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Abstract

Covering problems are widely used as a modeling tool
in Electronic Design Automation (EDA). Recent years
have seen dramatic improvements in algorithms for the
Unate/Binate Covering Problem (UCP/BCP). Despite these
improvements, BCP is a well-known computationally hard
problem, with many existing real-world instances that cur-
rently are hard or even impossible to solve. In this paper we
apply search pruning techniques from the Boolean Satisfi-
ability (SAT) domain to BCP. Furthermore, we generalize
these techniques, in particular the ability to backtrack non-
chronologically, to exploit the actual formulation of cov-
ering problems. Experimental results, obtained on repre-
sentative instances of the Unate and Binate Covering Prob-
lems, indicate that the proposed techniques provide signifi-
cant performance gains for different classes of instances.

1. Introduction

The Binate Covering Problem (BCP) finds many appli-
cations in Electronic Design Automation (EDA), examples
of which include logic and sequential synthesis (state mini-
mization and exact encoding), cell-library binding and min-
imization of Boolean relations [12]. In recent years, several
powerful algorithmic techniques have been proposed for
solving BCP, allowing dramatic improvements in the ability
to solving large and complex instances of BCP. Examples
of these techniques include, among others, partitioning [3],
limit-lower bound [4], negative-thinking [8] (for unate cov-
ering), and linear-programming lower bounds [10]. Despite
these improvements, and as with other NP-hard problems,
new effective techniques allow in general very significant
gains, both in the amount of search and in the run times. The
ultimate consequence of proposing new algorithmic tech-
niques is the potential ability for solving new classes of in-
stances.

The main objective of this paper is to propose ad-
ditional techniques for pruning the amount of search in
branch-and-bound algorithms for solving covering prob-
lems. These techniques correspond to generalizations and

extensions of similar techniques proposed in the Boolean
Satisfiability (SAT) domain, where they have been shown
to be highly effective [14]. In particular, and to our
best knowledge, we provide for the first time conditions
which enable branch-and-bound algorithms to backtrack
non-chronologically whenever upper and lower bound con-
ditions require bounding to take place.

This paper is organized as follows. In Section 2 the
notation used throughout the paper is introduced. After-
wards, branch-and-bound covering algorithms are briefly
reviewed, giving emphasis to solutions based on SAT al-
gorithms. In Section 4 we propose new techniques for re-
ducing the amount of search. In particular we show how
effective search pruning techniques from the SAT domain
can be generalized and extended to the BCP domain. Ex-
perimental results are presented in Section 5, and the paper
concludes in Section 6.

2. Preliminaries

An instance of a covering problem is defined as fol-
lows,

minimize

subject to
(1)

where is a non-negative integer cost associated with vari-
able and denote
the set of linear constraints. If every entry of
matrix is in the set and ,
then is an instance of the unate covering problem (UCP).
Moreover, if the entries of belong to and

, then is an instance of the
binate covering problem (BCP). It is interesting to observe
that if is an instance of the binate covering problem, then
each constraint can be interpreted as a propositional clause.

Conjunctive Normal Form (CNF) formulas are intro-
duced next. Because the set of constraints of an instance

of BCP is equivalent to a CNF formula, and also because
some of the search pruning techniques described in the re-
mainder of the paper are easier to convey in this alternative
representation.
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A propositional formula in Conjunctive Normal Form
(CNF) denotes a boolean function .
The formula consists of a conjunction of propositional
clauses, where each clause is a disjunction of literals, and
a literal is either a variable or its complement . If
a literal assumes value 1, then the clause is satisfied. If
all literals of a clause assume value 0, the clause is un-
satisfied. Clauses with only one unassigned literal are re-
ferred to as unit. Finally, clauses with more than one unas-
signed literal are said to be unresolved. In a search pro-
cedure, a conflict is said to be identified when at least one
clause is unsatisfied. We should also observe that a clause

, can be interpreted as a linear in-
equality , and the complement of a variable

, , can be represented by .
When a clause is unit (with only one unassigned literal)

an assignment can be implied. For instance, consider a
propositional formula which contains clause

and assume that . For to be satisfied, must
be assigned value 1 due to . Therefore, we say that
implies due to or that clause explains the as-
signment . These logical implications correspond
to the application of the unit clause rule [5] and the pro-
cess of repeatedly applying this rule is called boolean con-
straint propagation [14]. We should note that throughout
the remainder of this paper some familiarity with backtrack
search SAT algorithms is assumed. The interested reader
is referred to the bibliography (see for example [1, 14] for
additional references).

