
Abstract
A new method for computation of timing jitter in a PLL

is proposed. The computational method is based on the
representation of the circuit as a linear time-varying system
with modulated stationary noise models, spectral
decomposition of stochastic process and decomposition of
noise into orthogonal components i. e. phase and amplitude
noise. The method is illustrated by examples of jitter
computation in PLLs.

1. Introduction
Phase Locked Loop (PLL) circuits are widely used

components in modern communication electronics [1,2].
The main problems of PLL design are related to the
simulation of nonlinearities and noise. The development of
numerical procedures for noise simulation in a PLL is an
open problem due to the complexity and peculiarities of a
PLL. Timing jitter is the main noise characteristic of a PLL
[3], and affects the timing accuracy and the signal to noise
ratio in circuits based on a PLL. Clearly, estimating jitter is
important for the design of PLLs, frequency synthesizers,
clock recovery circuits, etc. 

The complexity of PLL circuits led several authors to
noise simulation methodologies based primarily on
behavioral level simulation (see for instance [4, 5, 6, 7, 8]).
In particular the methodology in [4] uses a transient noise
analysis of each of the PLL blocks and converts the
obtained noise responses to jitter.

In contrast to these publications, this paper presents a
method for computing the noise response of the full PLL at
the circuit (transistor) level, providing noise analysis of a
PLL in a conventional Spice-like simulator.

Numerical procedures for timing jitter computation at the
transistor level have been investigated in detail for
autonomous circuits [9]. However, the PLL is the driven

circuit. The present approach is based on a numerical
technique [10] which provides noise analysis of nonlinear
circuits in the time domain. In contrast to the approach
presented in [11], no time-consuming convolution-like
procedures involving a transfer function are used. 

It can be noted also that many of the previous approaches
to PLL noise simulation have some limitations in terms of
flicker noise. The present approach in comparison, for
instance with [12], allows us to take into account the flicker
noise sources without additional computational efforts. 

Section 2 presents the formulation of timing jitter in the
case of driven circuits. The basic numerical procedure is
presented in Section 3. Some experimental results of timing
jitter computations in a PLL are presented in section 4.

2. The concept of timing jitter
The problem of noise simulation in PLL is a special case

of jitter analysis of nonlinear driven systems in time
domain. 

The following expression is used to estimate timing jitter
value in a cell of ring oscillator [2]:

 (eq. 1)

Here dv is the perturbation of the transient waveform due
to noise computed at the transition and SlewRate is
determined by the slope of the transient waveform.

In oscillators this timing jitter determines the starting
point of the next cycle and therefore creates a permanent
phase shift in the output signal [3]. With each cycle of
oscillation, the jitter variance continues to grow. Timing
jitter in a PLL depends on the interaction of noise in the
oscillator with the dynamics of the phase-locked loop
because the phase difference is compensated by the
feedback of the loop. Such a distinction between oscillator
and PLL circuits is taken into consideration below.

To determine timing jitter in a PLL we extend the
methodology of jitter estimation in free-running oscillators
[4] to the case of closed-loop oscillators i.e. PLL.

Timing jitter J can be considered as a discrete time

dt
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stochastic process with the following probabilistic
characterization [4]:

 (eq. 2)

where y is the noise response and Sk is the maximal value
of large signal time derivative at the output node estimated
over time interval T, and  is the corresponding time point.

According to this formula, to compute the variance of the
timing jitter the following steps are performed:

1) determine large signal solution and derivatives.

2) apply transient noise analysis to compute noise
response and its variance. For PLL circuits this analysis is
performed while splitting the total noise into normal and
tangential parts.

3) determine maximal derivatives in the interval T.

4) sample the noise variance and compute the timing
jitter variance using expression (2).

The basic numerical procedure to compute noise
response in transient noise analysis (step 2) is presented
next.

3. Computational method
The computational scheme for phase noise evaluation is

founded on the combination of the approach to transient
noise (TRNO) analysis [10] and noise decomposition into
orthogonal components (amplitude and phase noise) [13].

The nonlinear circuit can be described by the following
equation:

 (eq. 3)

where q(x), i(x) are vectors of node charges or fluxes,
b(t), u(t) are vectors of large signals and noise sources
respectively (the N by K matrix A reflects the connections of
noise sources). The vector x(t) includes node voltages and
some branch currents.

Assuming the contribution of the noise sources is small,
the equation can be linearized about the large-signal noise-
free solution xL(t) giving the following equation with
respect to the vector of noise response y(t):

 (eq. 4)

where  (eq. 5)

            (eq. 6)

Equation (4) is a linear differential system with time-
varying coefficients and therefore the overall noise
response can be computed as the superposition of noise
responses to every noise source:

(eq. 7)

To obtain equations for noise response, the spectral
decomposition for noise sources is used:

(eq. 8)

Here  is square root of modulated spectral
density,  are uncorrelated random values with variance

, where  is the frequency interval.

