
d
of
e

ci-
ur-
he

nd

sis
g

d
is-
-

ss-
ng
as
y
on
ns

oo
ct

ed
ath

g
vel
ue
g,

ay,
ri-
ing
ms
are
x-
int

Target Architecture Oriented High-Level Synthesis for Multi-FPGA Based Emulation*

Oliver Bringmann1,2, Carsten Menn1, Wolfgang Rosenstiel1,2

1 FZI, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
Abstract

This paper presents a new approach on combined high-
level synthesis and partitioning for FPGA-based multi-chip
emulation systems. The goal is to synthesize a prototype
with maximal performance under the given area and inter-
connection constraints of the target architecture. Intercon-
nection resources are handled similarly to functional
resources, enabling the scheduling and the sharing of inter-
chip connections according to their delay. Moreover, data
transfer serialization is performed completely or partially,
depending on the mobility of the data transfers, in order to
satisfy the given interconnection constraints. In contrast to
conventional partitioning approaches, the constraints of the
target architecture are fulfilled by construction.

1 Introduction

Due to increasing design complexity, the emulation of
complex systems embedded in a real hardware environment
as a prototype is becoming more and more important, in
design validation. In this context high-level synthesis is
gaining importance in accelerating the design flow for rapid
prototyping and closing the gap to the system level within a
hardware/software codesign environment. During the last
years, several commercial and academic emulation plat-
forms have been developed. Particularly, the usage of multi-
ple-chip FPGA-based emulation platforms are very attrac-
tive due to their high flexibility, reusability, and scalability.
However, state-of-the-art synthesis systems produce insuffi-
cient results when a design is to be mapped and partitioned
onto a multiple-chip target architecture. Especially the delay
and the limited number of interconnection resources have
been insufficiently considered during synthesis, up till now.

Partitioning a design onto a multiple-chip target architec-
ture can be performed at various levels of abstraction. Very
common are structural partitioning approaches applied at
the RT or gate level. An overview can be found in [1]. Due
to the highly interconnected structural components, any par-
titioning results in many interconnections crossing between

the chips. A valid implementation according to the limite
pin count of the chips quite often enforces the generation
very small partitions consuming not more than 10% of th
area of each chip. Moreover, inferior global synthesis de
sions, taken due to the unconsidered target architecture d
ing synthesis, can produce non-implementable designs. T
missing global knowledge about the circuit semantics a
the synthesized circuit timing in lower level partitioning
approaches make it difficult to integrate some re-synthe
tasks, like re-scheduling of the I/O operations for improvin
the partitioning result.

In [2] the insufficient results of structural partitioning an
the advantages of functional partitioning have been d
cussed. But they restrict functional partitioning to partition
ing procedures before high-level synthesis. Due to the mi
ing knowledge on the synthesized RT structure, partitioni
before high-level synthesis produces insufficient results
well. Especially the sharing of functional datapath units b
different operations of the CDFG cause adverse effects
the partitioning before synthesis, because a lot of operatio
mappable to a single functional resource could result in t
many partitions and interchip connections. Hence, a dire
interpretation of the CDFG as a datapath to be partition
produces insufficient results, since the synthesized datap
can have a quite different structure.

The objective of this paper is to incorporate partitionin
and an extended interconnection cost model into high-le
synthesis, enabling a synthesis-driven partitioning techniq
that considers the influence of functional resource sharin
schedules interchip connections according to their del
provides automatic selection of completely or partially se
alized data transfers, and supports interconnection shar
of single or multiple processes. Because emulated syste
can even run fast enough to be used within the real hardw
environment as a prototype, the optimization goal is to ma
imize the circuit performance under the resource constra
of the given multiple-chip target architecture.

1.1 Related work

2 Universität Tübingen, Sand 13, 72076 Tübingen, Germany
bringmann@fzi.de, menn@fzi.de, rosen@informatik.uni-tuebingen.de
State-of-the-art high-level synthesis systems focus
mainly on the synthesis of single processor designs. There

* This work is partially supported by the DFG program “Rapid Prototyping
of Embedded Systems with Hard Time Constraints” under Ro1030/4.



ng
e-
ally
rti-
e
-

ld
e-
-

.
its
s,
ly,
ed
ing
er
m
to
r-
e
n

ir-
n

e-
lts
exist a few approaches that combine high-level synthesis
and partitioning. Early approaches perform partitioning
before synthesis in order to shorten the synthesis time (YSC
[3], [4]), or guide the design space exploration during syn-
thesis (BUD [5]). They use a hierarchical clustering tech-
nique based on several closeness metrics to group similar
objects, where each iteration generates a partitioning that
can be evaluated to choose the best one for implementation.
Mapping to a multiple-chip architecture is not intended.