Covering problems are often solved by branch and bound
algorithms [3, 8, 15]. In these cases, each node of the search
tree corresponds to a selected unassigned variable and the
two branches out of the node represent the assignment of 1
and 0 to that variable. These variables are named decision
variables. The first node is called the root (or the top node)
of the search tree and corresponds to the first decision level.
Hence, the top nodes define the first decision levels of the
search tree.

3. Backtrack Search Algorithms for Covering
Problems

The most widely known approach for solving covering
problems is the classical branch and bound procedure [9],
in which upper bounds on the value of the cost function are
identified and lower bounds of the cost function are esti-
mated considering the current set of variable assignments.
The search can be pruned whenever the lower bound estima-
tion is higher than or equal to the current upper bound. In
these cases we can guarantee that a better (lower cost) solu-
tion cannot be found with the current variable assignments
and therefore the search can be pruned. The algorithms de-
scribed in [3, 10, 15] follow this approach.

There are several lower bound estimation procedures that

can be used, namely the ones based on linear-programming
relaxations [10] or lagrangian relaxations [13], but the ap-
proximation of a maximum independent set of clauses [4] is
the most common one. The tightness of the lower bounding
procedure is crucial for the algorithm’s efficiency, because
with higher estimates of the lower bound, the search can
be pruned sooner. For a better understanding, a method of
approximation of a maximum independent set of clauses is
described in section 3.3.

Covering algorithms also incorporate several powerful
reduction techniques such as clause and variable domi-
nance, row consensus, Gimpel’s reduction [7], the limit
lower bound theorem [4] and partitions [3]. A comprehen-
sive overview of these methods can be found in [2, 15].

In the next few sections we briefly review alternative ap-
proaches for solving BCP, which are known to be competi-
tive for specific types of instances, e.g. when the constraints
are hard to solve. These approaches, namely the ones based
on boolean satisfiability algorithms, have different prun-
ing strategies which are not commonly used in branch and
bound algorithms for solving BCP. In section 3.2 an algo-
rithm which combines features from both approaches is de-
scribed.

3.1. SAT-Based Linear Search Algorithm

In [1] P. Barth describes how to solve pseudo-boolean
optimization (i.e. a generalization of BCP) using a propo-
sitional satisfiability (SAT) algorithm. However, the algo-
rithm described in [1] is based on the Davis-Putnam [5]
procedure, which has been shown to be particularly inef-
ficient for a large number of instances of SAT. In [11], a
new algorithm based on the GRASP SAT algorithm [14] is
proposed, which is able to obtain better experimental re-
sults. Both these two algorithms interpret the binate cover-
ing problem (BCP) as a SAT problem defined by the con-
straints , but with the additional constraint of hav-
ing to find a solution with cost lower than an existing upper
bound value. The possible values assumed by the cost func-
tion for the different assignments to the problem variables

range from 0, when all variables are assigned
value 0, to , when all variables with are as-
signed value 1. Initially, the upper bound ub on the value of
the cost function is given by:

(2)

SAT-based linear search algorithms perform a linear
search on the possible values of the cost function, starting
from the highest possible value. Whenever a new solution
is found that satisfies all the constraints, the upper bound ub
is updated to:

(3)



int min prime( )
;

while
;

status = solve sat( );
;

if (status == SATISFIABLE)
;

else break;

return ;

Figure 1. SAT-based linear search algorithm

If the resulting SAT problem is not satisfiable, then the so-
lution to the BCP problem is given by . Starting with the

given by (2), SAT-based linear search algorithms consist
on the application of the following steps:

1. Create a new constraint . This
inequality basically requires that a computed solution
must have a cost lower than the best one found so far.

