
Fast Cache and Bus Power Estimation for Parameterized System-on-a-Chip Design

Abstract

We present a technique for fast estimation of the power
consumed by the cache and bus sub-system of a parameterized
system-on-a-chip design for a given application. The technique
uses a two-step approach of first collecting intermediate data
about an application using simulation, and then using
equations to rapidly predict the performance and power
consumption for each of thousands of possible configurations
of system parameters, such as cache size and associativity and
bus size and encoding. The estimations display good absolute
as well as relative accuracy for various examples, and are
obtained in dramatically less time than other techniques,
making possible the future use of powerful search heuristics.

Keywords
System-on-a-chip, low power, estimation, intellectual property,
cache, on-chip bus.

1. Introduction
Silicon capacity continues to increase faster than the ability

for designers to use that silicon, resulting in the well-known
productivity gap [18]. Many researchers propose extensive
reuse of pre-designed intellectual property cores to reduce this
gap [8], where typical cores include microprocessors,
microcontrollers, digital signal processors, encoders/decoders,
bus interfaces, and numerous other common peripheral
components. Two complementary core-based design
approaches are emerging. One approach, based on a traditional
capture-and-simulate [5] paradigm, assumes that a designer
pieces together many cores obtained from various sources [24]
(adding some custom logic), simulates extensively, and then
generates new silicon implementing the system-on-a-chip. The
other approach, which this paper addresses and which we refer
to as configure-and-execute, assumes the designer starts with a
pre-designed system-on-a-chip1, and then configures that
system (including adding and deleting some cores) before
generating new silicon [16][20][21][22]. The configure-and-
execute approach has an advantage of enabling software
development on real silicon, reducing the need for lengthy
hardware/software co-simulations. Several commercial
products now support such an approach for various application
domains [14][23], such as networks and communications.

1 Such pre-designed silicon has been referred to as a reference

design, fig chip (configurable chip), and silicon platform by
various authors.

A key to the success of a configure-and-execute approach is
that the pre-designed system’s architecture be heavily
parameterized, so that design metrics like power, performance
and size, can be optimized for a particular application’s design
constraints, by selecting particular parameter values before
generating new silicon. We focus in this paper on parameters of
the system cache and its associated on-chip buses, the CPU to
cache bus, and the cache to main memory bus, as cache and bus
have been shown to contribute to a significant percentage of
system power. The main contribution of this paper is the
creation of a fast cache power/performance estimation method
and its coupling with a fast bus estimation method, enabling
future heuristics that could simultaneously explore the large
design space defined by cache and bus parameters. Such
simultaneous exploration was recently shown to be crucial to
optimizing deep-submicron designs [7], in which bus power
consumption begins to surpass that of cache, and in which the
cache and bus parameters must therefore be carefully tuned to
one another.

Section 2 highlights the basic idea of parameterized system
design. Section 3 describes related work in cache and bus
power estimation and optimization. Section 4 describes our
overall estimation approach. Section 5 describes the cache
model used. Section 6 shows how to couple the cache model
with our previously developed bus model. Section 7 describes
our experimental results showing the speed and excellent
accuracy of our approach. Section 8 provides conclusions.

2. Parameterized system design
Our long-term goal is to develop an environment supporting

Figure 1: Steps in parameterized system design.

Reference
design

Application
development

Parameter
optimization

New silicon
generation

Characterizing
simulation

Search
heuristics

Estimation
equations

Optimiz.
criteria

Parameter exploration

Parameter optimization

Intermediate data

Tony D. Givargis, Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
{ givargis, vahid} @cs.ucr.edu

Jörg Henkel
C&C Research Laboratories, NEC USA

4 Independence Way, Princeton, NJ 08540
henkel@ccrl.nj.nec.com

a parameterized system design approach. Such an approach
consists of three main steps, as illustrated in Figure 1.

