg2 (nj +1). The fourth one furtherly keeps into ac-
count the importance of the rows, by counting how many
columns cover them: rows covered by few columns are
more important [10]:

γ j =
c̃j

∑
mRp

1
jfp2 P : mRpgj�1

Moreover, it applies reductions at each fixing step. Since
it is slower, it is applied only to the initial problem, when
determiningµ0.

The dual heuristic, known asdual ascent, is the counter-
part of the primal one. During the first phase, the variables
are decreased until all of the constraints get satisfied. The
rows covered by the maximum number of columns are con-
sidered first, in order to reduce the infeasibility as much as
possible with the minimum decrease in the objective func-
tion. Then, we set:

mi = max

(
mi �max

"
max

j

jMj

∑
i=1

ai j mi �cj

!
;0

#
;0

)

Term∑jMj
i=1ai j mi �cj , if positive, is the amount by which

dual constraintj is violated by solutionm. We determine
the most violated constraint including the current variable
mi . Then, we reducemi until either the constraint is satis-
fied ormi gets equal to zero. In either case, the constraints
become somewhat more respected; in the end, they will all
be honoured, possibly by setting all variables to zero.

During the second phase, the variables are increased, im-
proving the objective function, but keeping the solution fea-
sible. They are taken into account in increasing occurrence

order, so that the effect is maximum on the objective and

minimum on the constraints. Since termcj �∑jMj
i=1ai j mi

measures how respected the constraints are, we set:

mi = mi +min
j

cj �

jMj

∑
i=1

ai j mi

!

3.6. Penalty conditions

The lagrangian and dual information permits to reduce
the problem, by determining whether a given column be-
longs or not to the optimal solution. The concept is to ac-
complish an implicit branching on this variable and imme-
diately prune one of the two subproblems. Let us branch on
pj , by setting, respectivelypj = 0 andpj = 1, and generat-
ing problems(UCP0) and(UCP1).

The lagrangian relaxations (LP0) and (LP1) are equal
to problem (LP), apart from the additional branching con-
straint.

minz= c̃0p+λ0e

s.t. pj = 0 0� p� e (LP0)

minz= c̃0p+λ0e

s.t. pj = 1 0� p� e (LP1)

If c̃j �0, problem (LP1) has the same optimal solution as
(LP), since this satisfies the additional constraint. In prob-
lem (LP0), on the contrary, the value ofpj is different, but
the other variables are not affected. Thus,z�LP0 = z�LP� c̃j .
This is a lower bound for(UCP0): no feasible solution with
pj = 0 costs less. If the best known heuristic solutionpbest

is not worse, subproblem(UCP0) can be pruned:

z�LP� c̃j � zbest) p�j = 1 (3)

Conversely, if ˜cj > 0 andz�LP1 = z�LP+ c̃j � zbest, sub-
problem(UCP1) can be pruned:

z�LP+ c̃j � zbest) p�j = 0 (4)

Dual penalties exploit the same principle, but with a dif-
ferent lower bound and cost vector. Let(P0) and(P1) de-
note the linear relaxations of(UCP0) and (UCP1). We
reformulate their dual problems(D0) and (D1), so as to
obtain the same variables as in (D), though one more con-
straint is imposed. As for(P0), pj can be forced to zero by
settingcj = +∞. The dual problem(D0) is identical toD,
but constraintj is relaxed, since its right-hand side has risen
to ∞. Any feasible solution to(D0) yields a lower bound on
z�UCP0. So, if a better solutionzbest exists, problem(UCP0)
can be pruned:

w�
D0 = w�

Djcj=+∞ � zbest) p�j = 1: (5)

Conversely, settingpj = 1 (P1) is equivalent to adding a
constantcj to the objective and imposingcj = 0. The dual
problem (D1) is identical to (D), but the right-hand side of
the j-th constraint is null and forces to zero all the variables

occuring in it. If the value of a dual heuristic solution is not
lower thanzbest, (UCP1) can be pruned:

w�
D1 = w�

Djcj=0+cj � zbest) p�j = 0: (6)

These conditions generalize a well-known pruning tech-
nique, thelimit bound theorem[10].

