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Abstract 

The design of analog front-ends of digital telecommunica-
tion transceivers requires simulations at the architectural 
level. The nonlinear nature of the analog front-end blocks 
is a complication for their modeling at the architectural 
level, especially when the nonlinear behavior is frequency 
dependent. This paper describes a method to derive a bot-
tom-up model of nonlinear analog continuous-time circuits 
used in communication systems. The models take into ac-
count frequency dependence of the nonlinear behavior, 
making them suitable for wideband applications. Such 
model consists of a block diagram that corresponds to the 
most important contributions to the second- and third-
order Volterra kernels of the output quantity (voltage or 
current) of a circuit. The examples in this paper, a high-
level model of a CMOS low-noise amplifier and an active 
lowpass filter, demonstrate that the generated models can 
be efficiently evaluated in high-level dataflow-type simula-
tions of mixed-signal front-ends and that they yield insight 
in the nonlinear behavior of the analog front-end blocks. 

1. Introduction 
The strong pressure for miniaturization, low power con-
sumption and high flexibility of the front-ends of digital 
telecom transceivers, necessitates a study of front-ends at 
the architectural level. High-level simulations are an im-
portant support for such study. For these simulations, 
which typically combine analog parts with digital parts, 
commercial tools already exist, such as ADS from Hew-
lett-Packard [1] and SPW from Cadence [2]. Alternatively, 
system -level designers also use general programming lan-
guages such as C++ (e.g. see OCAPI [3]) or mathematical 
packages such as MATLAB [4] to perform such simula-
tions. In these cases, the simulations are typically data-
flow-based, not only for the digital blocks but also for the 
front-end blocks. 
Although several commercial simulators contain a library 
with high-level models of analog blocks that can be co-
simulated with the digital blocks, these models are often 
too general, taking into account the nominal behavior only. 
This leads to large inaccuracies for the simulations and, 
consequently, to wrong conclusions at the system level. 
The difficulty in modeling analog blocks at the system 
level is that, while the first-order, linear behavior is rela-

tively easy to model, the nonlinear behavior requires a 
careful study and even advanced mathematical methods. 
Moreover, this nonlinear behavior can depend on fre-
quency. This dependence is important in wideband appli-
cations. For example, in an upstream cable modem accord-
ing to the MCNS standard [5], the head-end receives a fre-
quency band between 5 MHz and 42 MHz, which is almost 
a complete frequency decade. The nonlinear behavior of 
the analog front -end blocks is often not constant over such 
wide band. For such wideband applications the modeling 
method described below is a useful modeling assistant to 
generate high-level models for mixed-signal system-level 
simulations. 
The signal path in the analog front-end of a communication 
circuit behaves in a weakly nonlinear way under normal 
operation. For the modeling of weakly nonlinear behavior 
including frequency dependence, the Fourier transforms of 
Volterra kernels can be used [6,7]. The first-order kernel 
transform describes the linear behavior of the circuit. The 
second-order and third-order kernel transforms, which are 
functions of two and three frequency variables, respec-
tively, describe the second- and third-order nonlinear be-
havior. The discussion here is limited to second- and third-
order nonlinear behavior only . This is a reasonable as-
sumption in most practical cases, although the approach 
described here is valid as well for nonlinear behavior of 
order higher than three. 
Whereas up till now the use of Volterra series was mainly 
limited to the computation at the circuit level with single-
tone or two-tone excitation, the method described here uses 
Volterra theory to generate high-level models that can be 
used in conjunction with digitally modulated signals. Such 
signals are often difficult to approximate with a small 
number of sinusoidal signals. The modeling approach first 
computes the multidimensional Fourier transforms of sec-
ond- and third-order Volterra kernels of the output of inter-
est. These kernel transforms contain many contributions, 
namely one for each second- or third-order coefficient of 
the power series description of the different nonlinearities 
in the circuit. Next the approach determines the contribu-
tions that are dominant (up to a user-definable error). This 
method is an extension to a wideband multitone excitation 
of the algorithm described in [7] that only holds for a sin-
gle-tone excitation. A translation of the dominant contribu-
tions into a block diagram yields the final model. 



The high-level modeling of two example circuits, a low-
noise amplifier and an active filter that both belong to an 
upstream cable modem receiver front -end, illustrates that 
usually few contributions dominate. This leads to compact 
high-levels and, moreover, a knowledge of the dominant 
contributions yields insight in the nonlinear circuit behav-
ior. 
The structure of the paper is as follows. Section 2 reviews 
the power series description of nonlinearities. Section 3 
discusses the block diagram representation of nonlinear 
circuits. Section 4 describes the simplification of these 
diagrams. Section 5 contains the examples. The conclu-
sions of the paper are formulated in Section 6.  