1. Application development begins with a commercially
available "reference design," implemented on a configurable
prototyping system-on-a-chip ("fig chip"). Figure 2 illustrates a
typical reference design system-on-a-chip [24] consisting of a
microprocessor core, cache, main memory, and direct-memory
access (DMA) controller, all connected via a system bus. Also
on that bus is a bridge to a set of peripheral cores, which differ
depending on the class of intended applications (e.g.,
networking), and to reconfigurable logic or to add-on chips.
The desired application is developed on this fig chip, which
supports in-circuit emulation and hence at-speed application
execution, overcoming the problem of prohibitively long
simulation time for systems-on-a-chip. Some additional cores
could be added (using the reconfigurable logic) and unneeded
ones shut off. Numerous system-on-a-chip developers have
begun to emphasize the importance of starting with such a
reference design rather than composing cores from scratch
[16][20][21][22].

2. Parameter optimization occurs once the application has
been developed with the aid of the fig chip. The architecture’s
parameters are optimized for that application and its
accompanying power, performance and size optimization
criteria. Critical architectural parameters may include bus
parameters like data size, address and data encoding
techniques, multiplexing, etc., cache parameters like cache
size, associativity, write-back techniques, block size/line size,
etc., DMA parameters, and parameters relating to specific
peripheral cores, like buffer sizes, resolutions, compression
levels, etc. While the first step above has already had
manifestations in commercial products (e.g., [23]), this second
step still requires extensive research, and is beginning to
receive some attention (such as work in [2], which optimizes a
parameterized virtual memory system). Because the parameters
are highly interdependent (for example, cache size impacts bus
traffic), as well as strongly dependent on each application’s
features, this is a hard problem.

3. New silicon generation then results in a new chip
implementing the optimized architecture, including any added

cores and excluding any shut-off ones. For example, while the
reference design may have had a 32K cache and 32-bit
unencoded bus, the optimized architecture for a particular
application may have a 4K cache and an 8-bit bus using bus-
invert encoding to reduce power. Ideally, the silicon is correct
on the first-pass due to the extensive in-circuit emulation
already performed.

Note the difference between a parameterized system design
approach and the traditional system-level synthesis approach.
In the traditional approach, an application is first described
behaviorally, and then an architecture is synthesized for that
application (processors, memories and buses are instantiated),
and the behavior is then mapped to the architecture. In the
parameterized system design approach, the basic architecture is
pre-defined, and the application is developed on that
architecture. The "system synthesis" going on is really a fine-
tuning of the original architecture through selection of values
for the architecture’s parameters.

3. Related work
Numerous techniques for high-level power estimation and

optimization have evolved recently; an overview can be found
in Raghunathan et al [17].

Much attention has been given to developing detailed
models of cache internals to accurately predict a cache’s latency
[25] as well as power consumption [3] for a given parameter
configuration. Such detailed models would be used to estimate
power in cache simulators, which we use as described later.

Attention has also been given to exploring various cache
configurations in terms of power, performance and size. Su and
Despain [19] evaluate several cache design techniques with
respect to power and performance. Henkel [11] used exhaustive
trace-driven cache simulations to show that the best cache
configuration, in terms of power, performance and size,
differed greatly for different applications.

Noticing that large tradeoffs are possible by configuring a
cache for an application, but that cache simulations are slow,
many researchers have focused on speeding up cache
simulations. Kirovski et al [9] reduces the number of trace-
driven cache simulations necessary for exploring different
cache configurations, by establishing bounds and hence pruning
numerous inferior configurations without having to simulate
them. Wu and Wolf [26] order the search of different cache
configurations such that, after each cache simulation, they can
reduce the size of a given input trace by removing redundant
information ("trace stripping"), thus speeding up subsequent
simulations of other configurations. Our work differs in that we
couple cache parameters with bus parameters (and possibly
other parameters in the future), resulting in an enormous
design space and thus seemingly excluding any approach based
on repeated simulation. While one-pass cache-simulation [12]
is a common technique, in which numerous cache
configurations are evaluated simultaneously during one
simulation, incorporating the myriad of other parameters that
we wish to consider (bus, DMA, peripheral cores, etc.) into
such an approach would likely become prohibitively complex.

Figure 2: System-on-a-chip reference design’s basic structure.

Micro-
processor

Cache DMA Memory Bridge

PeripheralReconfi-
gurable
logic

...