Multiple-chip architectures are specifically addressed by
the approaches discussed in the following. APARTY [6]
tries to improve hierarchical clustering by applying a multi-
stage clustering approach with manually selectable close-
ness metrics. However an implementation, satisfying given
pin or area constraints can not be guaranteed. A bipartition-
ing approach has been presented in [7], where the partition-
ing is performed after scheduling and binding is completed.
Interchip data-transfers can not explicitly be scheduled, but
a re-scheduling is possible. Area, pin, and timing constraints
are tried to be satisfied by applying iterative improvement
techniques, like simulated annealing or a min-cut algorithm.
Another approach based on the iterative improvement tech-
nique is given in [8]. Since this approach is carried out
before synthesis, procedures are used as partitioning objects
in order to reduce inferior design decisions in contrast to a
partitioning of fine-grained operations which could share the
same resources. The main problems are, finding a well-bal-
anced number of procedures to be partitioned to the given
target architecture, and the missing close connection to
high-level synthesis.The objective of PARAS is to optimize
the system performance for a given homogenous multiple-
chip architecture with a fixed distribution of functional units
[9]. Advantageous is that partitioning and scheduling are
tightly combined, but the approach is restricted to dataflow-
oriented specifications without conditional branches and
loops, and area and pin constraints can not be considered.
Unfortunately, only a bipartitioning approach has been
explained. In [10], an ILP model incorporating partitioning,
scheduling, and functional unit allocation has been pre-
sented. However, functional units have to be distributed in
advance and automatic serialization of data transfers are not
supported. Interconnection sharing are restricted to bus
assignment with a given bus width. Furthermore, external
interconnections can not be shared, and the actual intercon-
nection structure is not taken into account. A discussion
concerning the synthesis tool performance is missing, espe-
cially if all conditions are integrated, including that for con-
trol structures. In contrast to this, CHOP does not provide
automatic circuit partitioning, but can assist the designer in
partitioning behavioral specifications onto multiple chips
[11]. The approach presented in [12] does not provide parti-

The problem of traditional functional partitioning
approaches is illustrated in Figure 1 (a). Due to the missi
knowledge about the allocated functional units, the synth
sized schedule, and the generated RT structure, usu
graph-based techniques are applied in pre-synthesis pa
tioning approaches. A possible partitioning is given by th
cut-line crossing two inter-chip connections. This partition
ing separates two of the three multiplications, which wou
require the generation of additional partitions, after synth
sis, if not much more than one multiplier can be imple
mented on a single FPGA.

An integrated partitioning is depicted in Figure 1 (b)
Due to the knowledge about the allocated functional un
and the schedule, it can be derived that all multiplication
subtractions, and additions can be mapped to one multip
subtract, and add unit, respectively, resulting in a reduc
interconnection structure. Based on the area and tim
characteristics of the allocated functional units a prop
number of partitions can be found. Although five cuts see
to be needed, only one inter-chip connection is sufficient
implement the design on two FPGAs, when applying inte
connection sharing, as illustrated in Figure 1 (c). For th
sake of clarity, only the partitioned datapath of the desig
are illustrated within the FPGAs.

2 Synthesis flow

As mentioned before, the objective is to incorporate c
cuit partitioning and high-level synthesis based on a
extended interconnection cost model for a given multipl
chip target architecture. Partitioning produces proper resu

+

+

∗

∗

−

−

Mult

Add

S
ub

Mux

Mult

Mux

a b

a

cd

a c b

Reg

Reg

d

x y x y

Add

MuxMux

Sub

Reg

Mux

RegReg

∗

+

+

∗

∗

−

−

a b

a

cd

x y

(a) Partitioning before synthesis

(b) Partitioning during synthesis (c) Generated partitioned datapath

cut-line

cut-line

cut-line

Figure 1. Benefit of integrated partitioning

∗

(5 virtual cuts)

(1 physical cut)

FPGA 2

FPGA 1
tioning as well, but tackles bus assignment for a given inter-
connection structure and performs scheduling, subsequently.