Theorem 2 Let M0 be an independent set of rows for the
unate covering problem(M;P;R;c) and LBM0 the corre-
sponding lower bound on the optimum. Let zbest be any
upper bound on the optimum. If column pj does not cover
any element of M0 and

LBM0 +cj � zbest

then column pj can be removed from the problem.

Proposition 3 The limit bound theorem is a special case of
the dual penalties.

Proof. Any independent set of rowsM0 corresponds to
a feasible dual solutionm0, whose valuew(m0) equals
LBM0 . If the hypothesis of the limit bound theorem hold,
w(m0) + cj � zbest. Since columnpj does not cover any
row in M0, m0 is feasible for the dual problem modified
by imposingcj = 0. Therefore,w�

Djcj=0 � w(m0), and the
dual penalty condition for removing columnpj , which is
w�

Djcj=0+cj � zbest, holds. However, if the cost function is

not uniform, better dual solutions thanm0 can be found, and
dual penalties can also fix columns.

3.7. Fixing conditions

Each step of the algorithm adds a number of columns to
the current solution. The choice is based on the information
deriving both from the primal and the dual lagrangian relax-
ation. In fact, a column is likely to be optimal whenever it
has a low lagrangian cost and whenever the corresponding
dual lagrangian multiplier is close to 1. The variables which
have both a very low lagrangian cost (˜cj � ĉ= 0:001) and
a dual lagrangian value very close to 1 (µj � µ̂= 0:999) are
added to the current solution.

In any case, the algorithm always adds a column, to guar-
antee convergence. This column is the one which minimises
a suitable combination of ˜cj andµj :

σ j = c̃j �αµj

where parameterα needs to be experimentally tuned (we
setα = 2).

4. The algorithm
In this section, we assemble all the elements we have

presented so far into an outline of the algorithm (Figure 4).
Essentially, the algorithm follows a greedy constructive

Algorithm ZDD SCG(f ;c)

Begin

(ZDDr;ZDDc) = Encode(f) ; fTurn f into a couple ofZDDsg

p= 0; fStart from an empty solutiong

Repeat

ZDD0r = ZDDr;ZDD0c= ZDDc;

(ZDDr;ZDDc; p) = ZDD Reductions
�
ZDD0 r;ZDD0c; p

�
;

until (ZDD0r = ZDDr and ZDD0c = ZDDc) or (Card(ZDDr) � MaxRand Card(ZDDc) � MaxC);
fThe covering matrix is a cyclic core or it is smallg

A= Decode(ZDDr;ZDDc) ; fTurn theZDDs into a sparse matrixg

A= Explicit Reductions(A) ; fPerform explicit reductionsg
�
λ;µ;LB; pbest;zbest; p

�
= SubgradientAscent(A;c) ;

If zbest= dLBe then return pbest; fThe optimal solution has been foundg

Ae = A; pe= p; fSave the exact cyclic core and the essential columnsg

For Iter := 1 to NumIter do

Repeat fFixing stepg

Add the promising columns top;

σ = c�Aλ�αµ; fRate the columnsg

Choose at random one of the bestBestColcolumns and add it top;

Repeat

A0 = A;

A= Explicit Reductions
�
A0 ; p

�
;

until A= A0 ;
�
λ;µ;LB; pbest;zbest; p

�
= SubgradientAscent(A;c) ;

until A= /0 or zbest� dLBe; fEitherp or pbest is the best solution foundg

If zbest> dLBe then pbest= p;

While pbest is redundantdo

Remove the highest cost redundant column frompbest;

EndWhile

A= Ae; p= pe; fRestore the exact cyclic coreg

EndFor;

Return pbest;