System bus

Peripheral bus

()
()
()
()
()
() .,,

,,

,,

,,

,,

,,

6

5

4

3

2

1

NALSf

NALSf

NALSf

NALSf

NALSf

NALSf

MaxMinMax

MinMaxMax

MaxMinMin

MinMaxMin

MinMinMax

MinMinMin

=
=
=
=
=
=

With the advent of deep-submicron technology and the
accompanying increase in the bus’ contribution to system power
consumption, recently researchers have begun to focus on
reducing bus power [17], and more closely related to our work,
on the inter-relationship of cache and bus power consumption.
Compiler-level approaches, like that by Panda and Dutt [15],
seek to generate executable code that minimizes power on a
given cache/bus architecture. An architectural approach was
presented by Fornaciari et al [4], who investigated the power
consumption of different bus encodings for various cache
configurations. Li and Givargis et al [6] developed a fast bus
power model and then coupled [7] this model with Li and
Henkel’s cache simulations to show that, in deep submicron
technologies, the best cache and best bus configurations are
tightly interdependent and thus should be sought
simultaneously. Our work is an improvement to this work in
that the long cache simulations can be replaced by the fast
models in this paper to reduce the time to evaluate all
cache/bus configurations for a given application from
days/weeks to seconds/minutes.

4. Approach overview
Because a parameterized system design approach will have

numerous interdependent parameters, an approach requiring
simulation for each configuration would be computationally
infeasible due to the exponential number of configurations.
Thus, we instead use a two-step approach to parameter
optimization, as shown in Figure 1. Characterizing simulation
involves simulating the application with typical input vectors
once or a small number of times that is just enough to provide
enough intermediate data to characterize the application for the
second step. The second step, parameter exploration, uses
heuristics to traverse the design space of possible parameter
configurations, coupled with fast estimation equations that use
the intermediate data to provide power, performance and size
values for a given configuration. These equations evaluate in
constant-time, so can deal with huge numbers of possible
configurations.

We have chosen to focus initially on developing parameter
optimization for a system’s cache and bus sub-systems, because
these typically consume a significant percentage of system
power (we plan to soon extend our approach to also consider
DMA). We have already developed an approach for buses [6]
involving definition of the intermediate data (bus traffic),
estimation equations for power, performance and size as a
function of bus parameters (size and encoding) and traffic, and
an exhaustive search heuristic. We now describe the
intermediate data and estimation equations necessary for cache
parameter optimization, followed by a description of a method
for coupling the cache methods with that previously developed
for buses. We showed earlier [7] that the tight interdependency
of cache and bus parameters requires such a coupling in order
to find the best cache and bus configurations optimizing power,
performance and size.

5. Cache performance and power estimation
In this section, we discuss the technique that we have

employed for rapidly estimating cache metrics. We define the
problem as follows. Given a trace of memory references

(referred to hereafter as a trace-file), we are to compute the
number of cache misses2, denoted N, for all different caches.
Two caches are different if they differ in their total cache size,
line size (block size) or degree of associativity. We limit each
of these three distinguishing parameters to a finite range:

Note that, for practical purposes, we only consider values that
are powers of two for each of these parameters. Given a trace-
file, we must define a function:

to compute the number of cache misses for any cache
configuration. We assume that, with the aid of a cache-
simulator, we are able to compute the above function, for any
value from the sets S, L and A, in linear time with respect to
the size of the trace-file. Intuitively, our approach works as
follows. We know that at low cache sizes, higher line size and
associativity have a greater positive effect than they do at high
cache sizes. For example, doubling the line size when cache
size is 512B may reduce cache miss rate by 30%, however,
when the cache size is 8K, it may not reduce the miss rate at
all. Thus, we are interested in finding these improvement ratios
at both low and high cache sizes, so that, by line fitting, the
improvement ratio for any cache size can be estimated. This
assumes a smooth design space between these points. We next
describe our approach for estimating this function for all range
values.

Our approach consists of three steps. First we simulate the
trace-file for some selected S, L and A values and obtain the
corresponding cache misses. Then we calculate a linear
equation, using the least square approximation method. Last
we use our linear equations to compute N for all cache
parameters. We first simulate the following points in our
domain space:

Then we compute the following ratios:

2 Other metrics, e.g., number of write backs, can be estimated,

using our approach, in a similar manner.

