
Luc Séméria Koichi Sato Giovanni De Micheli
lucs@azur.stanford.edu koichi@azur.stanford.edu nanni@galileo.stanford.edu

Computer Systems Laboratory
Stanford University

Abstract -- One of the greatest challenges in C/C++-based design
methodology is to efficiently map C/C++ models into hardware.
Many of the networking and multimedia applications implemented
in hardware or mixed hardware/software systems are making use of
complex data structures stored in one or multiple memories. As a
result, many of the C/C++ features which were originally designed
for software applications are now making their way into hardware.
Such features include dynamic memory allocation and pointers
used to manage data. We present a solution for efficiently mapping
arbitrary C code with pointers andmalloc /free into hardware.
Our solution fits current memory management methodologies. It
consists of instantiating a hardware allocator tailored to an appli-
cation and a memory architecture. Our work also supports the res-
olution of pointers without restriction on the data structures. An
implementation using the SUIF framework is presented, followed by
some case studies such as the realization of a video filter.

1. INTRODUCTION
Different languages have been used as input to high-level syn-

thesis. Hardware Description Languages (HDLs), such as Verilog
HDL and VHDL, are the most commonly used. However, designers
often write system-level models using programing languages, such
as C or C++, to estimate the system performance and verify the
functional correctness of the design. Using C/C++ offers higher-
level of abstraction, fast simulation as well as the possibility of
leveraging a vast amount of legacy code and libraries, which facili-
tates the task of system modeling.

The use of C/C++ or a subset of C/C++ to describe both hard-
ware and software would accelerate the design process and facili-
tate the software/hardware migration. Designers could describe
their system using C. The system would then be partitioned into
software and hardware blocks, implemented using synthesis tools.
The new SystemC initative [6] is an appempt to standardize a C/
C++-based language for both hardware and software design.

C was originally designed to develop the UNIX operating sys-
tem. It provides constructs to directly access memory (through
pointers) and to manage memories and I/O using the standard C
library (malloc , free ,...). These constructs are widely used in
software. Nevertheless, many of the networking and multimedia
applications implemented in hardware or mixed hardware/software
systems are also using complex data structures stored in one or
multiple memory banks. As a result, many of the C/C++ features
which were originally designed for software applications are now
making their way into hardware.

In order to help designers refine their code from a simulation
model to a synthesizable behavioral description, we are trying to
efficiently synthesize the full ANSI C standard [12,15]. This task

turns out to be particularly difficult because of dynamic memory
allocation, function calls, recursions,goto ’s, type castings and
pointers.

In the past few month, different synthesis tools have been
announced to ease the mapping of C code into hardware
[10,19,1,2,3]. All of these tools support a subset of the language
(e.g. restrictions on pointers, function calls, etc.). In particular, they
do not support dynamic memory allocation using the ANSI stan-
dard library functionsmalloc andfree .

In our tool SpC [16], pointer variables are resolved at compile-
time to synthesize C functional models in hardware efficiently. In
this paper, we will focus on an implementation of dynamic memory
allocation (malloc , free) in hardware. By definition, in general,
storage for dynamically allocated data structures cannot be
assigned at compile time. The synthesis of C code involving
dynamic memory allocation requires access to some allocation and
deallocation primitives implemented either in software, as in an
operating system, or in hardware.

Dynamic memory allocation is tightly coupled with pointers
and the notion of a single address space. Pointer dereferences (load,
stores, etc.) as well as memory allocation are all referring to a main
memory. However, in application-specific hardware, designers may
want to optimize the memory architecture by using register banks,
multiple memories etc. Therefore, memory allocations may be dis-
tributed onto multiple memories and pointers may reference data
stored in registers, memories or even wires (e.g. output of a func-
tional unit). To enable efficient mapping of C code with pointers
andmalloc ’s into hardware, the synthesis tool has to automatically
generate the appropriate circuit to dynamically allocate, access
(read/write) and deallocate data. Memory management as well as
accurate pointers’ resolution are key features for C-based synthesis.
They are enablers for the efficient design of applications involving
complex data structures.

The contribution of this paper is to present a solution for effi-
ciently mapping arbitrary C code with pointers andmalloc /free
into hardware. Our solution fits current memory management
methodologies. It consists of instantiating a hardware allocator tai-
lored to an application and a memory architecture. Our work also
supports the resolution and optimization of pointers without restric-
tion on the data structures.

In Section 2, we give an overview of the memory-management
methodology for embedded applications and present how it can be
applied to the hardware synthesis from C. The resolution ofmal-
loc and pointers is based on an accurate analysis of the operations
performed on the different memory locations. In Section 3, we
present our memory representation as well as some pointer-analysis
techniques. Then in Section 4, we show how pointers and dynamic
memory allocation can effectively and efficiently be synthesized.

Resolution of Dynamic Memory Allocation and Pointers for the
Behavioral Synthesis from C

Finally, in Section 5, we present an implementation and some
results for different examples as well as the realization of a video
filter.

