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Abstract

The design of analog front-ends of digital telecommunica-
tion transcevers requires smulations at the architectural
levd. The nonlinear nature of the analog front-end blocks
is a complication for their modeing at the architectural
levd, egpedialy when the nonlinear behavior is frequency
dependent. This paper describes a method to derive a bot-
tom-up model of nonlinear analog continuoustime circuits
used in communication systems. The modds take into ac
count frequency dependence of the nonlinear behavior,
making them suitable for wideband applications. Such
modd consists of a block diagram that corresponds to the
mogt important contributions to the second- and third
order Volterra kernds of the output quantity (voltage or
current) of a circuit. The examples in this paper, a high
levd model of a CMOS low-noise amplifier and an active
lowpass filter, demondgrate that the generated models can
be dficiently evaluated in highleve dataflow-type smula-
tions of mixed-ggnal front-ends and that they yidd insght
in the nonlinear behavior of the analog front-end blocks.

1. Introduction

The strong pressure for miniaturization, low power con
sumption and high flexibility of the front-ends of digitd
telecom transceivers, necessitates a sudy of front-ends at
the architecturd levd. High-levd dmulations are an im-
portant support for such study. For these simulations,
which typicaly combine andog parts with digitd parts,
commercid tools dready exist, such as ADS from Hew-
lett-Packard[1l] and SPW from Cadence[2]. Alternatively,
system-level designers dso use generd programming  lan
guages such as C++ (eg. see OCAPI [3]) or mathemdtical
packagessuch as MATLABI[4] to perfform such smula
tions. In these cases, the smulations are typicdly daa
flow-based, not only for the digitd blocks but adso for the
front-end blocks.

Although severd commercid smulators contain a library
with highdevel modds of andog blocks that can be co
smulated with the digitd blocks these models are often
too generd, teking into account the nomind behavior only.
This leads to large inaccuracies for the sSmulations and,
consequently, to wrong conclusions a the system levd.
The difficulty in modeling andog blocks a the system
leve is that, while the first-order, linear behavior is rda

tively essy to modd, the nonlinear behavior requires a
caeful sudy and even advanced mahematicd methods.
Moreover, this nonlinear behavior can depend on fre-
quency. This dependence is important in wideband appli-
cdions. For example, in an upstream cable malem acord-
ing to the MCNS sandard[5], the head-end receives a fre-
quency band between SMHz and 42 MHz, which is almost
a complete frequency decade. The nonlinear behavior of
the andog front-end blocks is often not congtant over such
wide band. For such wideband applications the modding
method described bdlow is a useful modding assigant to
genede high-levd modds for mixed-signa  system-leve
smulations.

The dgnd path in the andog front-end of a communication
arcuit behaves in a weskly nonlinear way under norma
operation. For the modeing of weskly nonlinear behavior
including frequency dependence, the Fourier trandforms of
Volterra kernds can be used [6,7]. The firgt-order kernel
transform describes the linear behavior of the circuit. The
secondrorder and third-order kernd transforms, which are
functions of two and three frequency variables respec-
tively, describe the second- and third-order nonlinear be-
havior. The discussion here is limited to second and third-
order nonlineer behavior only. This is a reasonable as-
sumption in most practical cases, dthough the approach
decribed here is vaid as wel for nonlinear behavior of
order higher than three.

Whereas up till now the use of Volterra series was mainly
limited to the computation at the circuit level with single-
tone or twotone excitation, the method described here uses
Volterra theory to generate high-level modds that can be
used in conjunction with digitaly modulated signds. Such
sgnds are often difficult to gpproximae with a smadl
number of snusoidd signds. The modeing approach first
computes the multidimensional Fourier transforms of sec-
ond- and thirdorder Volterra kernels of the output of inte-
e, Thee kernd transforms contan many contributions,
namdy one for each second or third-order coefficient of
the power saries description of the different nonlinearities
in the circuit. Next the approach determines the contribu-
tions that are dominant (up to a user-defindble error). This
method is an extenson to a wideband multitone excitation
of the adgorithm described in [7] that only holds for a sn-
gletone excitation. A trandation of the dominant contribu-
tionsinto ablock diagram yieldsthe find model.