{ }
{ }
{ }.:2

:2

:2

MaxMin
i

MaxMin
i

MaxMin
i

AAiA

LLiL

SSiS

�

�

�

==

==

==

() .: NALSf →××

./,/

/,/

624523

412311

NNRNNR

NNRNNR

==
==

Here, R1/ R2 denotes the improvement we obtain by using
maximum line-size/associativity when cache size is at its
minimum. Likewise R3/ R4 denote the positive improvement we
obtain by using maximum line-size/associativity when the
cache size is at its maximum. Given these ratios we estimate N
for a given cache size, line size and associativity as follows:

The first three equations, s, l and a, normalize our
parameters to be within a unit range. The next equation, t1,

estimates cache misses using lowest line size and associativity,
by computing a linear line through the points N1 and N2. If
more simulation data is available, the least square
approximation is used to compute t1. The next two equations, t2

and t3, estimate the expected improvement gained from higher
line size or associativity. The last equation combines the
previous equations to estimate cache miss rate.

6. Combined cache/bus estimation
In this section, we describe how to extend the cache data

into bus data for simultaneous cache/bus design space
exploration. The technique described in the previous section
allows us to rapidly estimate the number of cache misses, N,
for a given cache parameter setting. This number, N, is a
measure of cache to main-memory bus traffic. Likewise, the
total number of cache accesses, i.e., the size of the trace-file, is
a measure of CPU to cache bus traffic. Given this traffic, and
assuming data of random nature, we can use equations [6] to
compute the bit switching activity on the bus and use it, along
with wire capacitance models, to compute power consumption
of our system. In this work, we consider varying the number of
data bus wires, e.g., 16 or 32-bits, and data encoding, e.g.,
binary or bus-invert.

For our bus model, we assume that there are m, n-bit items
transmitted per unit time on a bus of width k using binary
encoding. (Here m denotes the traffic on the bus and is
obtained by estimating cache misses as described above.) The
following equation gives power consumption for the data bus:

() ()

()

() ()() /sectransition
2

1

/bittransition
2

1
ditem/secon

erbit/transftemtransfer/i

mk
k

n
C

m

k
k

n
CP

bus

busbus

=

=

In this equation, bus capacitance is calculated using models
developed by Chern et al [1]. Our equation is expanded to take
into account bus-invert encoding. This method uses an extra

control line and extra circuit logic to compute the Hamming
distance (bit transitions) between two consecutive data items. If
the Hamming distance is greater than ½ the bus width, then the
control line is asserted and the inverted data is send over the
bus [12]:

()

() /sectransition

22
2

2
1

2

1+k

2

1+k

2

1+k

1

m

k

k

n
CPI

k

k

kkbusbus

⋅

++⋅

+⋅

=

�

Given the traffic m on a bus, power can be quickly
estimated using analytical models as described above.
Likewise, similar analytical models can be applied to compute
cache and memory power, (and performance). These have been
extensively modeled by [3].

7. Experiments
In order to verify our approach, we performed the following

experiments. We used two applications written in C, a diesel
engine controller (Diesel), and an encryption algorithm (Key).
We explored power and performance for mapping each
application to a system architecture including three
parameterized parts: cache, CPU-cache bus, and cache-memory
bus. The cache parameters and their possible values were:
cache size of 128, 256, 512, 1K, 2K, 4K, 8K or 32K; cache line
of 8, 16 or 32; and associativity of 2, 4 or 8. The parameters
for each bus were: data width of 4, 8, 16 and 32; and bus invert
encoding either enabled or disabled.

We compared this paper's fast cache/bus estimation
technique with the simulation approach of [7]. For the
simulation approach, illustrated in Figure 3(a), we ran the C
application through a trace stripper to generate a trace of
memory references. Then, for each cache configuration, we

Figure 3: Experimental setup: (a) simulation approach, (b)
our model-based approach.