2. METHODOLOGY AND RELATED WORK
For decades, memory management has been one of the major

development area both for software and computer architecture. In
software, at the user-level, memory management is typically per-
formed by the operating system. In hardware, memory bandwidth
is often a bottleneck in applications such as networking, signal pro-
cessing, graphics and encryption. Memory architecture exploration
and efficient memory management technology are key to the design
of new high-performance systems. Memory generators commer-
cially available today [4] enable fast integration of memories in a
system. Scheduling of memory accesses has also been integrated
into most commercial high level synthesis (HLS) tools. Most of the
refinement and compilations steps developed for software applica-
tions can also be used for hardware. Nevertheless, a software meth-
odology usually assumes a fixed memory architecture which may
be general purpose or application specific like in a DSP or ASIP. In
hardware, at the behavioral level, designers would typically explore
different memory architectures in order to trade-off area and power
for a given timing constraint.

A few projects and tools [10,19,1,2,3] have recently been
announced to ease the mapping of C models into hardware. In prac-
tice, current tools don’t support dynamic memory allocation and
have restriction on pointers’ usage [13]. SpC [16], enables the
behavioral synthesis of C code with pointer variables to variables
and arrays. In Section 4, we present how pointers in general (e.g.
array of pointers, pointers in structures, pointers to structures etc.)
and dynamic memory allocation can also be efficiently synthesized.

A methodology for the design of custom memory systems has
been described by Catthoor et al. [7]. It is defined for two sets of
applications, networking and signal processing, and supports a lim-
ited subset of C/C++. The basic concepts presented in Catthoor’s
work can be generalized to support a larger subset of the C syntax
for an extended set of applications. Two main steps can be distin-
guished in the methodology: we describe briefly here the transfor-
mations performed first at the system level, and then at the
architectural level.

At the system level, the functionality of the algorithm is veri-
fied. Data formats are refined. For example, after quantization, the
format of data can be refined from floating-point to fixed-point
[11]. Data structures can also be refined for example to reduce the
number of indirect memory references. Examples of such transfor-
mations for networking applications have been studied by Wuytack
et al. in [25,24].

At the architectural level, after partitioning, the system typi-
cally consists of multiple communicating processes to be mapped
to hardware or software [2,10]. Memory segments are defined for
internal storage and/or shared memory. These memory segments
can then be mapped to one or multiple memories during synthesis.
Some of the storage area (e.g. internal variables, etc.) can be stati-
cally allocated during synthesis or compilation. However, to sup-
port dynamic storage allocation (e.g. for recursive data structures),
allocation and deallocation primitives implemented in software or
hardware shall be defined.

In software, memory allocation and deallocation are imple-
mented as primitives part of the operating system (OS). These

primitives can be called in a C program using the functions defined
in the standard library (e.g.malloc , free , etc.). Many schemes
have been developed for OS to manage memory. An extensive sur-
vey of the techniques used for memory allocation and deallocation
can be found in [23].

Memory management can also be implemented in hardware.
For memory allocation and deallocation, instead of the system calls
to the OS, requests are sent through signals to anallocator block
(aka.virtual memory manager) implemented in hardware. Its inter-
face is shown on Figure 1. Internally, the allocator stores a list of
the free blocks in memory as well as a list of the allocated blocks.
To allocate memory, the size of the block to be allocated
(malloc_size) is sent. The allocator then searches in its free list a
big enough block and returns the address of the beginning of this
block (malloc_address). Two techniques are often used:first fit
where the first acceptable free block is returned orbest fit where the
block of minimal size is returned. To free previously allocated
memory, the address of the block to be deallocated (free_address)
is sent to the allocator. The allocator then searches inside of the
allocated list the block and adds it back to the free list. Adjacent
free blocks can then be merged. The implementation itself of the
allocator can vary according to the application and the data struc-
tures. A number of these implementations are presented by
Wuytack et al.[25].

Once an architecture is decided, hardware can be implemented
using synthesis tools and compilers can be used for software. As far
as memory management is concerned, memory accesses schedul-
ing, register/memory allocation and address generation can be inte-
grated into synthesis tools and compilers. The latest development
for hardware synthesis have been presented by Catthoor et al. [7]
and Panda et al. [14].

Our contribution fits in the methodology described above. In
particular, we present techniques to automate the synthesis of C
code with pointers and dynamic memory allocation into hardware.
The outcome of our research is a tool that maps and optimizes
hardware models in C into Verilog HDL synthesizable by commer-
cially available synthesis tools.

3. BACKGROUND
In software, the semantics of pointers is the address of an ele-

ment in memory. This definition implies that the C program is tar-
geted to a virtual architecture consisting of one memory in which
everything is stored. Even thoughregister declaration may allow
programmers to specify the variables to place in registers, the
assignment of variables to registers is generally done by the com-
piler. The notions of caches and memory pages are transparent to
programmers.

In hardware, at the behavioral level, designers want to have
control on where data are stored and want to optimize the locality
of the storage. Typically, a chip design contains multiple memory
banks, register files, registers and wires. Pointers may be used to
reference any variable no matter where its information is available.
Pointers must be considered as references: references to memory

malloc

free

malloc_size
malloc_address

free_address

Figure 1: Interface of the allocator block implementing
malloc and free functions.

elements, registers, wires or ports. In particular, pointers can be
used to allocate, read, write and deallocate data. In this paper we
call the action of reading data using a pointer aload. Subsequently,
a storeis the action of writing data using a pointer. Allocation and
deallocation are performed through the standard library functions
malloc andfree . Their implementation is however tailored for a
given application and memory architecture.