2. Solve the resulting instance of a satisfiability prob-
lem, defined on linear inequalities. The modification
of most SAT algorithms to deal with this generaliza-
tion is straightforward.

3. If the instance is satisfiable, then update according
to (3) and go back to step 1. Otherwise, the solution to
the covering problem is . In those cases where the
initial upper bound is never updated, the problem does
not have a solution.

3.2. SAT-Based Branch and Bound Algorithm

Additional SAT-based BCP algorithms have been pro-
posed. In [11] a new algorithmic organization is described,
consisting in the integration of several features from SAT
algorithms in a branch and bound procedure, bsolo, to solve
the binate covering problem. This new framework from
bsolo incorporates the main features from both approaches,
namely the bounding procedure and reduction techniques
from branch and bound algorithms, and search pruning
techniques from SAT algorithms.

Originally, the algorithm presented in [11] already in-
corporated the main pruning techniques of the GRASP
SAT algorithm [14]. To our knowledge, bsolo was the
first branch and bound algorithm for solving BCP that im-
plemented a non-chronological backtracking search strat-
egy, clause recording and identification of necessary assign-
ments. Mainly due to an effective conflict analysis proce-
dure which allows non-chronological backtracking steps to
be identified, bsolo performs better than other branch and
bound algorithms in several classes of instances, as shown

int bsolo( )
;

while (TRUE)
if (!reduce problem())

return ;
identify partitions();
decide();
if (!consistent state())

return ;
while (Estimate LB() )

Issue LB based conflict();
if (!consistent state())
return ;

int consistent state()
do

while (Deduce() == CONFLICT)
if (diagnose() == CONFLICT)
return FALSE;

apply deduction = FALSE;
if (Solution found())

Update ub();
Issue UB based conflict();
apply deduction = TRUE;

while (apply deduction);
return TRUE;

Figure 2. SAT-based branch and bound algo-
rithm

in [11]. However, non-chronological backtracking was lim-
ited to just one specific type of conflict. In section 4 we de-
scribe an extension which allows non-chronological back-
tracking for all types of conflicts. The main steps of the
algorithm (fig. 2) can be described as:

1. Initialize the upper bound to the highest possible value
as defined in (2).

2. Apply function reduce problem to reduce the problem
dimension by applying the techniques from standard
branch and bound covering algorithms. Afterwards,
identify problem partitions and branch on a given de-
cision variable (i.e. make a decision assignment).

3. The function consistent state verifies whether the cur-
rent state doesn’t have any conflicts. This is done by
applying boolean constraint propagation and if a con-
flict is reached, apply the conflict analysis procedure,
record relevant clauses and proceed with the search
procedure or backtrack if necessary.

4. If a solution to the constraints has been identified, up-
date the upper bound according to (3) and issue an up-
per bound conflict to backtrack on the search tree.

5. Estimate a lower bound given the current variable as-
signments. If this value is higher than or equal to the



current upper bound, issue a lower bound conflict and
bound the search by applying the conflict analysis pro-
cedure to determine the node to backtrack to (using
function consistent state). Continue the search from
step 2.

3.3. Maximum Independent Set of Clauses

The estimation of lower bounds on the value of the cost
function is a very effective method to prune the search tree
and the accuracy of the used procedure is critical to identify
useless areas of the search space. This section describes a
greedy method to estimate a lower bound based on indepen-
dent set of clauses that is outlined for example in [4].

This procedure consists in finding a set of disjoint
unate clauses, i.e., with no literals in common between
them. Since maximizing the cost of is a NP-hard prob-
lem, a greedy computation is used like the one described
in fig. 3. The effectiveness of this method largely depends
on the clauses added to . Usually, it is chosen the clause
which maximizes the ratio between its weight and its num-
ber of elements.