The high-level modeling of two example circuits, a low-
noise amplifier and an active filter thet both beong to an
upsream cable modem receiver front-end, illustrates that
usudly few contributions dominate. This leads to compact
high-levels and, moreover, a knowledge of the dominant
contributions yields insght in the nonlinear circuit behav-
ior.

The sructure of the paper is as follows. Section?2 reviews
the power series description of nonlinearities.  Section 3
discusses the block diagram  representation of  nonlinear
circuits, Section4 describes the simplification of  these
diagrans. Section 5 contans the examples. The condu
sionsof the paper areformulated in Section 6.

2. Description of nonlinearities

Nonlinearities in andog circuits can be represented in ad-
mittance form, i.e. by a (nonlinear) model equation that
describes a current as a function of one or more controlling
voltages. For example, the AC drain current iy of a MOS
trangstor can be written as a Taylor series with the cortrol-
ling voltagesvge Vs and Vg [7]:

ig = OMXVg +K 25V +K3gnVe + 00W e + K2g Vi

+ K3pVa - 9D XV, - K2gm V5 = K3y V3 + K 2gma g0 Vs Ves
+ KSgn&Zgngsv(zjs + K32gm&govssvds + K2gm& grrbvgsvi)

*+ K3yne2gm VgsVsi + K3agnegm VSsVsn + K 2gmego Ve Vs

+ K3grm&290Vdezs + K32gm&goV§des + K 3gne grba go Vs VasV o + K
in which the coefficients K2 and K3, referred to as second-
and third-order nonlinearity coefficients, are proportiona
to the second and third-order derivaive of the dran cur-
rent. Coefficients that correspond to derivatives with re
spect to one voltage, are cdled onedimensiond nonlinear-
ity coefficients. The ones proportional to cross-derivetives,
such & K2ygg and K3yegmeg ae two-dimensond and
threedimensond  nonlinearity  coefficients,  respectively.
Nonlineer capacitors can be described by a one
dimensond Taylor series that expresses the charge upon
the capacitor as a function of the voltage over the capaci-
tor. The AC current through the capacitor is ssmply found
by differentiating this charge with repect totime.
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3. Block diagram representation of Volterra
kernels

A block diagram for a Volterra kernd of a voltage or cur-
rent in a nonlinear anadlog circuit can be condructed by an
adoption of the technique described in[6]. To understand
this congtruction, consider a onedimensond second- or
third-order nonlinearity coefficient of a nonlinear admit-
tance. A second-order nonlinearity squares the voltage over
its controlling terminas, then multiplies the result with its
second-order  nonlinearity  coefficient to produce a second
order “nonlinear” current. This current propageates to the
output. When the second-order response is to be computed,

then only the linear propagation of this current to the out-
put must be consdered. The effect of other nonlinearities
on this current can indeed be neglected, since this yieds
nonlinear behavior of order higher than two. This reason-
ing holds for dl second-order nonlinearity coefficients in
the circuit. Hence, the totd second-order output is the sum
of the contributions of &l second-order nonlinearity coeffi-
cients. As shown in Figuel, each contribution corre-
spondsto one path in the block diagram representation.

A block diagram representation of a second-order Volterra
kernd contains three different types of paths, correspond-
ing to one-dimensond secondorder nonlinearity codfi-
cients K2, , twodimensond coefficients K2ggq,  and to
coefficients K2-  that correspond to nonlinear capacitors.
The transfer function from the input to the voltage tha
controls the nonlinearity is denoted by H... Transfer func-
tions from a second-order current — which flows from the
postive termind of a nonlinearity to its negdaive termind —
to the output of the circuit are denoted by TF..., and they
are computed in the linearized circuit.
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Fig. 1: block diagram for the computation of the
second-order nonlinear behavior of a nonlinear
circuit.