End

Figure 2. Pseudocode of the algorithm

scheme: starting from an empty solutionp, columns are
subsequently added, until all of the rows are covered; then,
p is made irredundant by discarding as many of its elements
as possible. First of all, the minterms and the prime impli-
cants of functionf are derived from a given circuit imple-
mentation and encoded into a couple of decision diagrams,
respectivelyZDDr for the former (rows) andZDDc for the
latter (columns). ProcedureZDD Reductionsruns the re-
duction procedures [10] as long as they have any effect on
ZDDr andZDDc or the size of the esplicit representation
is small enough (i.e. less thanMaxR= 5000 rows and less
thanMaxR= 10000 columns). The essential columns found
are added top. Then, the resulting problem is converted into
a sparse matrixA and reduced using the standard routines
for row and column dominance.

Procedure SubgradientAscentrates the remaining
columns in order to determine which of them should be
added top. In short, the underlying concept is to solve
a lagrangian relaxation of both the primal and the dual
problem and to update the corresponding multipliers,λ and
µ, so that the relaxations be as tight as possible. When
this is achieved,λ and µ contain a good deal of precious
information about the optimal solution. If lagrangian or
dual penalty conditions are satisfied (Section 3.6), some

columns, proven optimal, are added top; some others,
proven non optimal, are removed. As dual penalties are
computationally heavier, they are executed only once
during each subgradient phase and they are skipped if the
number of columns exceeds a given value (DualPen= 100).

At each step,SubgradientAscentyields a heuristic solu-
tion and a lower bound on the optimum. The best heuristic
solution is saved aspbest, and its value aszbest. The best
lower bound,LB, is used to measure the quality ofpbest:
if zbest= dLBe, pbest is surely optimal and the process ter-
minates. Otherwise, a number of “promising” columns,
which satisfy suitable conditions on the primal and the
dual problem, are added top, even though this cannot
be strictly proven to be correct. In the end, procedure
Explicit Reductionsremoves redundant rows and columns
from the covering matrix, through classical reduction al-
gorithms. SubgradientAscent, the heuristic fixing andEx-
plicit Reductionsare cyclically executed, until eitherp gets
feasible orLB exceedszbest. In the latter case, in fact,p can-
not become better thanpbest, and any further fixing would
be of no use.

The algorithm is runNumIter times. During the first
run, the column fixing strictly chooses the best-rating col-
umn; in the following ones, it is partly stochastic, so that
presumably different solutions are obtained, without recur-
ring to specific data structures: the best-ratingBestColcan-
didates are taken into account and one of them, at random,
is fixed. Whereas a depth-first branch-and-bound algorithm
punctiliously visits solutions near one another, this heuristic
approach first explores the most promising choices, so that
possibly better results are obtained earlier. The value of
BestColgrows from run to run, in order to explore a wider
region of the solution space. Of course, each run needs not
start from the beginning: it is enough to retrieve the ex-
act cyclic core of the problem (matrixAe) and the essential
columns (vectorpe), saved before any heuristic choice is
taken.

5. Experimental results
In this section, we compare the results obtained by

ZDD SCG to the best-known results for 72 benchmark
boolean minimisation problems in the Berkeley Pro-
grammed Logic Array (PLA) test set. Some of them have
don’t caresets and their size varies from 4 to 128 inputs,
from 1 to 109 outputs, while the initial cover size extends
from 4 to 2406 terms. The cost function is assumed to be the
number of products producing a cover of the circuit func-
tionality, with only a secondary concern given to the num-
ber of literals. As for their complexity, these problems are
divided into five categories, based on the state of the art at
the time they were proposed:easy cyclic(the cyclic core is
not empty and the covering problem had been solved - 49
instances),difficult cyclic (the cyclic core is not empty and

ZDD SCG Espresso Espr. Strong
Name Sol CC(s) T(s) M Sol T(s) Sol T(s)
bench1 121 1.90 14.26 13 139 1.01 127 2.83
ex5 65 186.40 294.66 51 74 0.54 74 1.15
exam 63 0.49 6.99 12 67 2.11 64 5.46
max1024 260 0.51 36.55 11 274 4.32 267 5.39
prom2 287 8.93 18.91 29 287 6.77 287 7.23
t1 100* 6.27 6.69 18 102 0.62 102 0.93
test4 96 24.83 617.54 15 120 6.70 104 17.48

Table 1. Results for ZDD SCGand Espressoon
the difficult cyclic problems

the covering problem was unsolved - 7 instances) andchal-
lenging(the prime implicants had not even been completely
enumerated - 16 instances).