()
()
()

).1(),,(

)(

)(

)(

/

/

/

321

2243

1132

1121

tttALSf

RRRat

RRRlt

NNNst

AAAa

LLLl

SSSs

kji

MaxMink

MaxMinj

MaxMini

−−≈
+−=

+−=
+−=

−=

−=
−=

metric
s

instr. set sim.

trace stripper

application code

cache simul.

bus simul.

trace

bus traffic

∑

cache config. bus config.

metric
s

instr. set sim.

trace stripper

application code

cache simul.

bus model

trace

reference values

∑

6 cache
configs. bus config.

cache model

bus traffic

cache config.

(a)

(b)

ran the trace through a cache simulator to obtain cache power,
cache performance, and bus traffic, and this traffic was then fed
into a bus simulator [6] for each bus configuration, which
provided bus power and performance. We also ran the C
application through an instruction-set simulator to obtain CPU
power and performance values. The metrics were then
combined to provide final metric values for the CPU, cache and
bus sub-system. Obtaining these values for all possible
cache/bus configurations required 4.8 hours of CPU time to
carry out the simulations.

For the fast estimation approach, illustrated in Figure 3(b),
we again ran the trace stripper. But then, we ran the cache
simulator only 6 times for the reference cache configurations
described earlier. We then fed the power, performance and hit
rate information from these simulations into our cache
power/performance models, and then evaluated the models for
all cache configurations. For each such configuration, we also
obtained bus traffic data, and fed this data into our bus model
for all bus configurations. Obtaining these values for all
possible cache/bus configurations required only 2.3 minutes of
CPU time, a speedup of 125 times.

While we obtained data for all of the 45,568 possible
cache/bus configurations, we present data for just a small
subset of 10 configurations in Table 1. These configurations
have been selected to reflect worst, average and best case
estimates. Figure 4 provide performance and power
respectively for Diesel and Key applications. The light-gray
bars are actual measurements, and the dark-gray bars estimated
measurements.

Config. Bus1 Bus2 Isize DSize Line Assoc.
0 8/0 4/1 128 512 8 2
1 32/1 32/1 512 16K 8 2
2 32/0 16/0 8K 2K 8 2
3 4/0 8/1 32K 16K 8 2
4 16/0 32/1 512 4K 16 2
5 8/0 8/1 8K 512 16 2
6 8/1 16/0 4K 16K 32 2
7 8/1 4/0 1K 8K 8 4
8 16/0 16/0 1K 256 16 4
9 32/1 8/1 1K 1K 32 4

Table 1: Design space configuration parameters

While hundreds of times faster, our cache estimation approach
resulted in an average error of only 2%, with the worst case
being 18%, over the entire solution space of thousands of
cache/bus configurations (and not just the 10 configurations
presented here). It should be noted that the CPU power
consumption was about 44% and 65% (for Diesel and Key
respectively) of total power consumption.

Perhaps even more important than the accuracy reported
above is the relative accuracy, or fidelity, of the estimates. We
see from the charts that our fast approach orders the various
configurations the same as the simulation approach – thus, we
have the ability to still pick the best parameter configuration,
which is the most important aspect of the approach.

8. Conclusions
We have presented a technique for rapidly estimating the

power and performance of the cache memory and bus sub-
system of a system-on-a-chip. The technique is orders of

magnitude faster than simulation-based approaches, but yields
good accuracy. The technique therefore enables the extensive
exploration of the many configurations possible in a
parameterized system-on-a-chip architecture.

Figure 4: Experimental results: (a) Diesel application’s
performance, (b) Diesel application’s energy, (c) Key
application’s performance, (d) Key application’s energy.
Light gray is actual measurement, and dark-gray denotes
estimated measurements.

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

Conf 0 Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8 Conf 9

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

(b)

0

500

1000

1500

2000

2500

3000

Conf 0 Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8 Conf 9

m
ic

ro
-J

o
u

le
s

(c)

0

5

10

15

20

25

Conf 0 Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8 Conf 9

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

(d)

0

50

100

150

200

250

300

Conf 0 Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8 Conf 9

m
il

li
-J

o
u

le
s

9. Acknowledgement
This work was supported by the National Science

Foundation (CCR-9811164) and a Design Automation
Conference Graduate Scholarship.