Each path consss of a second-order nonlinearity coeffi-
cient, linear transfer functions and a datic nonlinearity. For
a one-dimensond nonlinearity this nonlinearity  is a
squarer, while for a two-dimensona nonlinegrity this is a
multiplier that takes the product of the two pardld paths
that correspond to the two controlling voltages. With a
block diagram such as in Fg. 1, the output of the circuit
due to second-order nonlineer behavior can be computed
for any input excitation, provided that this excitation is not
too large such that the assumption of weekly nonlinear
behavior is not violated.

The condruction of a block diagram for third-order nonlin-
eaxr behavior caused by thirdorder nonlinearity coefficients
(see Fgure2) proceeds in a Smilar way as second-order
behavior caused by second-order nonlinearities. On the
other hand, as shown in Figure3, second-order nonlineari-
ties produce a third-order nonlinesr response by combining



a their controlling terminds a second-order signd with a
first-order signd to produce a third-order “nonlinear” cur-
rent. A block diagram for the second-order sgnd is smilar
to the one of Figurel. The propagaion of the third-order
nonlinear current through the linearized circuit yidds the
contribution of the second-order coefficient to the overdl
third-order output signal. The total third-order kernd is
then modded as the pardld connection of different paths
as the ones shown in Fig. 2 and 3. Clearly, block diagrams
that describe third-order nonlinear behavior, contain only
scale factors, linear transfer functions and dtetic nonlineari-
ties, just asin the second-order case.
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Fig. 2. path from the input to the output of a
weakly nonlinear circuit corresponding to the
contribution of a one-dimensional thirdorder co-
efficient K3yg; to the overall third-order nonlinear
behavior.
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Fig. 3: path from the input to the output of a
weakly nonlinear circuit corresponding to the
contribution of a one-dimensional second-order
coefficient K23, to the overall third-order nonlin-
ear behavior.

4. Simplification of the block diagrams

In a circuit of practicd sze the block diagrams for the s
ond- and third-order nonlinear behavior condst of many
paralel paths. This is dready dear from the large number
of nonlinearity coefficients that is required to describe the
drain current of one MOS transistor (see equaion(1)). The
use of such bulky diagram for sysem-levd smulations is
not practical.

Fortunately, in most practicd circuits many nonlinearity
coefficients give a negligible contribution to the overdl
second- or third-order nonlinear behavior. This is exploited
in an dgorithm tha diminates al negligible contributions
up to a user-definable error on the magnitude and hese of
the kernd trandforms in a given frequency band of interest.
The dgorithm is an extenson to multiple dimensons of
the method described in[7] to determine the most impar-
tant contributions to the second- and third-order harmon:
ics Indeed, digitd tdecom sgnds reguire evduations of
the kernds for dl frequency arguments being different. In
addition, negetive vaues for the frequency arguments must
be consdered as well. Two properties of kernel transforms
ae usd to reduce the number of evadudions the symme
try of kernd transforms[6] and the property that a change

of the dgn of one of the frequency arguments yields the
complex conjugate of the kernel transform.

This gpproximation procedure uses transfer functions and
nonlinearity coefficients that are precomputed with a cir-
cuit smulaor, in this case HSPICE. The nonlinearity coef-
ficients are computed by numerica differentiation on data
from DC analyses.

The running time limit of this approach for the congruc-
tion of a block diagram that gpproximates the kth-order
nonlinear behavior is O(n*f + M.og(M).f, where n is the
number of nodes in the circuit, f is the number of different
frequencies thet are consdered and M is the number of
nonlinearity coefficients of order 2, .., k This running
time limit shows that high-order behavior (i.e higher than
three) yidds excessive computations if the frequency reso-
lutionisvery high.