The minimum cost to satisfy is a lower bound of the
problem and is given by

where (4)

(5)

3.4. Upper and Lower Bound Conflicts

From section 3.2 we know that in bsolo there are three
types of conflicts which can arise: logical conflicts that oc-
cur when one of the problem instance constraints is unsat-
isfiable, upper bound conflicts that occur when a solution
to the constraints is found, and lower bound conflicts that
take place when the lower bound is higher than or equal to
the upper bound. When logical conflicts occur, the conflict
analysis procedure from GRASP is applied and determines
to which decision level the search should backtrack to (pos-
sibly in a non-chronological manner).

However, the other two types of conflicts are treated dif-
ferently. In bsolo, whenever we have an upper or lower
bound conflict, a new clause must be added to the prob-
lem instance in order for a logical conflict to be issued
and, consequently, to bound the search. This requirement
is inherited from the GRASP SAT algorithm where, for
guaranteeing completeness, both conflicts and implied vari-
able assignments must be explained in terms of the existing
variable assignments [14]. With respect to conflicts, each
recorded conflict clause is built using the assignments that
are deemed responsible for the conflict to arise. If the as-
signment (or ) is considered responsible, the
literal (respectively, literal ) is added to the conflict

maximal independent set( )
MIS = empty set;
do

= choose clause( );
MIS = MIS ;

= delete intersecting clauses( , );
while ( not empty);

return MIS;

Figure 3. Algorithm for computing a MIS

clause. This literal basically states that in order to avoid the
conflict one possibility is certainly to have the assignment

(respectively, ). Clearly, by construction, af-
ter the clause is built its state is unsatisfied. Consequently,
the conflict analysis procedure has to be called to determine
to which decision level the algorithm must backtrack to.
Hence the search is bound.

We start by studying upper bound conflicts. In these sit-
uations, one possible approach to build a clause to bound
the search would be to include all decision variables in the
search tree. In this case, the conflict would always depend
on the last decision variable. Therefore, backtracking due
to upper bound conflicts would necessarily be chronologi-
cal (i.e. to the previous decision level), hence guaranteeing
that the algorithm would be complete.

The previous strategy can also be used for lower bound
conflicts. By building a clause involving all decision as-
signments present in the search tree, we guarantee that the
search is bound and ensure that the algorithm is complete.
Suppose that the set
corresponds to those decisions and is the clause to be
added. Then we would have .
Again, the problem with this approach (which was used
in [11] for the original bsolo algorithm) is that backtracking
is always chronological, since it depends on all decisions
made. In sections 4.1 and 4.2 we will present new ways
for building these clauses, which enable non-chronological
backtracking due to upper and lower bound conflicts.

4. SAT-Based Pruning Techniques for BCP

One of the main features of bsolo is the ability to back-
track non-chronologically when conflicts arise. This feature
is enabled by the conflict analysis procedure inherited from
the GRASP SAT algorithm. However, as illustrated in sec-
tion 3.4, in the original bsolo algorithm non-chronological
backtracking was only possible for logical conflicts. In
the case of an upper or lower bound conflict all the search
tree decision assignments were used to explain the conflict.
Therefore, these conflicts would always depend on the most
recent decision assignment and backtracking would always
be chronological.

In this section we will show that it is possible to com-
pute sets of assignments which are responsible for upper
and lower bound conflicts. Moreover, since the assignments



that explain each conflict can be from earlier decision levels
in the search tree, non-chronological backtracking can take
place.

4.1. Dependencies in Upper Bound Conflicts

As mentioned in Section 3.4, upper bound conflicts cor-
respond to the process of bounding the search when a new
solution (with lower cost) is found. In bsolo, and because
of the conflict analysis procedure, the bounding process re-
quires creating a new conflict clause. Moreover, in the orig-
inal version of bsolo all decision variables were present in
this clause, thus preventing non-chronological backtracks
from occurring. However, it is straightforward to conclude
that the assignments which characterize the computed solu-
tion are the ones that allow the value of the cost function
to grow, i.e., the assignments of 1 to variables with positive
cost in the cost function. Therefore, we should backtrack
to a decision level where at least one of these assignments
is toggled to its complemented value. Let be the clause
added due to an upper bound conflict. This clause is defined
by:

(6)

Consequently, it becomes possible to backtrack non-
chronologically after identifying an upper bound conflict.
This is illustrated next.