if all functional units have been allocated and the intercon-
nection structure has already been generated. However, the



to
rti-
if
e,
nt
ed

u-
to
ra-
n a
to
al

ack
a

in
a-
e-

s.
,
hat
es

at

-
e

n-

xe-
, if

al-
at
e
es
interconnection structure is not fixed before scheduling and
binding is completed. On the other hand, functional unit
allocation mainly depends on the circuit specification, the
timing constraints, and the resource constraints given by the
target architecture. Hence, the approach starts with func-
tional unit allocation, constrained by the overall area of the
previously read multiple-chip target architecture, as pre-
sented in [13]. Result of the allocation process is to provide
several promising sets of allocated functional units to be
scheduled and partitioned, in order to select the best one for
implementation. The target architecture, including its inter-
connection structure, can easily be described using a propri-
etary file format. Since scheduling and partitioning are
strongly correlated and we want to utilize the partitioning
result during scheduling, the expected scheduling decisions
and the influences of the target architecture are estimated.
Based on a multi-stage estimation function, an initial parti-
tioning can be calculated. This step can be distinguished in
distribution of the already allocated functional units to the
FPGAs, as presented in Section 3, and in assignment of the
operations to the FPGAs according to the previously distrib-
uted functional units, as shown in Section 4.

In order to minimize unfavorable partitioning decisions
taken before scheduling, the initial partitioning result is
expressed by a weighted distribution of the operations to the
partitions. The weights are fixed during the following sched-
uling phase. Furthermore, pin constraints of the FPGAs are
considered and satisfied during scheduling by applying
interconnection sharing and data transfer serialization, as
described in Section 5. The actual assignment of operations
to functional units and FPGAs is done using a conventional
binding algorithm [14]. Last of all, the controller has to be
distributed to all allocated chips. A structural controller par-
titioning approach is not recommended, because numerous
additional interchip connections could violate the given pin
constraints. Therefore, the controller is partitioned implic-
itly by constructing separately a communicating controller
for each scheduled DFG partition. At most one additional
signal is needed to control each interchip communication,
which can be transferred by a shared interchip connection.

In this paper, we concentrate on the distribution of the
functional units and the mapping of the operation to the
FPGAs. This allows easy integration of the partitioning
approach in other high-level synthesis systems. The exten-
sion of the scheduling algorithm for interconnection shar-
ing, data transfer serialization, and consideration of the pin
constraints are addressed afterwards. All the other topics are
beyond the scope of this paper due to space limitations.

3 Distribution of the functional units

the given target architecture. Because several FUs able
perform the same operations can be allocated, proper pa
tioning decisions of the DFG operation can only be taken
the FUs are already distributed to the FPGAs. Otherwis
concurrent operations could be partitioned onto differe
FPGAs although an adequate number of FUs are provid
within each FPGA. In order to determine a proper distrib
tion of the FUs, the control/dataflow graph (CDFG) has
be analyzed with respect to pairs of interconnected ope
tions and potential critical paths. The approach operates o
global DFG with control flow extensions and references
the corresponding CFG nodes. Loops and condition
branches are realized using multiplexers, and the feedb
edges of all loops are immediately known. This enables
partitioning across control structures, which is important
control-dominated designs. Even so, the effects of altern
tive branches are not neglected during partitioning, esp
cially the potential sharing of mutually exclusive resource

Before the algorithm for FU distribution is presented
some notations and definitions are given. We assume, t
functional units are already allocated and the time fram

, for all operationsop ∈ OP, and
, for all interconnectionse ∈ E, are

computed by ASAP/ALAP algorithms, whereOP denotes
the set of all operations of the DFG andE the edges, inter-
connecting the operations of the DFG. The probability th
an operation or an interconnectiona, respectively, will be
assigned to clock stept can be calculated by .
Furthermore, letP(op1, op2) be the shortest non-directed
path within the DFG between the operationsop1 and op2,
andOT(op)∈ OPTypebe the type of operationop,out of the
set of all used operation typesOPType.

Definition 1. Theconcurrency(a, b)of two operations/inter-
connectionsa andb denotes the probability that both opera
tions/interconnections are concurrently used in th
synthesized design and is calculated, as follows:

.

In addition, the concurrency is defined to be zero, if the co
cerned operations/interconnectionsa andb are in alternative
branches. If the synthesis system supports speculative e
cution as well, then the concurrency becomes only zero
the condition

holds, where denotes the shortest path for ev
uating the corresponding branch condition beginning
operation and ending at operation . Note that th
complementary probability of the concurrency express
that both operations can share the same resources.