The synthesis of pointers in general consists of generating the
appropriate circuit for allocating and accessing data. For this pur-
pose, we change the addresses into numbers (i.e. encode pointers’
values) and replaceloads andstores by some assignments directly
accessing the data the pointer may reference (i.e. resolve pointers).
Functionsmalloc andfree are subsequently changed as memory
allocation can be distributed onto multiple memories.

Example 1. Let us consider an application, where a hardware
block receives objects of different sizes and processes them. Some
of these objects are copied in a register (reg). Some other are only
used within this block and are stored in private memory
(local_RAM). Finally some, larger, may also to be accessed by
other blocks and are stored in a shared memory (shared_RAM).

...
if(object.is_reg)

p = ®
if(object.is_internal)

// allocate memory inlocal_RAM
p = malloc(4);

else
// allocate memory inshared_RAM
p = malloc(8);

...
// store inreg , local_RAM or shared_RAM
*p = object.data;
...
if(!object.is_reg)

// free storage inlocal_RAM or inshared_RAM
free(p);

In order to implement the store(*p=object.data), the tool has
to schedule a write operation into the registerreg , the memory
local_RAM or the memoryshared_RAM . It also needs to
instantiate the correct circuit (steering logic) to access these
locations. For this purpose, we need to know at compile-time the
set of locations the pointerp may point to (points-to set).
To implementfree(p) , assuming that each memorylocal_RAM

and shared_RAM is managed by a specific allocator, the tool also
needs to schedule a deallocation operation on one allocator or the
other. The points-to information for the pointerp is also necessary.

As we can see in Example 1, in order to maploads, stores as
andfree operations into hardware, we need to know at compile-
time the set of locations the pointers may reference (points-to infor-
mation).

Such information is also widely used in compilers. In order to
parallelize programs onto distributed architectures, the independent
sets of data which can be processed in parallel have to be extracted.
The problem there is to find statements in the program that may
read or write the same locations (aliasing problem). For this pur-
pose, thealiasing information has to be determined between point-
ers. The points-to information and the aliasing information are
equivalent and can be determined by recent analysis techniques
calledpointer-analysis or alias-analysis.

3.1 Pointer analysis
Pointer analysis is a compiler technique to identify at compile-

time the potential values of the pointers in the program. This infor-
mation is used to determine the set of locations the pointer may
point to. For synthesis, in the case ofloads, stores, andfree , we
want to synthesize the logic to access, modify or deallocate the
location referenced by the pointer. For this purpose, the points-to
information must be bothsafe andaccurate: safe because we have
to consider all of the locations the pointermay reference andaccu-
rate because the smaller the points-to set is, the less logic we have
to generate.

Two main types of analyses can be distinguished. Firstflow-
and context-insensitive analyses [18] don’t distinguish the order in
which the statements are executed (flow-insensitivity) and the dif-
ferent calls of a function (context-insensitivity). They are the least
accurate but the relative simplicity of their implementation makes
them more suitable for very large programs.Flow- and context-sen-
sitiveanalyses, such as [20,21] by Wilson and Lam, on the other
hand, provide more accuracy with an increased complexity.

Even though the complexity of flow- and context-sensitive
analyses may be exponential, it is not a limitation for hardware syn-
thesis because we deal with rather small and simple programs with
limited calling contexts for functions and often no recursions.
Beside these analyses leads to more accurate results, which makes
them more suitable for hardware synthesis. Most of the inaccuracy
comes from the way memory in represented. Different techniques
have been used to identify the different locations in memory.

3.2 Memory representation
The simplest memory representation consists of a single

address space in which all data are stored. This trivial representa-
tion however prevents from optimizing the locality and paralleliz-
ing the code. On the other hand, the most accurate representation,
which would distinguish each element of arrays or of recursive data
structures, is not practical. As a result, most analysis techniques
combine elements within a single data structure. Some techniques
combine elements based on their allocation contexts [20,21] or on
limiting the length of access paths to some fixed constant (k-limit-
ing). Shape analysis [8,9] gives the most accurate representation as
they may distinguish trees from DAGs, linear lists from cyclic lists
and so on. However its implementation to support large C programs
remains challenging.

In order to find both an accurate and practical representation
for hardware synthesis, we propose to use the notion oflocation
sets defined in [20,21]. Locations sets support any of the data struc-
tures available in C including arrays, structures, arrays of structures
and structures containing arrays. This representation is also rela-
tively simple as it combines the different elements of an array or of
recursive data structures. It can therefore be used for large C pro-
grams.

A location set represents the set of
locations with offsets in a particular block of
memory. That is,f is anoffset within a block ands is thestride. If
the stride is zero, the location set contains a single element. Other-
wise, it is assumed to be an unbounded set of locations. Table 1
shows the location sets for various expressions.

For simple data structures (arrays, structures, array of struc-
tures), offsets are used to identify the different fields of structures

l f s,〈 〉 IN ZZ×∈=
f is i ZZ∈+{ }

whereas strides are used to record array-element sizes. Figure 2
gives an example of representation for an array of structures. The
representation doesn’t distinguish the different elements within the
array but it distinguishes the different instantiations of variables
and structures. This makes sense since all elements of an array are
usually alike.