Let be the cost function
to minimize, and the set of constraints be:

(7)

Let us assume the sequence of decision assignments
and . Suppose that the next decision as-

signment is , that implies . Then all clauses
are satisfied, and the value of the cost function is 2. Next,
an upper bound conflict is issued, and the clause
is created (observe that the assignment is irrelevant
for being able to reduce the current upper bound estimate).
Afterwards, the assignment is implied, which again
implies , thus satisfying all clauses. In this case
the value of the cost function is 1. Now, since the value of

is implied, we can readily create the clause , which
indicates that we should backtrack immediately to the deci-
sion stage where the assignment is defined. Hence,
we backtrack non-chronologically, skipping the backtrack
to the decision assignment .

4.2. Dependencies in Lower Bound Conflicts

A lower bound conflict in a binate covering problem
(BCP) C arises when the lower bound is equal to or higher
than the upper bound and we can write this condition as
follows:

(8)

where C.path is the cost of the assignments already made,
C.lower is a lower bound estimate on the cost for satisfying
the clauses not yet satisfied, and C.upper is the best (lowest
cost) solution found so far. From the previous equation, we
can readily conclude that C.path and C.lower are the unique
components involved in each lower bound conflict. (Notice
that C.upper is just the value of the cost function for a so-
lution computed earlier in the search process.) Therefore,
we will analyze both components in order to establish the
assignments responsible for a given lower bound conflict.

We start by studying C.path. Clearly, the variable as-
signments that cause the value of C.path to grow are solely
those assignments with a value of 1. Hence, we can define a
set of literals , such that each variable in has positive
cost and is assigned value 1:

(9)

which basically states that to decrease the value of the cost
function (i.e. C.path) at least one variable that is assigned
value 1 has instead to be assigned value 0.

We now consider C.lower. Let MIS be the independent
set of clauses, obtained by the method described in sec-
tion 3.3, that determines the value of C.lower. Note that
each clause in MIS is part of MIS because it is neither sat-
isfied nor covered by some other clause in MIS. Clearly, for
each clause these conditions only hold due to the literals
in that are assigned value 0. If any of these literals was
assigned value 1, would certainly not be in MIS. Conse-
quently, we can define a set of literals that explain the value
of C.lower:

(10)

Now, as stated above, a lower bound conflict is solely due to
the two components C.path and C.lower. Hence, this lower
bound conflict will hold as long as the following clause
is unsatisfied:

(11)

As long as this clause is unsatisfied, the values of C.path
and C.lower will remain unchanged, and so the lower bound
conflict exists. We can thus use this unsatisfied clause

to analyze the lower bound conflict and decide where
to backtrack to, using the conflict analysis procedure of
GRASP [14]. We should observe that backtracking can be
non-chronological, because clause does not necessarily
depend on all decision assignments.

With respect to (11) a more careful analysis allows us to
conclude that not all of the literals from are necessary.
Suppose that the lower bound is higher than the upper bound
and define this difference as

. It is possible to remove some literals from
such that the sum of the cost of the corresponding assign-
ments is lower than . This is possible due to the fact
that the conflict will still hold no matter the value of these



assignments. For implementing this technique one interest-
ing problem is to decide which literals should be removed.
In bsolo an heuristic procedure is used for removing the lit-
erals that have been assigned at the most recent levels of the
decision tree. Consequently, the likelihood of backtracking
non-chronologically is higher, since these conflicts will be
more dependent on the earlier levels of the search tree.