Inserting (8) into (4) and using the substitution

 (eq. 9)

the following basic equations for the noise response are
obtained [10] :

(eq. 10)

l=1,2,...,L and k=1,2,...,K that should be integrated in
time interval of interest.

Experimental analysis showed that the direct application
of these equations to PLL noise simulation is difficult due
to the instability of numerical integration (10) by standard
Spice integration techniques. To solve this problem we
decompose the total noise response into two orthogonal
components. The performed analysis confirmed that this
separation allowed us to avoid the integration instability.

Let the noise response y(t) be split into normal and
tangential parts [13]:
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 (eq. 11)

where

 (eq. 12)

Here  determines random phase fluctuation. This
function describes the phase process. It determines a
stochastic time shift and can be used for characterization of
time uncertainty of analyzed circuit.

After linearization of (12) with respect to  we can
obtain the following expressions:

 (eq. 13)

 (eq. 14)

Inserting (11) into (4) we can obtain

 (eq. 15)

Taking into account expressions (13), (14) the equation
(15) yields

 (eq. 16)

To simplify (16) we can derive, by differentiating (3)
with respect to time, the following useful equation:

 (eq. 17)

This expression is obtained assuming noise sources to be
zero in (3). Taking into account expression (17) we can
finally obtain:

 (eq. 18)

The system (18) has an additional variable . To
complete (18) we add an equation derived from the
condition of orthogonality:

 (eq. 19)

The expressions (18) and (19) are the basic equations for

phase noise or jitter simulation. It is important to note that
the solution  can be directly applied to estimate timing
jitter:

(eq. 20)

Experiments show that the expression (20) is consistent
with the general concept of timing jitter. In particular, (20)
is equivalent to the expression (2) in the case of dominant
contribution of phase noise:

(eq. 21)

For this reason time points  chosen from the condition
of minimal ratio  are equivalent to maximal
derivative time points. Therefore in practice the expression
(20) gives the same results as expression (2).

To solve the system (18), (19) we use the same approach
that was used to solve (4). Namely, the noise sources are
presented by modulated spectral decomposition and
considered independently. Then we can write 

 (eq. 22)

 (eq. 23)

where  are coefficients of decomposition (8).

The values  are obtained by solving of equations:

(eq. 24)

 (eq. 25)

These equations are solved using implicit integration
techniques. It is important that solutions of these equations
are smoother than the solutions of (10). This makes it
practical to estimate the variance of timing jitter in a PLL.

The variance of the total noise at a certain node of the
circuit can be computed using the following expression
[10]:
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(eq. 26)

Similarly, the time dependence of jitter variance is
computed by the following expression:

(eq. 27)

where  the frequency interval.

The presented computational scheme can be easily
implemented in a conventional Spice-like circuit simulator.

4. Experimental results
To provide a special-purpose mode for nonstationary

noise simulation, the described approach has been
implemented in a Spice-like simulator.

This section presents some results of computation of
jitter in a PLL circuit. The 560B PLL circuit is taken from
[1], and it contains a VCO, loop filter, and phase detector,
all implemented with 32 bipolar transistors, 9 diodes and 31
linear components.

The computation of timing jitter includes determining
steady-state solution for large signal, integration of noise
equations (24), (25) with simultaneous calculation of jitter
using expression (20). The computed jitter is shown in the
figures for several periods of time.

Fig. 1 illustrates the effect of temperature on the jitter in
this PLL, jitter characteristics computed at the temperature
of 27 degrees and 50 degrees of centigrade without flicker
noise are given. The computed temperature dependence of
jitter is shown in the fig. 2.

The effect of flicker noise on timing jitter in PLL circuit
is demonstrated by fig. 3 (simulation without flicker noise
and with flicker coefficient 10-11). It is important to note
that these results are obtained without additional
computational efforts.

Fig. 4 illustrates the capability to investigate the
dependence of timing jitter on parameters of PLL. In
particular fig. 4 demonstrates the reduction of the jitter with
increase of the loop bandwidth. Jitter is approximately
inversely proportional to the bandwidth of the PLL [3].

5. Conclusion
The suggested approach to nonstationary noise

simulation and the corresponding computational scheme
allows us to perform jitter simulation in a PLL using a
standard Spice like simulator. In comparison with known
results the jitter is evaluated at the transistor level using

modulated stationary noise models. 

The present method allows us to perform PLL noise
simulation taking into account flicker noise without
additional computational efforts.
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Figure 1. rms jitter for 27 and 50 degrees

Figure 2. temperature dependence of rms jitter

Figure 3. rms jitter without and with flicker noise 
(coefficient 10-11)

Figure 4. rms jitter for nominal (a) and 10x 
increased (b) loop bandwidth 
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