Nested arrays and structures, type casting and pointer arith-
metic are making things more complicated, leading to some more
inaccuracies. Example 2 shows how references to array nested in
structures are represented approximately. The array bound informa-
tion in the declared type cannot be used because the C language
does not provide array-bounds checking. A reference to an array
nested in a structure could access other elements of the structure by
using out-of-bound array indices.

Example 2. Consider the arrayr.F[] nested in a structurer :
struct {

char a;
char b;
int F[8];} r;

References to one of the array element (e.g.r.F[2]) are
represented approximately by the locations set
which regroups all of the elements of the array as well asr.a .

Dynamically allocated memory locations (heap-allocated
objects) are represented by a specific location set. As far as accu-
racy, the goal is to distinguish complete data structures. The differ-
ent elements of a recursive data structure would typically be
combined. For example, we want to distinguish one list from
another but we do not want to distinguish the different elements of
a list. Heuristics are used to partition the heap. Storage allocated in
the same context is assumed to be part of the same equivalence
class. These heuristics have been proven to work well as long as the
program uses the standard memory allocation routines [20].

3.3 Definition of the subset
The pointer analyses and memory representation presented in

the previous sections support the complete ANSI C syntax. In this
paper however, we define our own synthesizable subset. Our subset
includesmalloc /free as well as all types of pointers and type
casting. Nevertheless we set the following two restrictions.

The first restriction applies to systems described as a set of
parallel processes: pointers that reference data outside of the scope

of a process (e.g. global variables or data internal to some other
process) are not allowed. Their resolution would require the synthe-
sis of some kind of interface between the processes. Such interface
is usually defined during system partitioning and, hence, before
synthesis. As a result, memory allocated in one process is assumed
to be accessed and deallocated only within this same process.

The second limitation stems from the fact that most commer-
cial synthesis tools also have restrictions on functions. Recursions
are usually not supported. Procedures that are mapped to compo-
nents typically have restrictions both on their functionality and
their parameters. For example, the same function called within dif-
ferent contexts may usually not be shared. Besides, most synthesis
tools do not synthesize parameter passed by reference, because this
is not supported by most HDL syntax. The synthesis of functions in
C, and therefore the resolution of pointers andmalloc /free inside
of functions, is beyond the scope of this paper.

Other restrictions are also added in the implementation section
in order to be able to translate C models into Verilog synthesizable
by commercial high-level synthesis tools. These restrictions are
however not required for the resolution of pointers and dynamic
memory allocation and do not apply for the next section.

4. SYNTHESIZING MALLOC AND FREE

4.1 Resolution of pointers in complex data
structures

Our implementation uses a flow- and context-sensitive pointer
analysis [20,21] in which memory locations are represented by
location sets. The points-to information is then used to encode the
pointers’ value and to generate the appropriate logic for accessing
and deallocating data.

After encoding, the size of the pointers can be reduced as
shown in [16,17]. However, in order to support type casting and
out-of-bound array accesses, we assume that pointers have a fixed
size. The size of a pointer itself is not defined by the ANSI stan-
dard. It is therefore implementation (or compiler in our case)
dependent. In order to map pointers into hardware, the addresses
(i.e. pointers’ values) are encoded. Memory locations are repre-
sented by location sets.

Definition 1. The encoded value of a pointerp consists of two
fields:

- the tagp.tag (left part of the code) corresponds to the loca-
tion set referenced by the pointer,

- the indexp.index (right part of the code) stores the number
of strides corresponding to the data referenced within the
location set.

Example 3. Figure 3 gives an illustration of pointers’ encoding
inside of an array:

int *table_p[];

 If the elementtable_p[i] were to point tos[2].b defined on
Figure 2, indextable_p[i].index would be equal to 2.

The index part of the code is stored within the first bits (least
significant bits) to support pointer arithmetic, especially when a

Type Expression Location Set

int a a

struct {int F;} s s.F

int a[]; a[i]

struct {int F;} r[]; r[i].F

struct {int F[10];} r; r.F[i]

Table 1: Location set examples (f=offset of field F), (s=stride or array
element size)

0 0,〈 〉

f 0,〈 〉

0 s,〈 〉

f s,〈 〉

f mods s,〈 〉

offset stride stride stride

Figure 2: Representation of struct{int a; int b} s[];

s[0].a s[0].b s[1].a s[1].b s[2].a s[2].b s[3].a

0 sizeof(int),〈 〉

MSBMSB LSB

indextag

MSB LSB MSB LSBLSB

table_p[i-1] table_p[i] table_p[i+1]

Figure 3: Encoding of pointers in an array

pointer is type-casted into an integer. This encoding scheme has
limitations on the number of location sets in the points-to set and
on the number of elements addressable within each location set.
For example, if we allocate 8 bits for thetag and 8 bits for the
index. The pointer can reference at most 256 location sets and the
index can have at most 256 values (e.g. from -127 to 128). These
limitations should hardly be a problem in most designs.