It is interesting to observe that a clause resulting from
a lower bound conflict can be simpler. We have only de-
scribed how simplifications can be made to the C.path com-
ponent ( ), but other simplifications can also be applied
to the literals added due to the independent set of clauses
(MIS) ( ). Suppose we have a literal , with

and let . If only belongs to one clause
of the independent set and its cost is higher than or equal to
the minimum cost of , then can be removed from . To
better understand how this is possible, suppose that .
In this situation, would not be in the independent set (it
would be a satisfied clause) and the component
would be lower . However, since the cost of the variable is
higher than or equal to the minimum cost of , the
component would be higher, and hence the conflict would
still hold. So, the assignment is irrelevant for the
conflict to arise and can be removed from .

4.3. Handling Reduction Techniques

As mentioned in the previous sections, for implement-
ing non-chronological backtracking each implied variable
assignment needs to be properly explained, in order to guar-
antee that the resulting branch-and-bound algorithm is com-
plete. Consequently, it is necessary that, whenever there is
a variable assignment implied due to the application of a
reduction technique (e.g., variable dominance, limit lower
bound theorem, etc.), a new clause is built and added to
the problem instance as an explanation for that assignment.
Clearly, we could create this new clause by using all deci-
sion assignments in the decision tree, but this would nega-
tively affect the ability of the search algorithm to backtrack
non-chronologically. As before, we must identify condi-
tions for using a reduced set of assignments instead of all
decision assignments. In this section we illustrate how this
is done for assignments implied due to the application of the
limit lower bound theorem. For the other reduction tech-
niques, a similar approach can be used.

The limit lower bound theorem [3] is applied to a vari-
able whenever,

(12)

In these cases, the assignment is implied.

In fact, if the would be recomputed all over again, it is not
guaranteed that it would decrease. Nevertheless, we know that without
clause satisfied by , it is still an independent set
of clauses. Therefore, can be used as a low estimation of

.

bsolo scherzo
Benchmark min. CPU Dec. CPU Dec.

5xp1.b 12 181.02 1640 4.5 2234
9sym.b 5 27.91 135 3.6 320
alu4.b – ub 51 time – time

apex4.a 776 ub 781 time 87.4 48359
bench1.pi – ub 123 time – time

clip.b 15 67.09 1313 0.6 97
count.b 24 12.27 102 478.0 299780

e64.b – ub 48 time – mem.
ex5.pi – ub 68 time – time

exam.pi – ub 64 time – time
f51m.b 18 97.00 1671 1.9 1586

jac3 15 ub 17 time 4.9 292
max1024.pi – ub 262 time – time

prom2.pi – ub 297 time – time
rot.b – ub 120 time – time

sao2.b 25 9.58 281 0.9 279
test4.pi – ub 102 time – time

Table 1. Results for bsolo and scherzo

Let be a clause that must be added in order to explain
the assignment , which is implied by applying the
limit lower bound theorem. Notice that this theorem is ap-
plied because of the values of and . Thus,
the assignments that explain these two values are also the
explanation sought for the assignment . Therefore,
clause is constructed as follows,

(13)

where and are the literals which explain the values
in and , as described in section 4.2. There-
fore, becomes a new unit clause and consequently im-
plies the assignment . (Hence, we say that the as-
signment is explained by .)

5. Experimental Results

In this section we include experimental results of several
algorithms in two different sets of benchmarks. The first
two tables have results from the MCNC benchmark set [16],
while the others are from minimum-size test pattern prob-
lems [6]. All execution times are from a SUN Sparc Ultra I,
running at 170MHz, and with 100 MB of available physical
memory. The run time of every experiment was limited to 1
hour.

Whenever an algorithm was not able to find the optimum
value for a given problem instance, the best computed upper
bound is shown (provided the algorithm was able to com-
pute one). In some situations, the reason for the algorithm
to abort is shown. This can be because the time limit was
reached or because the available memory was not enough.