Definition 2. The probability that the operationop andop

Top top
asap … top

alap, ,{ }=
Te te

asap … te
alap, ,{ }=

pa t( ) 1 Ta⁄=

concurrency a b,( ) pa t( ) pb t( )⋅
t Ta Tb∩∈

∑=

ta
asap topce

asap– P opcb
opce

,( )> tb
asap topce

asap– P opcb
opce

,( )>∧

P opcb
opce

,( )

opcb
opce
After functional unit allocation is completed, the allo-
cated functional units (FU) are distributed to the FPGAs of

1 2
are scheduled on the critical path are denoted by
criticalPathProb(op1, op2) and can be calculated by



a-
g

s
he
e-
d
c-
is

nal
t

ific
te

e
es
he
s
.

g
ge-
a
he
ly.

nt
al
r-
on
d

,

if |P(op1, op2)| = 1 and holds. Otherwise the
function criticalPathProb returns zero. Note that the func-
tion latency(op)are used to enlarge the time frame by
the execution time of the fastest allocated FU, able to exe-
cuteop. Without loss of generality, it is assumed thatop2 is
the successor ofop1.

Definition 3. The attraction between operators denotes the
relative frequency of external data transfers caused when
two operatorsot1 andot2 are partitioned to different chips. A
different calculation is needed for equal and different opera-
tors. The attraction for directly connected different operators
is defined by

,

and the attraction for equal operators with a non-directed
distance of two and overlapping time frames is defined by

.

In case of equal operators, the attraction has to be calcu-
lated differently because consecutive equal operations have
a high sharing probability, so there is no need to implement
the related FUs in a single FPGA. But if the DFG contains a
lot of highly concurrent equal operations with a distance of
two, it is beneficial to implement similar FUs, able to exe-
cute that operation, in one FPGA. In contrast, a lot of differ-
ent non-concurrent operations on the critical path force the
implementation of FUs, which can execute the different
operations, in one FPGA. Thus, the attraction measure tries
to ensure that time-critical operations can immediately be
executed without much data transfers. Note that accesses to
external I/Os are modeled similarly to the other DFG opera-
tions. This is important especially for partitioning opera-

tions, which mainly depend on external I/Os. The calcul
tion of the attraction measure is illustrated in Figure 2, usin
the differential equation example taken from [15]. In thi
example, the multiply and subtraction operators have t
highest attraction, forcing the implementation of the corr
sponding FUs, which are able to perform multiplication an
subtraction, in one FPGA. For the sake of clarity, the attra
tion measures with external I/Os are not illustrated in th
example and all FUs have an assumed latency of one.

Based on the attraction measure, the allocated functio
units (FU) can now be distributed to the FPGAs. Note tha
functional units can also be assigned manually to spec
FPGAs in advance. Objective of this step is to concentra
or to distribute specific functionality to be realized in th
FPGAs depending on the DFG. A high number of edg
connecting, for instance, add and multiply operations on t
critical path imply a solution implementing functional unit
which provide add and multiply operators on each FPGA

for all  operator pairs ot1, ot2 in descending order of attractiondo
if  different operator pairs have same attraction measure then

select operator pair with the least number of unmapped FUs;
fi
for all f1, f2 ∈ FU in ascending cost order with ot1 ∈ f1 ∧ ot2 ∈ f2 do

let F be the FPGA with maximal available area;
if  F has still enough area to implement f1 and f2 then

map f1, f2 to FPGA F; FU := FU \ { f1, f2 };
fi

od
for all f ∈ FU in ascending cost order able to execute ot1 or ot2 do

let ot ∈ {ot1,ot2} be executable by f and ot ≠ ot ∈ {ot1,ot2};
let F be the FPGA, with least number of FUs able to execute ot

and there exists another FU that can execute ot;
if F has still enough area to implement f then

map f to FPGA F; FU := FU \ { f };
fi

od
od
distribute well-balanced all still unmapped FUs to the FPGAs;

Algorithm 1. Distribution of functional units to FPGAs

The presented distribution algorithm and the underlyin
attraction measure generally provides the intended homo
neous distribution of the functional units, but in cases of
quite non-balanced occurrence of different operations in t
DFG, the functional units are distributed inhomogeneous