For a fewchallenginganddifficult cyclic problems the
optimal value has not yet been found:bench1, exam, test4,
ex1010, test2andtest3. Only an upper bound on the opti-
mum of these problems is known and in particular we report
the ones published in [10]. At the best of our knowledge
they are the best solution identified up to now, with the ex-
ception oftest2whereEspressogives a better upper bound.

The algorithm described in this paper has been imple-
mented in C language, exploiting theCUDD library from
the University of Boulder, Colorado [21], for the manage-
ment ofZDDs. All the CPU times are obtained by running
the experiments on a UtraSparc30/248 with 1Gbyte RAM.

The first experiment considers theeasy cyclicproblems.
In short, the algorithm, though heuristic, solves to optimal-
ity all of the problems. The total cost on all the 49 instances
is 5225, and the total lagrangian lower bound is 5213, with
a gap from the optimum equal to 0:22%. Espresso[3] ob-
tains a total cost of 5330 with its normal heuristic mode and
5281 with theEspressostrong mode.

The second experiment (see Table 1 and Table 2) com-
paresZDD SCG to Espressoin the heuristic normal and
strong modes, not in theExact or Signaturemode. The
tables report the cost of the solution, the timeCC(s) to
compute the cyclic core (summing the implicit and explicit
phases), the CPU total timeT(s) and the memory required
by ZDD SCG, in megabytes. All times are measured in sec-
onds. A star marks the solution cost when it is proved to be
optimal. The solution cost and the total analysis time are
also reported forEspressoin both modes.

In some cases the memory requirement is quite high but
this is mainly due to the cyclic core computation. Note that
[12] has a much lower memory requirement for the same
cyclic core computation (roughly, less than 100MB).

From the CPU time point of view,Espressois alway
faster thanZDD SCGand this is mainly due to the time
required by the cyclic core computation. Note that, for
all benchmarchs whereZDD SCGandEspressodetermine
equivalent solutions (with the exclusion ofprom2) we prove
that this is an optimal solution. In all other cases,ZDD SCG
always identifies better solutions thanEspressoin heuristic

ZDD SCG Espresso Espr. Strong
Name Sol CC(s) T(s) M Sol T(s) Sol T(s)
ex1010 239 146 1501 23 284 9.25 262 16.83
ex4* 279 10.38 10.38 13 279 3.79 279 4.22
ibm* 173 43.56 43.56 48 173 0.28 173 0.31
jbp* 122 74.56 74.58 15 122 0.98 122 1.11
misg* 69 0.60 0.60 9 69 0.11 69 0.17
mish* 82 0.76 0.76 9 82 0.19 82 0.25
misj* 35 0.16 0.16 9 35 0.02 35 0.04
pdc 96 72.56 77.54 51 145 12.61 119 15.46
shift* 100 73.16 73.16 51 100 0.04 100 0.04
soar.pla 352 4294 4333 158 353 8.84 352 11.16
test2 865 19105 108058 414 1103 128.7 946 356.2
test3 436 7978 16145 218 541 70.73 489 129.6
ti* 213 955 954.88 88 213 3.28 213 3.37
ts10* 128 1.11 1.11 10 128 0.05 128 0.06
x2dn* 104 10.24 10.24 13 104 0.54 104 0.63
xparc* 254 297 297.31 89 254 6.11 254 6.26