10. References
[1] Chern et al., Multilevel metal capacitance models for CAD design

synthesis systems, IEEE Electron Device Letters, vol. 13, Jan. 1992.
[2] J.L. da Silva Jr, F. Catthoor, D. Verkest and H. De Man. Trading-off

Power versus Area through a Parameterizable Model for Virtual
Memory Management, IEEE VOLTA, 1999.

[3] R. J. Evans, P.D. Franzon. Energy Consumption Modeling and
Optimization for SRAMs, IEEE Journal of Solid-State Circuits, Vol.
30, No. 5, pp. 571-579, 1995.

[4] W. Fornaciari, D. Sciuto, C. Silvano. Power Estimation for
Architectural Exploration of HW/SW Communication on System-
Level Buses, International Workshop on Hardware/Software
Codesign, pp. 152-156, 1999.

[5] D. Gajski, N. Dutt, C. Wu, S. Lin. High-Level Synthesis, Kluwer
Academic Publishers, 1992.

[6] T. Givargis and F. Vahid. Interface Exploration for Reduced Power
in Core-Based Systems, International Synposium on System
Synthesis, 1998, pp. 117-122.

[7] T. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power
Exploration for Core--Based Embedded System Design. ICCAD
1999.

[8] R. Gupta and Y. Zorian. Introducing Core-Based System Design,
IEEE Design & Test, Vol. 14, No. 4, Oct-Dec 1997, pp. 15-25.

[9] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith.
Synthesis of Power Efficient Systems-on-Silicon, ASP-DAC 1998,
pp. 557-562.

[10] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A. Sangiovanni-
Vincentelli. Efficient Power Estimation Techniques for HW/SW
Systems, IEEE VOLTA, 1999.

[11] Y. Li and J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems, Design
Automation Conference, pp.188-193, 1998.

[12] Mircea R. Stan and Wayne P. Burleson,
Bus-Invert Coding for Low Power I/O, IEEE Transactions on VLSI,
March 1995.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
Techniques for Storage Hierarchies, IBM Systems Journal, 9(2), pp.
78-117, 1970.

[14] S. Ortiz. New Chips Move Networking onto Silicon. IEEE
Computer, Feb 1999.

[15] P. Panda and N. Dutt, Reducing address bus transition for low power
memory mapping, European Design and Test Conference, pp. 63-68,
1996.

[16] B. Payne. Rapid Silicon Prototyping: Paradigm for Custom System-
on-a-Chip Design, http://www.vlsi.com/velocity, 1998.

[17] A. Raghunathan, N.K. Jha and S. Dey. High-level Power Analysis
and Optimization. Kluwer Academic Publishers, Norwell, MA,
1998.

[18] Semiconductor Industry Association Roadmap 1997,
http://notes.sematech.org/ntrs/PublNTRS.nsf.

[19] C. Su, A. Despain. Cache design trade-offs for power and
performance optimization: a case study. International Symposium on
Low Power Design, pp. 63-68, 1995.

[20] F. Vahid, T. Givargis, The Case for a Configure-and- Execute
Paradigm. International Workshop on Hardware/Software
Codesign, 1999.

[21] P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei, K. Vissers. An
MPEG-2 Decoder Case Study as a Driver for a System Level Design
Methodology, pp. 33-37, International Workshop on
Hardware/Software Codesign, 1999.

[22] J. van Meerbergen, A. Timmer, J. Leijten, F. Harmsze, M. Strik.
Experiences with System Level Design for Consumer ICs, VLSI’98,
pp 17-22.

[23] Velocity product information, VLSI Technology Inc.,
http://www.vlsi.com/velocity.

[24] Virtual Socket Interface Association, Architecture Document,
http://www.vsi.org, 1997.

[25] S.J.E. Wilton and N.P. Jouppi. CACTI: An Enhanced Cache Access
and Cycle Time Model, IEEE Journal of Solid-State Circuits, Vol.
31, No. 5, pp. 677-688, 1996.

[26] Z. Wu and W. Wolf. Iterative Cache Simulation of Embedded CPUs
with Trace Stripping. International Workshop on Hardware/Software
Codesign, pp. 95-99, 1999.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