5. Examples

As an illugraion a high-leve modd is congtructed for the
amplifier and the active anti-dias filter of the integrated
recaver front-end architecture (see Fig. 4) for an upstream
cable modem in the MCNS standard. Both circuits are de-
sgned in adigitd 0.35nmm CMOS process.
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Fig. 4. maximally digital receiver front-end archi-
tecture for upstream cable modem applications.

Fg.5: simplified schematic of a CMOS amplifier
for upstream cable modem applications. The gain
is 12, the input impedance is 75W.

For the amplifier we limit the discusson to third-order
nonlinear behavior, dnce this requires more computations
than the second-order behavior. The thirdorder Volterra
kerne transform of the amplifier's output voltage is a func-
tion of three frequencies f;, f, and f; and it has 37 contribu-
tions each caresponding to a second or thirdorder
nonlinearity coefficient. The input sgnd has a bandwidth
from 5MHz to 42 MHz, which is aso the band of interest
a the output of the amplifier. The eiminaion procedure



evaluates the kernd tranform and its contributions for
combinations of +f;, +f, and f; with f, f, and f; between
DCand 42 MHz.

The third-order kernd can be agpproximated well by one
single contribution, namely the one from K2y, This is the
second-order  nonlinearity of the output conductance of
transistor M, , which operaes in the triode region. This
nonlinearity is determined by the drainsource voltage of
M,. It is not a surprise that the largest contribution comes
from M,: nonlinearities that are controlled by voltages that
expeience high swings, in generd yidd a lage contribu-
tion. In the circuit of Fig. 5 there is a voltage gain between
node “in” and node “drain”, such that the voltage swing a
the latter node is quite high. The main contributions to the
third-order kernd are best visudized by a 2-D plot (see
Fig. 6) from which the dominance of the contribution of
K2yois obvious.

[[—— w2gmm1
k3gmM1
k2goM1

O o—= k3goM1

Mg,
" W\ WN“JE k2gm&goM1

y ] k2goM2
i%% I
0 “.""l

k3goM2
P |

0 2e+07 4e+07 6e+07 8e+07
f, (H2)

dBvV

Fig. 6: third-order kernel transform of the ampli-

fier output voltage, and its most important contri-
butions, evaluated for f;=f3 and f, fixed at 42 MHz.

The input amplitude is taken equal to 1V as aref-
erence, yielding artificially large intermodulation
products.

Having the most important contribution, we now construct
an agpproximate smulation mode for the third-order non
linear behavior in the form of a block diagram. It is clear
from Fg. 3 that the contribution of K2\, depends on the
second-order  kernel  transform  of the voltage that dete-
mines this nonlinearity. This second-order kernd in tumn
consists of several contributions. The approximation pro-
cedure finds that the main contribution to this kernd again
comes from K 2. Theresultisshownin Fig. 7.
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Fig. 7: approximate high-level model for the third
order nonlinear behavior of the LNA of Fig. 5.

The find block diagram, shown in Fg. 7, contans three
transfer functions Hy(s) is the transfer function from the

input voltage source (with an output impedance of 750) to
the voltage of node “drain”, which is the controlling volt-
age of the nonlinearity K2yp. Further, TFy(s) and TF(s)
denote the transfer functions from the nonlinear current
source that corresponds to K2y, to the voltage at the
nodes “dran” and “out”, respectively. This nonlinear cur-
rent source flows from the node “drain” to the AC ground.
Although the approximate model is compact, the accuracy
is farly good: compared to the exact vaue of the third-
order kernd evauated a dl frequency combingions in the
band of interest, the maximum error on the magnitude of
the approximate mode is 13%.