Example 4. Consider the expression(*(q+1)=*p+1) , in which
pointerp points to variablesa andb and pointerq points to an
element of arraytable . The value ofp is encoded. Its tagp.tag
is defined as follows: the value0 is associated with variablea and
the value1 is associated with variableb. Since pointerp doesn’t
point to any array element, its indexp.index is not used. On the
other hand, pointerq points to a single location set which
represents the elements of arraytable . Only q.index is being
used.
After removing the pointers, we end up with the following code for

*(q+1)=*p+1 , where tmp_p and tmp_q are two temporary
variables:

switch p.tag:
case 0: tmp_p = a;
case 1: tmp_p = b;

tmp_q = tmp_p + 1;
table[q.index+1]=tmp_q;

An implementation for this code segment is shown in Figure 4. The
load is implemented using a 2-input multiplexer controlled by
p.tag . Assuming the array table is mapped to a memory. The index
q.index is used directly as the data address in memory.

In this section, we have presented simple techniques to trans-
form a C code with pointers into a code without pointers. The reso-
lution of pointers can be further optimized. When the pointers’
location set contains a single element (e.g. pointer variable), the
number of live variables beforeloads andstores can be reduced
[16]. Heuristics can also be applied to encode the pointers’ values
(tag part) [17].

4.2 Resolution ofmalloc and free

In order to support dynamic memory allocation and dealloca-
tion, the hardware needs to access an allocator. In general the allo-
cator could be implemented in software (for mixed hardware/
software implementations) or completely in hardware. Since this
work is on the hardware synthesis of C code, only a hardware
implementation is presented. Nevertheless, the techniques pre-
sented here could also be targeted to a software implementation.

In software,malloc andfree are implemented as standard
library functions. Similarly, for hardware synthesis, we use a
library of hardware components implementingmalloc andfree .
The idea here is have one component, calledallocator, implement-
ing both themalloc andfree functions as introduced in Section 2.
In order to efficiently manage memory, the memory space is parti-

tioned into differentmemory segments in which data can be allo-
cated.

Definition 2. A memory segment is defined as an array of finite size
in which data are allocated by a unique allocator. This array may
later on be mapped to one or more memories during synthesis.

In our tool, the partitioning of the memory into the different
memory segments is done by the designer. Other tools could be
used to assist this task at the system-level. For eachmalloc in the
code, the designer selects in which memory segment the storage is
allocated. Since the size of the dynamically allocated memory is a
priori unknown at compile time, the designer also sets the size of
each memory segment. The tool instantiates then the allocators cor-
responding to each memory segment and synthesizes the appropri-
ate circuit to allocate, access and deallocate data.

For each memory segment, a different allocator is instantiated.
Eachmalloc mapped to this memory segment is then replaced by
a call to the specific allocator. The pointer that takes the result of
themalloc function is defined as follows: itstag is set according to
the corresponding memory segment and itsindex is set by the allo-
cator. When multiplemalloc calls are mapped to a single memory
segment, the corresponding allocator is shared.

For a callfree(p) , the data to be deallocated may be in one
memory segment or another depending on the value of the pointer
p. We generate a branching statement in which the different alloca-
tors corresponding the different memory segments may be called
according to the pointer’stag. The pointer’sindex is then sent to the
allocator to indicate which block should be deallocated. Loads,
stores and addresses are resolved as shown in the previous section.
Examples 5 and 6 illustrate howmalloc and free calls are
resolved while removing pointers.

Example 5. Consider the following code segment.
p = malloc(1);
out = *p;
free(p);

If malloc is mapped to a memory segment calledseg1 of size 32
bytes, we generate the following code (assuming that the size of
char is one byte):

char seg1[32]; // memory segment:seg1
p.index = alloc_seg1(SPC_MALLOC,1);
out = seg1[p.index];
alloc_seg1(SPC_FREE,p.index);

The allocator component corresponding to the function
alloc_seg1 is called for bothmalloc and free . It implements
both the allocation and deallocation functions.

Example 6. Let us now consider a more complex example where
pointerp can point to different memory segments:.

if(i==0)
p = malloc(1); // malloc1

else
p = malloc(4); // malloc2

out = *p;
free(p);

We assumemalloc1 is mapped to the memory segmentseg1 and
malloc2 is mapped to the memory segmentseg2. Both memory
segment are of size 32 bytes (set by the user). The resulting code,
after removingmalloc /free is the following:

if(i==0) {
p.tag = 0;

table[]

a

b

p.tag

p->{a,b}
q->{table[]}

+1

Figure 4: Implementation of *(q+1)=*p+1

q.index
+

1

p.index = alloc_seg1(SPC_MALLOC,1);
} else {

p.tag = 1;
p.index = alloc_seg2(SPC_MALLOC,4);

}
...
if(p.tag==0)

out = seg1[p.index];
else

out = seg2[p.index];
...
if(p.tag==0);

alloc_seg1(SPC_FREE,p.index);
else

alloc_seg2(SPC_FREE,p.index);

If each memory segment is mapped to a different RAM during
synthesis, we end up with the architecture on Figure 5.

4.3 Allocators and Optimizations
In this sections we present three optimizations. The first two

optimizations aim at simplifying the allocator architecture. The
goal for the last optimization is to automatically remove some of
the dynamic memory allocation for sequences ofmalloc and
free .