Table 2. Results for ZDD SCGand Espressoon
the challenging problems

ZDD SCG Scherzo
Name Sol T(s) MaxIter Sol T(s)
bench1 121(120) 12.36 1 122H
ex5 65(60) 108.26 12 65 31113
exam 63(59) 6.50 1 63H
max1024 260(255) 36.04 2 259 15110
prom2 287(285) 9.98 1 287 4111
t1 100* 0.42 1 100 0.02
test4 96(78) 592.71 1 100H

Table 3. Results on the difficult cyclic prob-
lems

mode.
The last experiment concerns the quality of the solution

proposed byZDD SCGwith respect to the exact one. Table
3 and Table 4 compare the results obtained by our approach
with respect toScherzo[10]. SinceZDD SCGandScherzo
adopt the same algorithm in the implicit part, we only com-
pare the solution cost and the time required to solve the
cyclic core. As before, a single starred value marks a proved
optimum. Otherwise, a lower bound in parenthesis follows
the heuristic solution. When the optimal value is unknown,
the last column contains the previous best-known result,
marked by an “H”, which is only an upper bound. In par-
ticular, we report the one published in [10], for which no
CPU time is given.

Concerningdifficult cyclic problems, all but one of
these are solved to optimality: for the industrial problem
max1024the gap is equal to 1. On the other hand, improved
solution costs have been found for two instances:test4and
bench1.

For thechallengingproblems, 11 instances are proved to
be optimal while on three unsolved problems, we obtain a
large improvement over the best-known results. Our result
for ex1010is 239 against 246. We obtain a lower bound
equal to 220 and an upper bound equal tozH

new= 239; the
old heuristic result was equal tozH

old = 246. So, the error
has been reduced from at most 26 to at most 19, which is
a
�
zH
old�zH

new

�
=
�
zH
old�LB

�
= 7=26�100= 27% decrease.

ZDD SCG Scherzo
Name Sol T(s) MaxIter Sol T(s)
ex1010 239 (220) 1355.56 1 246H
ex4 279* 0.00 1 279 0.00
jbp 122* 0.02 1 122 0.00
pdc 96(92) 5.21 1 96 1.80
soar.pla 352(350) 39.87 1 352 56.83
test2 865(756) 88956 1 995H
test3 436(390) 8167.62 1 477H
ti 213* 0.50 1 213 0.15
xparc 254* 0.03 1 254 0.02

Table 4. Results on the challenging problems

This is an underestimate: should the optimumz�UCP be
higher thanLB, the error reduction would be stronger. Our
result fortest2is 865 against 946 (obtained in less than 25
hours). As the lower bound is equal to 756, the error has
been reduced at least by 43%. In the end, our result for
test3is 436 against 477 (in less than 3 hours). As the lower
bound is equal to 390, the error has been reduced at least
by 47%. Finally the exact solverAura [14] analyzespdc,
soar.plaandex5, prom2, max1024in 1.81, 56.37, 1994.1,
3853.1 and 8174.10 seconds, respectively.

6. Conclusion
We have presented a heuristic algorithm for unate cover-

ing problems, specifically for two-level logic minimisation.
The algorithm proves extremely effective and fast, obtain-
ing in a tolerable amount of time results which are nearly
always optimal. On some problems, whose exact solution
is unknown, our results are much better than the best-known
ones. The algorithm is heuristic, but it also gives an estimate
of the quality of the solution attained, through the evaluation
of a lower bound. On most benchmark problems, this lower
bound equals the value of the solution, thus proving its op-
timality. In most of the other cases, the gap reduces to few
units.

7. Acknowledgements
We would like to thank Tiziano Villa and Luca Carloni

who provided a version ofAura (the version integrated in
Scherzo) and for the interesting discussion on Unate and
Binate Covering Problems. In addition, we wish to thank
the anonymous DATE-2000 reviewers for their useful com-
ments on an earlier draft of this paper.

References

[1] E. Balas and A. Ho. Set Covering using cutting planes, heuristics and subgra-
dient optimisation: A computational study.Mathematical Programming Study,
12:37–60, 1980.