In table 1 we present a comparison between bsolo and
scherzo in the MCNC benchmark set. scherzo [3] is a
classical branch and bound algorithm with powerful prob-
lem reduction techniques and very effective in this set of
benchmarks, since most clauses only have positive literals.



bsolo no LB explanation
Benchmark min. CPU Dec. NCB Jump

cordic Fa2@0 6 0.14 48 14 5
cordic Fa2@1 6 0.25 94 6 3
cordic Fa3@0 6 0.16 53 14 5
cordic Fa3@1 6 0.25 100 6 4
cordic Fa4@1 6 0.17 84 4 3
cordic Fa6@0 6 0.17 58 8 3

misex1 Fd0@1 4 0.36 39 0 1
misex1 Fd1@0 4 0.32 53 3 5
misex1 Fd2@0 3 0.28 39 3 4
misex1 Fd3@1 3 0.36 48 5 4
misex1 Fy@0 5 0.04 12 1 3
misex1 Fy@1 5 0.04 10 1 2
misex3 Fa@0 9 112.60 1352 34 7
misex3 Fa@1 9 42.09 756 25 5
misex3 Fb@0 9 313.87 1887 24 6
misex3 Fb@1 8 96.27 1078 26 6

pcler8 Fi@0 2 0.26 40 14 2
pcler8 Fi@1 2 0.41 78 9 2
pcler8 Fj@1 4 0.21 87 11 2
pcler8 Fk@1 4 0.53 119 3 2
term1 Fa@0 4 0.12 56 1 2
term1 Fb@0 7 0.37 125 10 3
term1 Fb@1 7 0.31 140 13 3
term1 Fc@0 4 0.30 77 9 4
term1 Fd@1 4 0.39 92 10 9

Table 2. Not using lower bound explanations

Clearly, scherzo is able to solve more problems and is faster
in most problems. In this benchmark set, the main features
of bsolo are not extensively used. We note however that
there are some problems in which fewer decisions are made.

We should note that the bookkeeping required for the
correct implementation of the SAT-based techniques can in-
troduce noticeable computational overhead in bsolo. For
the above instances, the gain obtained from the SAT-based
techniques is low since non-chronological backtracking is
almost non-existing, suggesting that further work must be
done towards reducing the computed sets of dependencies.

As noted earlier, SAT-based BCP algorithms are better
suited for instances whose constraints are hard to satisfy.
In tables 2 and 3 we present the results of bsolo for bench-
marks from minimum-size test pattern problems [6]. For
these tables, and besides the CPU time and the number of
decisions, the number of non-chronological backtracks and
the highest jump made in the search tree are also included.
In the first table, bsolo does not use the lower bound ex-
planation described in section 4 and the non-chronological
backtracks are just due to logical or upper bound conflicts.
In table 3 the lower bound explanation of section 4 is used
and we can see that bsolo is able to increase the number
of non-chronological backtracks while significantly reduc-
ing the amount of search and the execution time for most
instances.

Finally, in tables 4 and 5 we present a comparison be-
tween several algorithms for this set of instances. Table 4
clearly shows that general purpose algorithms for solving
01-Integer Linear Programs (lp-solve and cplex) perform

bsolo LB explanation
Benchmark min. CPU Dec. NCB Jump

cordic Fa2@0 6 0.21 47 14 4
cordic Fa2@1 6 0.24 99 6 3
cordic Fa3@0 6 0.18 52 14 4
cordic Fa3@1 6 0.27 105 6 4
cordic Fa4@1 6 0.18 84 4 3
cordic Fa6@0 6 0.20 58 8 3

misex1 Fd0@1 4 0.25 25 0 1
misex1 Fd1@0 4 0.18 38 4 5
misex1 Fd2@0 3 0.23 35 3 4
misex1 Fd3@1 3 0.28 39 4 4
misex1 Fy@0 5 0.03 12 1 3
misex1 Fy@1 5 0.04 10 1 2
misex3 Fa@0 9 52.02 834 78 14
misex3 Fa@1 9 30.58 642 56 9
misex3 Fb@0 9 95.83 1152 119 9
misex3 Fb@1 8 79.69 978 70 8

pcler8 Fi@0 2 0.31 40 14 2
pcler8 Fi@1 2 0.39 78 9 2
pcler8 Fj@1 4 0.21 87 11 2
pcler8 Fk@1 4 0.51 121 4 2
term1 Fa@0 4 0.12 56 1 2
term1 Fb@0 7 0.31 90 6 3
term1 Fb@1 7 0.27 100 7 3
term1 Fc@0 4 0.29 74 9 4
term1 Fd@1 4 0.32 85 10 8