4 Operation assignment

The operations of the DFG are assigned to the differe
FPGAs, depending on the previously distributed function
units, the given pin constraint of each FPGA, and the inte
chip connection delay. The assignment approach based
the force-directed list scheduling algorithm [15] enhance

criticalPathProb op1 op2,( ) pop1
t( ) pop2

t( )⋅
t Top1

latency op1( )+( ) Top2
∩∈

∑=

top2

asap top1

alap– 1≤

Top1

attraction ot1 ot2,( ) 1
E
------ criticalPathProb op1 op2,( )

op1 op2 : OT op1( ) ot1 OT op2( ) ot2=∧=,∀
P op1 op2,( )∧ 1=

∑⋅=

attraction ot1( ) 1
E
------ concurrency e1 e2,( )

op1 op2 op3, : OT op1( ) ot1 OT op2( ) ot1=∧=,∀
P op1 op3,( )∧ 1 e1∧ P op1 op3,( )= =

P op2 op3,( )∧ 1 e2∧ P op2 op3,( )= =

∑⋅=

−

∗

−

∗

∗

attraction(∗, −) := 1/8 + 1/(2∗8) = 0.1875
attraction(∗) := 1/8 = 0.125
attraction(∗, +) := 3/(9∗8) = 0.0416

➁

➀

➀

➁
➂

➂
∗∗ ∗

+

+

<

➃

➀

by a two-phase priority and multi-stage estimation function,
which guides the assignment of the operations to the

attraction(+, <) := 3/(9∗8) = 0.0416➃

Figure 2. Attraction calculation for the HAL example



ss
n of
ich

ple

of

r
se-

nce
se-

wo
en

ing
a
.
xe-

are
-
or-

lly,
the
ess
ent
at

all
ave
ions
tiv-
ure
he
era-
e
ess
-

FPGAs. During the first phase, all ready operations are
ordered by the force-directed priority function, according to
the given resource constraints. During the second phase, the
assignment of the operations to the FPGAs are performed by
the following shown multi-stage estimation function, which
evaluates all tentatively taken assignments with respect to
the previously determined operation priority. The estimation
function is called for each operationop in ascending order
of their forces, terminates once one stage computes a unique
result, and returns the assigned FPGA.

1. Concurrency: discard all FPGAs with the property that
all FUs able to execute the current operationop, have
already been occupied by concurrent operations.

2. Connectivity: minimal number of interchip connec-
tions caused by the current operationopconcerning all
FPGAs containing FUs able to executeop.

3. Backward sequential closeness: minimal distance of
the current operationop to all preceding operations
(pred(op, Fi)), with a high sharing probability, in the
tentatively chosen FPGAFi , calculated by

whereF denotes the set of available FPGAs. This cri-
teria considers the probability that the current opera-
tion op can share the same FU with previously
assigned operations.

4. Forward sequential closeness:minimal distance,
within a given diameter, to the first subsequent opera-
tion in the CDFG which can not be executed on the
tentatively chosen FPGA. This stage is applied in
order to avoid a potential increase of latency caused by
resource conflicts due to unfavorable assignments.

5. Parallel closeness: minimal distance to all operations
currently in the ready set. This stage has the same
focus as the previous stage, but takes the influence of
concurrent operators into account.

6. Utilization: the last criteria selects the currently lowest
utilized FPGA. If all FPGAs have the same utilization,
then an arbitrary FPGA can be chosen.

All closeness and connectivity measures are weighted by
using the functionscriticalPathProb and concurrency, as
introduced in Section 3. This is important because a sequen-
tial distance, for instance, is only significant for partitioning,
if most interconnections are on the critical path. Otherwise,
there is sufficient freedom to find a suitable partition or to
apply optimization techniques, like interconnection sharing
or data transfer serialization, in order to satisfy given pin
constraints.

Figure 3 shows an example for the stages 4 and 5 with

two multiply units as well. The forward sequential closene
measure determines the distance between an operatio
the ready set and a subsequent operation of the CDFG wh
could not be calculated on the same FPGA. In this exam
there is only one FPGA (F1) capable to perform multiplica-
tions and subtractions. The decision, for instance, which
the two multiplicationsm1 andm2 or m3 andm4 of Figure 3
(a) should be assigned to the FPGAF1 is assisted by the for-
ward sequential closeness measure that prefers the paim1
andm2, because they have a larger closeness to the sub
quent subtraction, which must be calculated by FPGAF1.

The parallel closeness measure determines the dista
between concurrent operations from the ready set and sub
quent operations consuming their results. The closer t
concurrent operations are, the greater is the benefit wh
calculating these operations on the same FPGA. Assum
multiplication m2 of Figure 3 (b) should be assigned to
multiply unit implemented in one of the two given FPGAs
Then, the lowest parallel closeness value (2) prefers the e
cution of m2 together withm1 on the same FPGA resulting
in a reduced number of interconnections. Both stages
very important, especially at the beginning of the partition
ing process, because there are only a few or even no inf
mation about preceding assigned operations available.