[2] J. E. Beasley. An algorithm for Set Covering problems.European Journal of
Operational Research, 31:85–93, 1987.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers, Dordrecht, 1984.

[4] R. K. Brayton, P. C. McGeer, J. Sanghavi, and A. L. Sangiovanni-Vincentelli.
A new exact minimizer for two-level logic synthesis. In T. Sasao, editor,Logic
Synthesis and Optimization, pages 1–31. Kluwer Academic Publishers, Dor-
drecht, 1993.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, C-35(8):677–692, August 1986.

[6] A. Caprara, M. Fischetti, and P. Toth. A heuristic algorithm for Set Covering
problem. InProceedings of the 5th Integer Programming and Combinatorial
Optimization Conference (IPCO), 1996.

[7] S. Ceria, P. Nobili, and A. Sassano. A lagrangian-based heuristic for large-scale
Set Covering problems.Mathematical Programming, 81:215–228, 1998.

[8] A. K. Chandra and G. Markowsky. On the number of prime implicants.Discrete
Mathematics, 24:7–11, 1978.

[9] V. Chvátal. A greedy heuristic for the Set Covering problem.Mathematics of
Operations Research, 4(3):233–235, August 1979.

[10] O. Coudert. Two-level logic minimization: An overview.INTEGRATION, the
VLSI journal, 17:97–140, 1994.

[11] O. Coudert. On solving covering problems. InProceedings of the 33rd
ACM/IEEE Design Automation Conference, pages 197–202, Las Vegas, NV,
June 1996. ACM-SIGDA; IEEE, ACM Press.

[12] O. Coudert, J. C. Madre, and H. Fraisse. A new viewpoint on twolevel logic
minimization. InProceedings of the 3oth ACM/IEEE Design Automation Con-
ference, pages 625–630, Dallas, TX, June 1993.

[13] M. L. Fisher and P. Kedia. Optimal solution of the Set Covering/Partitioning
problem using dual heuristics.Management Science, 36:674–688, 1990.

[14] E. I. Goldberg, L. P. Carloni, and A. L. Sangiovanni Vincentelli T. Villa, R.
K. Brayton. Negative thinking by incremental problem solving: Application to
unate covering. InProceedings of the IEEE /ACM International Conference on
CAD, Santa Clara, California, November 1997. ACM/IEEE, IEEE Computer
Society Press.

[15] S. Liao and S. Devadas. Solving covering problems using LPR-based lower
bounds. In ACM-SIGDA; IEEE, editor,Proceedings of the 34th ACM/IEEE
Design Automation Conference, Anaheim, CA, June 1997. ACM Press.

[16] L. Lovász. On the ratio of optimal integral and fractional covers.Discrete
Mathematics, 13:383–390, 1975.

[17] E. L. McCluskey Jr. Minimization of boolean functions.Bell System Technical
Journal, 35:1417–1444, April 1959.

[18] S.-i. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In ACM-SIGDA; IEEE, editor,Proceedings of the 30th ACM/IEEE
Design Automation Conference, pages 272–277, Dallas, TX, June 1993. ACM
Press.

[19] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization.
John Wiley and Sons, New York, 1988.

[20] W. V. O. Quine. On cores and prime implicants of truth functions.American
Mathematics Monthly, 66:755–760, 1959.

[21] F. Somenzi.CUDD: Colorado University Decision Diagram Package. Univer-
sity of Colorado, Boulder, 1994.

[22] G. M. Swamy, P. McGeer, and R. K. Brayton. A fully Quine-McCluskey pro-
cedure using BDD’s. Report UCB/ERL M92/127, UCB, November 1992. Also
in: Proceedings of the International Workshop on Logic Synthesis, Lake Tahoe,
CA, May 1993.

[23] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Explicit
and implicit algorithms for binate covering problems.IEEE Transactions on
Computers, 16(7):677–691, July 1997.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