Our library of allocator components contains three main types
of allocators synthesized directly from C using SpC. In Section 3,
the notion a hardware allocator, which implements both themal-
loc andfree functions, was introduced. We define asgeneral pur-
pose an allocator that can allocate blocks of any size. In Section
4.3.1 we present anoptimized general purpose allocator, for which
the deallocation scheme is optimized. When the size of the block to
be allocated is a fixed constant, the architecture of the allocator can
be greatly simplified. Thespecific purpose allocator presented in
Section 4.3.2 can be used in such case.

Different implementations of these allocators can be generated
by changing the allocation and deallocation schemes as well as the
data structures internal to the allocator [25]. They can be added to
our framework as new components in the library. The designer or
the tool would select which allocator fits the application best.

4.3.1 Optimized general purpose allocator

When a block is freed using thefree function call, the
address of the beginning of the block is passed as an argument. The
allocator then searches for the exact block characteristics (e.g. size)
in the list of allocated blocks before adding it back to the list of free
blocks.

In order to simplify the process of looking up for a given block
during deallocation, we propose to encode the characteristics of the
allocated block inside of the pointer’stag. In our implementation,

the allocator stores the list of allocated blocks in an array. The
index corresponding to an allocated block in this array is then
encoded inside of thetag. During deallocation, the allocator can
then directly find the allocated block according to this index, with-
out having to search the entire array. The resulting optimized allo-
cator is calledoptimized general purpose.

4.3.2 Specific purpose allocator

The malloc function takes one argument: the size of the
block to be allocated. When this size is a unique constantK for all
of themalloc mapped a single memory segment, this memory seg-
ment can then be represented as an array of elements of sizeK.
Allocating memory in this segment can simply be performed by
returning the first available element in the array. For deallocation,
the address of the block to deallocate can easily be derived from its
address. The architecture of the corresponding allocator can then be
simplified. For example a simple bit-vector can be used to keep
track of the allocated and free blocks in the memory segment. Such
an allocator, which can only deal with blocks of one size, is called
specific purpose.

Constant propagation can be performed before selecting the
allocator in order to have as manymalloc as possible with con-
stant size.

4.3.3 Removing sequences ofmalloc and free calls

Some of the dynamic memory allocations are sometimes not
necessary and can be removed at compile-time. This is especially
true for legacy code in whichmalloc/free are used to manually
control storage. The idea here is to isolate the finite sequences of
malloc calls which can be replaced by references to statically allo-
cated data.

Example 7. Consider the following code segment.
p[1] = malloc(4); // malloc1
p[2] = malloc(8); // malloc2
...
free(p[1]); // free1
free(p[2]); // free2

In this example, a finite number of objects (two) are allocated by
malloc1 andmalloc2. Later on, these blocks are freed byfree1 and
free2. The dynamic memory allocation in this case can be
optimized by creating the two temporary array elements
tmp_malloc1[4] and tmp_malloc2[8] . The size of these
elements corresponds to the size of the object allocated at each
malloc . Themalloc calls are then replaced by references to these
temporary variables and thefree calls are removed. We end up
with the following code segment in which memory is statically
allocated.

char tmp_malloc1[4];
char tmp_malloc2[8];
p[1] = tmp_malloc1; // malloc(4)
p[2] = tmp_malloc2; // malloc(8)
...
// free(p[1]);
// free(p[2]);

This optimization can be performed under two conditions.
First, the size of the data to be allocated has to be constant. If the
size of the data to be allocated is not known at compile-time, agen-
eral purpose allocator would have to be used. Second, dynami-
cally-allocated data have to be both allocated and deallocated
within the same unbounded loop (e.g. cannot optimizemalloc in a

RAM RAM

alloc_seg1

alloc_seg2

Main Module

Figure 5: Architecture for multiple memory and allocator

seg1 seg2

while loop). Using the results of the pointer analysis, we have
implemented a dataflow analysis which finds at compile time the
malloc andfree calls that can be optimized (i.e. removed).

The idea is to have a counter for each dynamically-allocated
location set. During the analysis, the counter is incremented each
time an element of the corresponding location set is allocated. Sub-
sequently, each time an element of the location set is deallocated
(result from the pointer analysis), the associated counter is decre-
mented. This way, location sets allocated and not deallocated
within a loop can be found. Themalloc andfree corresponding
to these locations cannot be optimized. Otherwise, they can be opti-
mized.

During optimization a temporary variable is created for each
malloc which can be removed. The size of the temporary variables
corresponds to the size in themalloc call. These temporary vari-
ables are then statically allocated during synthesis. The correspond-
ing free calls are removed.

5. IMPLEMENTATION AND RESULTS

5.1 Toolflow
In the previous sections, we have shown how pointers and

malloc /free can be resolved at compile-time. It is the first step
for the synthesis of C code involving pointers and dynamically allo-
cated memory.

In this section, we present an implementation based on today’s
commercial synthesis tools. We are not trying to solve the problem
of efficiently synthesizing all of the ANSI C syntax at once here.
As a result, the examples used here do not contain type casting and
structures which are hard to translate into efficient synthesizable
HDL code.