The stage ordering has been determined experimenta
using several synthesis benchmarks. At the beginning of
assignment process, mainly the forward sequential closen
and the parallel closeness measures induce the assignm
decision. This is important, because initially, the measures
previous stages quite often produce similar results for
considered operations, since no or just a few operations h
already been mapped to the FPGAs. Once several operat
have been assigned to the different partitions, the connec
ity and the backward sequential closeness meas
strengthen their influence. The combined application of t
presented measures together with the already known op
tion forces provide a globally enhanced evaluation of th
assignment of operations to FPGAs. Note that each acc
to an external I/O is handled similarly to functional opera

min
1
n
--- concurrency op opi,( ) P op opi,( )⋅ : Fi F∈

opi pred op F, i( )∈
∑

 
 
 

Figure 3. Forward sequential and parallel closeness

+

+

−

∗∗

1

3

(a) Forward sequential closeness

m2 m3 m4m1

(b) Parallel closeness

2

∞

∞

+

+

−

∗∗

−

+

−

∗∗
m2

+

−

+

∗∗
two FPGAs. The first FPGA (F1) contains two multiply and
one subtraction unit and the second FPGA (F2) one add and

tions, if external I/Os of the overall system can not directly
be provided at each FPGA.



,

r

d
m-
ach

g
O
zed
ng
e,
If

th

its

nt
a-
ll I/
e
in

.

ts

es
ur
an-
f
ve
ng
one
e-
i-
while  DFG is not completely assigned do

compute time frames (TF) and forces for each operation;

determine operations (op) which can be assigned at current c-step;

if  not all critical op can be assigned then  insert c-step; re-eval TF;

for all  ready operations in ascending force order do

call multi-stage estimation function;

store best assignment;

od

od

Algorithm 2. Assignment of operations to functional units

5 Scheduling under I/O constraints

Depending on the initial partitioning, I/O operations are
inserted between operations that are assigned to different
partitions. The I/O operations are annotated with the actual
interchip delay of the target architecture and are scheduled
similarly to functional operations. Since I/O data transfers
can have unit or combinational delay, the scheduling algo-
rithm checks, if the overall delay of chained functional and
I/O operations scheduled in a single cycle, exceeds the given
clock frequency. Then the data transfer is registered and
postponed to the next clock cycle. Additionally, with respect
to given pin constraints, pins are assigned to multiple I/O
operations and data transfer serialization is carried out by
the scheduling algorithm. If the pin constraints can not be
satisfied, yet, a new clock cycle is inserted.

List scheduling is used as a scheduling algorithm, driven
by a global estimation function based on the probability of
scheduling operations to control steps, which additionally
evaluates possible assignments of operations to functional
unit types [14]. Whereas no changes are needed for the
probability calculation of functional operations, several
extensions are needed to cope with pin constraints. The I/O
operationsopio are represented by a separate distribution
function Dio(t) which has to incorporate the word width

 of each I/O operation and can be calculated by

.

This distribution function denotes the overall pin con-
sumption within a given clock step under an assumed uni-
form pin utilization within each time frame without consid-
eration of any pin constraints. Due to the quite different time
frame density in each clock cycle, the distribution function
can demand much more or much less pins than provided by
all FPGAs. In order to take pin constraints into account,
each interchip data transfer has to be divided into a send and
a receive operation. An access to an external I/O requires
either only a send or only a receive operation. Hence, for all

where ReadySetio(t) denotes the set of all I/O operations
which can be scheduled at the current clock stept, IO(Fi)
returns the number of pins of FPGAFi, andsender(opio) and
receiver(opio) refer to the FPGA containing the send o
receive operationopio, respectively.

Note that the time frames are gradually reduce
during scheduling. The final time frame represents the nu
ber of clock steps used by a serialized data transfer. In e
clock step of the time frame, data bits
of the I/O operations can be transferred. In the followin
algorithm, only the scheduling extensions concerning I/
constraints are presented. Since the amount of seriali
data transfers should be limited, the objective of scheduli
is to postpone I/O operations, with the globally lowest forc
until the demanded number of pins can be allocated.
unused pins (IOremained(Fi )) remain, then serialize that I/O
operation, that provides the minimal force sum of the leng