2. Description of nonlinearities 
Nonlinearities in analog circuits can be represented in ad-
mittance form, i.e. by a (nonlinear) model equation that 
describes a current as a function of one or more controlling 
voltages. For example, the AC drain current id of a MOS 
transistor can be written as a Taylor series with the control-
ling voltages vgs, vds and vsb [7]:  
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in which the coefficients K2 and K3, referred to as second- 
and third-order nonlinearity coefficients, are proportional 
to the second- and third-order derivative of the drain cur-
rent. Coefficients that correspond to derivatives with re-
spect to one voltage, are called one-dimensional nonlinear-
ity coefficients. The ones proportional to cross-derivatives, 
such as K2gm&go and K3gm&gmb&go are two-dimensional and 
three-dimensional nonlinearity coefficients, respectively. 
Nonlinear capacitors can be described by a one-
dimensional Taylor series that expresses the charge upon 
the capacitor as a function of the voltage over the capaci-
tor. The AC current through the capacitor is simply found 
by differentiating this charge with respect to time. 

3. Block diagram representation of Volterra 
kernels 

A block diagram for a Volterra kernel of a voltage or cur-
rent in a nonlinear analog circuit can be constructed by an 
adoption of the technique described in [6]. To understand 
this construction, consider a one-dimensional second- or 
third-order nonlinearity coefficient of a nonlinear admit-
tance. A second-order nonlinearity squares the voltage over 
its controlling terminals, then multiplies the result with its 
second-order nonlinearity coefficient to produce a second-
order “nonlinear” current. This current propagates to the 
output. When the second-order response is to be computed, 

then only the linear propagation of this current to the out-
put must be considered. The effect of other nonlinearities 
on this current can indeed be neglected, since this yields 
nonlinear behavior of order higher than two. This reason-
ing holds for all second-order nonlinearity coefficients in 
the circuit. Hence, the total second-order output is the sum 
of the contributions of all second-order nonlinearity coeffi-
cients. As shown in Figure 1, each contribution corre-
sponds to one path in the  block diagram representation. 
A block diagram representation of a second-order Volterra 
kernel contains three different types of paths, correspond-
ing to one-dimensional second-order nonlinearity coeffi-
cients K2g…, two-dimensional coefficients K2ga&gb… and to 
coefficients K2C… that correspond to nonlinear capacitors. 
The transfer function from the input to the voltage that 
controls the nonlinearity is denoted by H… Transfer func-
tions from a second-order current – which flows from the 
positive terminal of a nonlinearity to its negative terminal – 
to the output of the circuit are denoted by TF…, and they 
are computed in the linearized circuit.  
 

 
Fig. 1: block diagram for the computation of the 
second-order nonlinear behavior of a nonlinear 
circuit. 
K 2 g a & g b1111/sHHHCbax2 Each path consists of a second-order nonlinearity coeffi-
cient, linear transfer functions and a static nonlinearity. For 
a one-dimensional nonlinearity this nonlinearity is a 
squarer, while for a two-dimensional nonlinearity this is a 
multiplier that takes the product of the two parallel paths 
that correspond to the two controlling voltages. With a 
block diagram such as in Fig.  1, the output of the circuit 
due to second-order nonlinear behavior can be computed 
for any input excitation, provided that this excitation is not 
too large such that the assumption of weakly nonlinear 
behavior is not violated. 
The construction of a block diagram for third-order nonlin-
ear behavior caused by third-order nonlinearity coefficients 
(see Figure 2) proceeds in a similar way as second-order 
behavior caused by second-order nonlinearities. On the 
other hand, as shown in Figure 3, second-order nonlineari-
ties produce a third-order nonlinear response by combining 



at their controlling terminals a second-order signal with a 
first-order signal to produce a third-order “nonlinear” cur-
rent. A block diagram for the second-order signal is similar 
to the one of Figure 1. The propagation of the third-order 
nonlinear current through the linearized circuit yields the 
contribution of the second-order coefficient to the overall 
third-order output signal. The total third-order kernel is 
then modeled as the parallel connection of different paths 
as the ones shown in Fig.  2 and 3. Clearly, block diagrams 
that describe third-order nonlinear behavior, contain only 
scale factors, linear transfer functions and static nonlineari-
ties, just as in the second-order case. 
K 2 g a & g b1111/sHHHCbax2  

K 2 g a & g b1111/sHHHCbax2  

K 2 g a & g b1111/sHHHCbax2 Fig. 2: path from the input to the output of a 
weakly nonlinear circuit corresponding to the 
contribution of a one-dimensional third-order co-
efficient K3g1 to the overall third-order nonlinear 
behavior. 
 

 
Fig. 3: path from the input to the output of a 
weakly nonlinear circuit corresponding to the 
contribution of a one-dimensional second-order 
coefficient K2g1 to the overall third-order nonlin-
ear behavior. 