Table 3. Using lower bound explanations

poorly. The same is true for scherzo which is not able to
apply its main features in solving these instances. In ta-
ble 5 we present the results for the SAT-based algorithms.
The SAT-based linear search algorithms opbdp [1] and min-
prime [11] are able to solve all benchmarks. Moreover,
bsolo results are significantly better than the results of both
opbdp and min-prime, mainly due to the new techniques
proposed in this paper.

6. Conclusions

This paper extends well-known search pruning tech-
niques, from the Boolean Satisfiability domain, to branch-
and-bound algorithms for solving Unate and Binate Cover-
ing Problems. Besides detailing a branch-and-bound BCP
algorithm built on top of a SAT solver, the paper describes
conditions that allow for non-chronological backtracking in
the presence of upper and lower bound conflicts. In ad-
dition, the paper also describes how reduction techniques,
commonly used in BCP solvers, can be re-defined and uti-
lized within a conflict analysis procedure, in such a way
that non-chronological backtracking is enabled. To our best
knowledge, this is the first time that branch-and-bound al-
gorithms are augmented with the ability for backtracking
non-chronologically in the presence of conflicts that result
from upper and lower bound conditions.

Preliminary results obtained on several instances of the
Unate and Binate Covering problems indicate that the pro-
posed techniques are indeed effective and can be of crucial
significance for specific classes of instances.



lp-solve scherzo cplex
Benchmark min. CPU CPU CPU

cordic Fa2@0 6 200.3 64.02 2.77
cordic Fa2@1 6 time 94.90 12.22
cordic Fa3@0 6 969.5 67.84 2.20
cordic Fa3@1 6 ub 7 97.37 9.02
cordic Fa4@1 6 time 84.13 3.12
cordic Fa6@0 6 time 202.65 2.47

misex1 Fd0@1 4 261.7 0.39 59.47
misex1 Fd1@0 4 60.7 0.47 149.73
misex1 Fd2@0 3 24.9 0.43 108.50
misex1 Fd3@1 3 24.0 0.26 72.07
misex1 Fy@0 5 16.5 0.17 11.12
misex1 Fy@1 5 15.2 0.30 28.15
misex3 Fa@0 9 time mem. time
misex3 Fa@1 9 time mem. time
misex3 Fb@0 9 time mem. time
misex3 Fb@1 8 time mem. time

pcler8 Fi@0 2 12.1 2.58 1.17
pcler8 Fi@1 2 19.8 2.37 3.52
pcler8 Fj@1 4 9.3 0.39 1.10
pcler8 Fk@1 4 8.2 0.28 5.48
term1 Fa@0 4 2.2 285.73 1.20
term1 Fb@0 7 513.2 mem. 27.63
term1 Fb@1 7 404.6 256.42 22.83
term1 Fc@0 4 75.4 0.86 9.95
term1 Fd@1 4 150.3 1.50 11.82

Table 4. Algorithm comparison

A key aspect of the proposed techniques is the identifi-
cation of a small set of dependencies explaining each iden-
tified conflict. In each case the main goal is to minimize
the size of this set of dependencies, while guaranteeing that
the resulting set still provides a sufficient explanation for
the given conflict to occur. Future research work will nat-
urally include seeking further simplification of the clauses
created for each type of conflict. Moreover, additional tech-
niques from the SAT domain can potentially be applied to
solving BCP. These techniques are likely to be significant
for instances of covering problems with sets of constraints
that are hard to satisfy.
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