, in order to include the entire
serialization period. Note that the operation force outside
time frame is defined to beinfinite. The data serialization of
an I/O operation ends in that cycle, that provides a sufficie
number of pins to which the remaining bits of the I/O oper
tion can be mapped, depending on the current forces of a
O operations. Afterwards, the actual subword width of th
serialized data transfer can finally be fixed. This is shown
the procedurehandle_pin_constraints (Algorithm 3), which
is invoked in each iteration of the list scheduling algorithm

procedure  handle_pin_constraints
while  pin constraint condition are not fulfilled do

if  all opio on critical path then  insert c-step; re-eval. time frames;
postpone, or expand serialization of, opio with globally lowest force;

od
map remaining opio to suitable pins of the involved FPGAs;
if  unconsidered pins remain then

serialize opio with min. force sum of length ;
fi

Algorithm 3. Scheduling extension to handle pin constrain

6 Experimental results

In order to enable a comparison with related approach
concerning multiple-chip architectures, we disabled in o
approach data transfer serialization and perform only a m
ual distribution of functional units according to the results o
the other approaches. Since, only bi-partitioning results ha
been presented so far, Table 1 is restricted to bi-partitioni
of several benchmarks. The latency is assumed to be
clock cycle for the adder and two clock cycles for the pip
lined multiplier. The delay of interchip connection is stat

width opio( )

Dio t( ) width opio( ) popio
t( )⋅

opio OPio∈
∑=

width opio( ) Topio
⁄ IO Fi( ) Fi F∈∀,≤

opio ReadySet∈∀ io t( ) : sender opio( ) Fi∈ receiver opio( ) Fi∈∨
∑

Topio

width opio( ) Topio
⁄

width opio( ) IOremained Fi( )⁄

width opio( ) IOremained Fi( )⁄
send and receive operations of each FPGA, the following
pin constraint condition has to be satisfied:

cally fixed to one clock cycle. The CPU time is related to a
Sun Ultra 1 with 167 MHz.



for
ing
re
di-
eri-
r-
re.

a-
l-
an
ns
g-

re-

-

f

l

t.
re
Secondly, experimental results of our approach with
respect to the constraints of a real FPGA-based emulation
platform [16] are presented. Each module of the emulator
consists of four Xilinx 4025 FPGAs, where each FPGA is
connected via a 77 bit bus with two of its neighbors and
have a 88 bit external bus. Additionally, the mapping of a
second module with similar structure, but composed of four
Xilinx 4013 FPGAs with 60 bit interchip buses and 64 bit
external buses, are provided. The used FUs have been gener-
ated by a module generator for the Xilinx XC4000 family,
where an 16 bit adder needs 9 CLBs and an 16 bit pipelined
multiplier 250 CLBs. Interchip data transfers between two
multiplications require one additional clock cycle and all
other interchip data transfers can be chained within a single
clock cycle. Based on different FU allocations, the number
of used FPGAs, the FU distribution to the FPGAs, and the
latency and the number of external data transfers are pre-
sented in Table 2, with and without scheduling extensions.
By applying interconnection sharing and data transfer seria-
lization, designs which initially exceeds the given pin con-
straints (✗) could now be implemented (✓).

The maximum number of data transfers that have to be
executed concurrently in one c-step are shown in the col-
umns “transfer” in Table 2. The fraction comes from
applying data transfer serialization and shows the benefit of
this extension since one of the data transfers is performed in
two c-steps. The column “logic” shows results obtained
from logic partitioning by a min-cut algorithm. This serves

7 Conclusion

In this paper a new approach on high-level synthesis
multi-FPGA based emulation has been presented. Dur
synthesis, functional units are distributed, operations a
partitioned, and interchip data transfers are inserted. Ad
tionally, the interchip data transfers are scheduled, and s
alized automatically, in order to maximize the circuit perfo
mance under the constraints of the given target architectu
By treating interchip data transfers similar to CDFG oper
tions, optimizations like interconnection sharing or seria
ization of data transfers can be applied. This approach c
easily be extended to handle multi-process specificatio
and to support the sharing of interchip connections belon
ing to different processes by applying the techniques p
sented in [17] and [18].

8 References

[1] F. M. Johannes:Partitioning of VLSI Circuits and Systems.
Proceedings of DAC, 1996.

[2] F. Vahid, T. Le, Y. Hsu:Functional Partitioning Improvements over
Structural Partitioning for Packaging Constraints and Synthesis
Tool Performance. Transactions on Design Automation of
Electronic Systems, vol. 3, no. 2, 1998.

[3] R. Camposano, J. van Eijndhoven:Partitioning a Design in
Structural Synthesis. Proceedings of ICCD, 1987.