4. Simplification of the block diagrams 
In a circuit of practical size the block diagrams for the sec-
ond- and third-order nonlinear behavior consist of many 
parallel paths. This is already clear from the large number 
of nonlinearity coefficients that is required to describe the 
drain current of one MOS transistor (see equation (1)). The 
use of such bulky diagram for system -level simulations is 
not practical. 
Fortunately, in most practical circuits many nonlinearity 
coefficients give a negligible contribution to the overall 
second- or third-order nonlinear behavior. This is exploited 
in an algorithm that eliminates all negligible contributions 
up to a user-definable error on the magnitude and phase of 
the kernel transforms in a given frequency band of interest. 
The algorithm is an extension to multiple dimensions of 
the method described in [7] to determine the most impor-
tant contributions to the second- and third-order harmon-
ics. Indeed, digital telecom signals require evaluations of 
the kernels for all frequency arguments being different. In 
addition, negative values for the frequency arguments must 
be considered as well. Two properties of kernel transforms 
are used to reduce the number of evaluations: the symme-
try of kernel transforms [6] and the property that a change 

of the sign of one of the frequency arguments yields the 
complex conjugate of the kernel transform.  
This approximation procedure uses transfer functions and 
nonlinearity coefficients that are precomputed with a cir-
cuit simulator, in this case HSPICE. The nonlinearity coef-
ficients are computed by numerical differentiation on data 
from DC analyses. 
The running time limit of this approach for the construc-
tion of a block diagram that approximates the kth-order 
nonlinear behavior is O(n4.f + M.log(M).fk), where n is the 
number of nodes in the circuit, f is the number of different 
frequencies that are considered and M is the number of 
nonlinearity coefficients of order 2, …, k. This running 
time limit shows that high -order behavior (i.e. higher than 
three) yields excessive computations if the frequency res o-
lution is very high. 

5. Examples 
As an illustration a high -level model is constructed for the 
amplifier and the active anti-alias filter of the integrated 
receiver front -end architecture (see Fig.  4) for an upstream 
cable modem in the MCNS standard. Both circuits are de-
signed in a digital 0.35µm CMOS process.  
 

 

Fig. 4: maximally digital receiver front-end archi-
tecture for upstream cable modem applications. 

 

Fig. 5: simplified schematic of a CMOS amplifier 
for upstream cable modem applications. The gain 
is 12, the input impedance is 75Ω . 
For the amplifier we limit the discussion to third-order 
nonlinear behavior, since this requires more computations 
than the second-order behavior. The third-order Volterra 
kernel transform of the amplifier’s output voltage is a func-
tion of three frequencies f1, f2 and f3, and it has 37 contribu-
tions each corresponding to a second- or third-order 
nonlinearity coefficient. The input signal has a bandwidth 
from 5 MHz to 42 MHz, which is also the band of interest 
at the output of the amplifier. The elimination procedure 



evaluates the kernel transform and its contributions for 
combinations of ±f1, ±f2 and ±f3 with f1, f2 and f3 between 
DC and 42 MHz. 
The third-order kernel can be approximated well by one 
single contribution, namely the one from K2go2. This is the 
second-order nonlinearity of the output conductance of 
transistor 2M , which operates in the triode region. This 
nonlinearity is determined by the drain-source voltage of 
M2. It is not a surprise that the largest contribution comes 
from M2: nonlinearities that are controlled by voltages that 
experience high swings, in general yield a large contribu-
tion. In the circuit of Fig. 5 there is a voltage gain between 
node “in” and node “drain”, such that the voltage swing at 
the latter node is quite high. The main contributions to the 
third-order kernel are best visualized by a 2-D plot (see 
Fig. 6) from which the dominance of the contribution of 
K2go2 is obvious. 

 
Fig. 6: third-order kernel transform of the ampli-
fier output voltage, and its most important contri-
butions, evaluated for f1=f3 and f2 fixed at -42 MHz. 
The input amplitude is taken equal to 1V as a ref-
erence, yielding artificially large intermodulation 
products. 
Having the most important contribution, we now construct 
an approximate simulation model for the third-order non-
linear behavior in the form of a block diagram. It is clear 
from Fig. 3 that the contribution of K2goM2 depends on the 
second-order kernel transform of the voltage that deter-
mines this nonlinearity. This second-order kernel in turn 
consists of several contributions. The approximation pro-
cedure finds that the main contribution to this kernel again 
comes from K2goM2. The result is shown in Fig. 7. 
 