The need to consder the frequency dependence of the
nonlinear behavior is evidenced by a sysem-levd smua
tion in MATLAB on the receiver front-exd of Hg. 4. In
this gmulation, the amplifier excitation condsts of differ-
ent channes between 5 and 42 MHz. Each channd has a
3.2MHz bandwidth and a power of 6dBmV. The amplifier
is modeled by its linear transfer function and an approxi-
mation of the secondorder and third-order (see Fg. 7)
kernel  transforms. In this amplifer modd, outputs of
blocks that represent transfer functions are computed in the
frequency domain, while outputs of datic nonlinearities are
computed in the time domain. The anti-dias filter is mod-
ded for this smulation by its linear transfer function only.
For the ADC only the sampling operation and the quantiza-
tion are moddled.

Nonliner behavior of the amplifier causes channd inte-
ference a the amplifier output. As shown in Fig.8, re
glecting the frequency dependence of the nonlinear behav-
ior yidds a dgnd-to-digtortion ratio in one channd that is
up to 65dB smdler than if the frequency dependence is
taken into account. This illustrates the importance of the
frequency dependence in wideband applications.

For circuits that are larger than the amplifier of Fig. 5, the
modeling approach described in this paper can dill gener-
ate fairly compact gpproximae highdeve modes for the
frequency-dependent nonlinear behavior. To illugtrate this,
we redize the anti-dias filter in the front-end as a fully
differentia  3“-order dliptic gm-C filter (see Fg. 9), ad
we derive an gpproximate nodd for the second-order non-
lineer behavior. Due to mismaiches this second-order
nonlinear behavior is not completely suppressed. The —-3dB
frequency of this filter is 47 MHz. The transconductor that
isusad in thisfilter is shown in Fig. 10.

The approxi mation procedure finds that the main contribu-
tions to the second-order nonlinear behavior come from
the nonlinearity of the transconductance of M1 and M2 in
the transconductor with label X4 in Fg. 9. As seen in
Fg 11, the totd vaue of the intermodulation product is
smaler than the largest contributions. If there would be no
mismatches, then these contributions are twaby-two oppo-
ste and with equal magnitude, such that the tota second-
order kernd is zero. If the dx contributions shown in
Fg 11 ae taken into account for the approximation of the



second-order kernd  transform, then the maximum error on
the magnitude of the second-order kernd, evauated over
the complete passhand of the filter, is only 1.1dB. The
resulting highlevel modd is ill fairly compact  with
tweve trans‘er7 functions, six squarers and sSix scdefactors.
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Fig. 8: difference in dB in signal-to-distortion ratio
obtained from high-level simulations with and
without taking into account frequency depend-
ence of the nonlinear models. The x-axis indi-
cates the center frequency of the channels.

The CPU time for the computation of both second- and
third-order responses of the filter, followed by the ap-
proximation phase is 10 seconds on a 400 MHz Intd Pen
tium I processor with aLinux operating system.

6. Conclusions

Modding and underganding nonlinear behavior of andog
integrated communication circuits is not sraightforward,
since in a practicad circuit many nonlinearities contribute to
the overdl nonlinear behavior. Moreover, these contribu-
tions depend on frequency. This paper has described an
gpproach that determines the most important contributions
to second- and third-order nonlinear behavior of the dircuit
with the incluson of frequency dependence. A trandation
of these domirent contributions into a block diagram
yidds high-level modds tha ae useful for high-levd
smulations of front-end architectures. The examples in
this paper show that these modds are very compact for
practical circuits, even when parasitic effects such as mis
matches are taken into account. The modes contain a smdl
number of linear trandfer functions, gaic nonlinearities
and scde factors. In this way, the approach described in
this paper is useful to construct bottom-up models that
yiedd efficient high-levd smulations, and to obtain insght
in the nonlinear operation of andlog integrated communica
tionscircuits.
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Fig. 9 3"-order elliptic lowpass filter.
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Fig. 10: transconductor used in the lowpass filter.
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Fig. 11: most important contributions to the 2nd-
order intermodulation product at |f;-f] at the out-
put of the filter of Fig. 9 with $=10MHz. The input
amplitude is taken equal to 1V as areference.
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