[4] R. Camposano, R. Brayton:Partitioning Before Logic Synthesis.
Proceedings of ICCAD, 1987.

[5] M. McFarland, T. Kowalski:Incorporating Bottom-Up Design into
Hardware Synthesis.IEEE Transactions on CAD, vol. 9, pp. 938-
950, 1990.

[6] E. Lagnese, D. Thomas:Architectural Partitioning for System Level
Synthesis of Integrated Circuits.IEEE Transactions on CAD, vol.
10, no. 7, pp. 847-860, 1991.

[7] R. Gupta, G. DeMicheli:Partitioning of Functional Models of
Synchronous Digital Systems. Proceedings of ICCAD, 1990.

[8] F. Vahid: A Three-Step Approach to the Functional Partitioning o
Large Behavioral Processes. Proceedings of ISSS, 1998.

[9] W. Wong, R. Jain: PARAS:System-Level Concurrent Partitioning
and Scheduling. Proceedings of ICCAD, 1995.

[10] C. Gebotys: Optimal Synthesis of Multichip Architectures.
Proceedings of ICCAD, 1992.

[11] K. Küçükçakar, A. Parker:A Methodology and Design Tools to
Support System-Level VLSI Design.IEEE Transactions on VLSI,
vol.3, no. 3, pp 355-369, 1995.

[12] Y.-H. Hung, A. Parker:High-Level Synthesis with Pin Constraints
for Multiple-Chip Designs. Proceedings of DAC, 1992.

[13] P. Gutberlet, J. Müller, H. Krämer, W. Rosenstiel:Automatic Module
Allocation in High-Level Synthesis.Proceedings of EURO-DAC,
1992.

[14] W. Rosenstiel, H. Krämer:Scheduling and Assignment in High-
Level Synthesis.In R. Camposano, W. Wolf: High-Level VLSI
Synthesis, Kluwer, 1991.

[15] P. Paulin, J. Knight:Force-Directed Scheduling for the Behaviora
Synthesis of ASICs.IEEE Transactions on CAD, vol. 8, no. 6, pp.
661-679, 1989.

[16] G. Koch, U. Kebschull, W. Rosenstiel:A Prototyping Environment
for Hardware/Software Codesign in the COBRA Projec
Proceedings of International Workshop on Hardware/Softwa
Codesign, 1994.

[17] O. Bringmann, W. Rosenstiel:Resource Sharing in Hierarchical
Synthesis. Proceedings of ICCAD, 1997.

Table 1.Restricted approach for results comparison

Example Partition 1 Partition 2 c-steps data transfers CPU (sec)

EWF 1 + , 1∗ 1 + , 1∗ 18 + 1 1× 16 bit 2

EWF 2 + , 1∗ 2 + , 1∗ 17 + 1 1× 16 bit 2

AR 1 + , 1∗ 1 + , 1∗ 14 + 2 2× 16 bit 1

AR 1 + , 2∗ 1 + , 2∗ 11 + 2 2× 16 bit 1

HAL 1 – , 2∗ 1 + , 1> 6 + 0 0 < 1

Table 2.Extended approach applied to different examples

FPGAs

Resources logic w/o extensions with extensions

FPGA 1 FPGA 2 FPGA 3 FPGA 4
trans-
fers

c-steps transfers c-steps transfers

EWF

1 × 4025 2 + , 1∗ – – – 0 19 0 19 0

2 × 4025 2 + , 1∗ 2 + , 1∗ – – 22 17 3 17 1

AR

1 × 4025 2 + , 2∗ – – – 0 14 0 14 0

2 × 4025 1 + , 2∗ 1 + , 2∗ – – 45 11 5✗ 11 2✓

2 × 4013 1 + , 1∗ 1 + , 1∗ – – 22 14 4 14 2

4 × 4013 1 + , 1∗ 1 + , 1∗ 1 ∗ 1 ∗ 77 11 12✗ 11 4✓

DCT

2 × 4025 2+/-,2∗ 2+/-,2∗ – – 34 9 12✗ 9 2✓

2 × 4013 2+/-,1∗ 2+/-,1∗ – – 43 12 12✗ 12 ✓21
2
--

21
2
---
not for a direct competition with our approach but it points
out the advantages of our integrated partitioning approach.

[18] O. Bringmann, W. Rosenstiel, D. Reichardt:Synchronization
Detection for Multi-Process Hierarchical Synthesis.Proceedings of
ISSS, 1998.


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