 
Fig. 7: approximate high-level model for the third-
order nonlinear behavior of the LNA of Fig. 5. 
The final block diagram, shown in Fig.  7, contains three 
transfer functions: H1(s) is the transfer function from the 

input voltage source (with an output impedance of 75O) to 
the voltage of node “drain”, which is the controlling volt-
age of the nonlinearity K2goM2. Further, TF1(s) and TF2(s) 
denote the transfer functions from the nonlinear current 
source that corresponds to K2goM2, to the voltage at the 
nodes “drain” and “out”, respectively. This nonlinear cur-
rent source flows from the node “drain” to the AC ground. 
Although the approximate model is compact, the accuracy 
is fairly good: compared to the exact value of the third-
order kernel evaluated at all frequency combinations in the 
band of interest, the maximum error on the magnitude of 
the approximate model is 13%.  
The need to consider the frequency dependence of the 
nonlinear behavior is evidenced by a system -level simula-
tion in MATLAB on the receiver front-end of Fig.  4. In 
this simulation, the amplifier excitation consists of differ-
ent channels between 5 and 42 MHz. Each channel has a 
3.2 MHz bandwidth and a power of 6dBmV. The amplifier 
is modeled by its linear transfer function and an approxi-
mation of the second-order and third-order (see Fig.  7) 
kernel transforms. In this amplifer model, outputs of  
blocks that represent transfer functions are computed in the 
frequency domain, while outputs of static nonlinearities are 
computed in the time domain. The anti-alias filter is mod-
eled for this simulation by its linear transfer function only. 
For the ADC only the sampling operation and the quantiza-
tion are modeled.  
Nonlinear behavior of the amplifier causes channel inter-
ference at the amplifier output. As shown in Fig. 8 ,  ne-
glecting the frequency dependence of the nonlinear behav-
ior yields a signal-to-distortion ratio in one channel that is 
up to 6.5 dB smaller than if the frequency dependence is 
taken into account. This illustrates the importance of the 
frequency dependence in wideband applications. 
For circuits that are larger than the amplifier of Fig. 5, the 
modeling approach described in this paper can still gener-
ate fairly compact approximate high-level models for the 
frequency-dependent nonlinear behavior. To illustrate this, 
we realize the anti-alias filter in the front-end as a fully 
differential 3rd-order elliptic gm -C filter (see Fig.  9), and  
we derive an approximate model for the second-order non-
linear behavior.  Due to mismatches this second-order 
nonlinear behavior is not completely suppressed. The –3dB 
frequency of this filter is 47 MHz. The transconductor that 
is used in this filter is shown in Fig. 10. 
The approximation procedure finds that the main contribu-
tions to the second-order nonlinear behavior come from  
the nonlinearity of the transconductance of M1 and M2 in 
the transconductor with label X4 in Fig. 9. As seen in 
Fig. 11, the total value of the intermodulation product is 
smaller than the largest contributions. If there would be no 
mismatches, then these contributions are two-by-two oppo-
site and with equal magnitude, such that the total second-
order kernel is zero. If the six contributions shown in 
Fig. 11 are taken into account for the approximation of the 



second-order kernel transform, then the maximum error on 
the magnitude of the second-order kernel, evaluated over 
the complete passband of the filter, is only 1.1 dB. The 
resulting high-level model is still fairly compact with 
twelve transfer functions, six squarers and six scale factors. 

 

Fig. 8: difference in dB in signal-to-distortion ratio 
obtained from high-level simulations with and 
without taking into account frequency depend-
ence of the nonlinear models. The x-axis indi-
cates the center frequency of the channels. 
The CPU time for the computation of both second- and 
third-order responses of the filter, followed by the ap-
proximation phase is 10 seconds on a 400 MHz Intel Pen-
tium II processor with a Linux operating system. 
 

6. Conclusions 
Modeling and understanding nonlinear behavior of analog 
integrated communication circuits is not straightforward, 
since in a practical circuit many nonlinearities contribute to 
the overall nonlinear behavior. Moreover, these contribu-
tions depend on frequency. This paper has described an 
approach that determines the most important contributions 
to second- and third-order nonlinear behavior of the circuit 
with the inclusion of frequency dependence. A translation 
of these dominant contributions into a block diagram 
yields high-level models that are useful for high-level 
simulations of front -end architectures. The examples in 
this paper show that these models are very compact for 
practical circuits, even when parasitic effects such as mis-
matches are taken into account. The models contain a small 
number of linear transfer functions, static nonlinearities 
and scale factors. In this way, the approach described in 
this paper is useful to construct bottom -up models that 
yield efficient high-level simulations, and to obtain insight 
in the nonlinear operation of analog integrated communica-
tions circuits. 
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Fig. 9: 3rd-order elliptic lowpass filter. 
 

 
Fig. 10: transconductor used in the lowpass filter. 

 
Fig. 11: most important contributions to the 2nd-
order intermodulation product at |f1-f2| at the out-
put of the filter of Fig. 9 with f2=10 MHz. The input 
amplitude is taken equal to 1V as a reference. 
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