We have implemented the different techniques presented here
using the SUIF environment [22]. The toolflow is shown on Figure
6. Our implementation takes a C function with pointers andmal-
loc /free and generates a Verilog module. This module can then
be synthesized using the Behavioral Compiler of Synopsys [5].

In addition to the C input function, the designer defines a set
of memory segments as well as the mapping of eachmalloc call to
one of these memory segments. Themalloc /free calls that are not
removed by the optimization are then replaced by calls to the cus-
tom allocator function (specific, general purpose or optimized gen-
eral purpose). Pointers are then removed and the code gets
translated into Verilog. Each type of allocator is defined as an hard-
ware component in a library. During the translation into HDL, the
different allocators corresponding to each memory segment are

instantiated and the custom allocator functions are mapped to these
allocator modules. The communication between each allocator and
the main module is done using hand-shakes. The resulting HDL
code can then be synthesized using traditional high-level synthesis
tools.

5.2 Experimental results and discussion
For the set of examples presented here, we have synthesized

three types of allocators in our library. In the results presented in
Table 2, allocators are designed to allocate up to 16 blocks of mem-
ory. They are synthesized directly from C using SpC[16] and Syn-
opsys Behavioral Compiler[5]. The general purpose allocators use
first-fit to allocate blocks and merge adjacent free blocks during
deallocation. The first row presents the results for thegeneral pur-
pose allocator without any optimization. The second row shows the
size of theoptimized general purpose allocator for which the deal-
location scheme has been optimized using the modifiedtag as pre-
sented in Section 4.3.1. Even though the complexity of controller is
reduced (from 52 states to 46), the size of the optimized allocator is
roughly the same because of an increase in the steering logic. The
latency of the deallocation task will however be reduced as we see
in the examples below. Finally the third row presents the results for
the specific purpose allocator introduced in Section 4.3.2. As
expected its size is much smaller than thegeneral purpose alloca-
tors.

Table 3 shows the results for three different examples. The
first two examplestest1 andtest2 consists of threemalloc calls
and twofree calls. All malloc calls allocate objects of the same
constant size. Hence aspecific purpose allocator can be used. For
the first example, all callsmalloc andfree can be removed during
optimizations. For the second example, one of themalloc s is
called inside of a unbounded loop and cannot be removed. The
third example is a filter used in the JPEG library of Synopsys COS-
SAP [5] and is used, for example, for RGB to YCrCb transforma-
t ions . The fi l t e r imp lements the opera t ion

 for , whereA is a
 matrix, B andC are vectors andY andX are three

dynamically-allocated matrix.

For each example, the first set of results illustrates the case
wheremalloc calls are mapped to twogeneral-purpose allocators
(no sharing). For the other results, one allocator is shared. As
expected, the latency (measured by simulation at the RTL level)
increases without sharing with a decrease in area. In the table, we
can also verify that the total latency of the design decreases when
theoptimized general purpose allocator (gen. alloc. optimized) is
used. The use of aspecific purpose allocator (spec. alloc.) when
possible provides significant reduction both in latency and area.
Finally, further optimizations can be performed when sequences of
malloc andfree calls can be removed (sequence).

Dynamic Memory Allocation

Pointers Resolution

(functional description)

High Level Synthesis

Resoltion

C+ memory binding

Figure 6: Resolution of dynamic memory allocation and pointers
for hardware synthesis from C

allocator
lines size

C HDL comb. non-comb.

general purpose 297 353 204,191 80,193
general purpose (opt) 289 349 212,065 81,652
specific purpose 85 135 33,579 19,830

Table 2: Implementation of the different allocators (area in library
units using the tsmc.35 target library; comb. and non-comb.
represents respectively the area of combinational logic and non-
combinational logic (i.e. registers, etc.) at 100MHz)

Y i[] clip A X i[] B C,+⋅()= i 1 2 ... n, , ,{ }=
3 3× 3 n×

6. CONCLUSION
We have presented an extension of the synthesizable C subset

to pointers andmalloc /free . The resolution of dynamic memory
allocation and pointers enables the implementation of complex data
structures into hardware. Our solution fits into current application-
specific memory management methodology. In order to efficiently
partition the storage among the different data structures during
analysis and synthesis, memory is represented bylocation sets.
Dynamic memory allocation and deallocation are performed within
each user-definedmemory segments by an optimized hardware allo-
cator.

Our tool SpC takes a C function with pointers andmalloc /
free and generates a Verilog module which can be synthesized by
commercial tools. We provide a library of hardware allocators. The
different allocators are selected and optimized according to the
application and the memory architecture.

7. ACKNOWLEDGMENT
This work was supported in part by Synopsys Inc. Koichi Sato

was on leave from NEC Corporation.

8. REFERENCES
[1] C Level Design, C2HDL,http://www.cleveldesign.com/
[2] CoWare, N2C,http://www.coware.com/
[3] Frontier Design, A|rt Builder,http://www.frontierd.com/
[4] Silicon Access, DRAMatic,http://www.siliconaccess.com/
[5] Synopsys tools,http://www.synopsys.com/
[6] SystemC,http://www.systemc.org/
[7] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balasa,

Lode Nachtergaele, Arnout Vandecappelle, “Custom Memory
Management Methodology,” Kluwer Academic Publishers,
Dordrecht, June 98.

[8] Alain Deutsh, “Interprocedural may-alias analysis for pointers:
Beyond k-limiting,” proceedings of the ACM SIGPLAN’94

Conference on Programming Language Design and Implemen-
tation, pp 230-241, June 94.

[9] Rakesh Ghiya and Laurie Hendren, “Is it a tree, a DAG, or a
cyclic graph? A shape analysis for heap-directed pointers in
C,” proceedings of the 23th Annual ACM Symposium on Prin-
ciple of Programming Languages.

[10] Abhijit Ghosh, Joachim Kunkel, Stan Liao,“Hardware Synthe-
sis from C/C++,” proceedings of the Design, Automation and
Test in Europe DATE’99, pp. 387-389, Munich, 1999.

[11] H. Keding, M. Willems, M. Coors, H. Meyr, “FRIDGE: A
Fixed-Point Design And Simulation Environment,” proceedings
of the Design Automation and Test in Europe DATE’98, pp.
429-435, 1998.

[12] Brian Kernighan, Dennis Ritchie, “The C Programming Lan-
guage”, Prentice Hall Software Series, Englewood Cliffs, NJ,
1988.

[13] Giovanni De Micheli, “Hardware Synthesis from C/C++,” in
the proceeding of the Design, Automation and Test in Europe
DATE’99, pp. 382-383, Munich, 1999.

[14] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau, “Mem-
ory Issues in Embedded Systems-On-Chip : Optimizations and
Exploration,” Kluwer Academic Pub, October 1998.

[15] P. J. Plauger, “The Standard C library,” Prentice Hall Software
Series, Englewood Cliffs, NJ, 1991.

[16] Luc Séméria, Giovanni De Micheli,“SpC: Synthesis of Pointers
in C. Application of Pointer Analysis to the Behavioral Synthe-
sis from C”, proceedings of the International Conference on
Computer-Aided Design ICCAD’98, pp. 321-326, San Jose,
November 98.

[17] Luc Séméria, Giovanni De Micheli, “Encoding of Pointers for
Hardware Synthesis,” proceedings of the International Work-
shop on IP-based Synthesis and System Design IWLAS’98, pp
57-63, Grenoble, December 98.

[18] Bjarne Steensgaard“Point-to Analysis by Type Inference of
Programs with Structures and Unions”, proceedings of the
1996 International Conference on Compiler Construction,
pp.136-150, April 96.

[19] Kazutoshi Wakabayashi, “C-based Synthesis with Behavioral
Synthesizer, Cyber,” proceedings of the Design, Automation
and Test in Europe DATE’99, pp. 390-391, Munich, 1999.

[20] Robert Wilson,“Efficient, Context-Sensitive Pointer Analysis
For C Programs”, PhD Dissertation, Stanford University, 1997.

[21] Robert Wilson, Monica Lam,“Efficient Context-Sensitive
Pointer Analysis for C Programs”, proceedings of the ACM
SIGPLAN’95 Conference on Programming Languages Design
and Implementation, pp.1-12, June 95.

[22] R.P.Wilson et al. “Suif: An Infrastructure for Research on Par-
allelizing and Optimizing Compilers”, ACM SIPLAN Notices
28(9), pp.67-70, Sept. 1994.

[23] Paul Wilson, Mark Johnstone, David Boles, “Dynamic Storage
Allocation: A Survey and Critical Review,” presented at Int.
Workshop Memory Management, Kinross, Scotland, Sept. 95.

[24] Sven Wuytack, Francky Catthoor, Hugo De Man, “Transform-
ing set data types to power optimal data stuctures,” IEEE Tans-
actions on Computer Aided Design, pp. 619-629, June 1996.

[25] Sven Wuytack, Julio da Silva Jr., Francky Catthoor, Gjalt de
Jong, Chantal Ykman, “Memory Management for Embedded
Network Applications,” transactions on Computer Aided
Design, Volume 18, number 5, pp 533-544, May 99.

test
malloc
/free

C
lines

optimi-
zation

HDL
lines

total
latency

size(1000x) CPU
 time
(in s)comb. non-c.

test1 3 / 2 72

gen. alloc.
(no sharing) 344 713 568 269 14.8

gen. alloc. 315 735 391 180 13.8
gen. alloc.
(optimized) 323 617 405 199 14.4

sequence 167 32 135 87 14.3

test2 3 / 2 66

gen. alloc.
(no sharing) 339 1,425 551 271 13.8

gen. alloc. 310 1,732 338 177 13.4
gen. alloc.
(optimized) 318 1,221 372 177 13.2

spec.alloc. 294 781 190 109 12.9
sequence 173 298 159 86 13.9

jpeg 4 / 4 190

gen. alloc.
(no sharing) 659 438 1,287 747 21.7

gen. alloc. 630 465 1,023 632 20.6
gen alloc
(optimized) 640 403 1,025 637 20.6

Table 3: Results for the different examples and optimizations (size in
library units using the tsmc.35 target library; frequency 100MHz for
test1 and test2, 50MHz for JPEG; CPU time measured on Sun Ultra2
does not include high level synthesis)

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

