Resolution of Dynamic Memory Allocation and Pointers for the
Behavioral Synthesis from C

Luc Séméria Koichi Sato Giovanni De Micheli
lucs@azur.stanford.edu koichi@azur.stanford.edu nanni@galileo.stanford.edu

Computer Systems Laboratory
Stanford University

Abstract -- One of the greatest challenges in C/C++-based desigturns out to be particularly difficult because of dynamic memory
methodology is to efficiently map C/C++ models into hardwareallocation, function calls, recursiongoto 's, type castings and
Many of the networking and multimedia applications implementepinters.

in hardware or mixed hardware/software systems are making use of In the past few month, different synthesis tools have been
complex data structures stored in one or multiple memories. Asasanounced to ease the mapping of C code into hardware
result, many of the C/C++ features which were originally designef0,19,1,2,3]. All of these tools support a subset of the language
for software applications are now making their way into hardward€.g. restrictions on pointers, function calls, etc.). In particular, they
Such features include dynamic memory allocation and pointef® Not support dynamic memory allocation using the ANSI stan-
used to manage data. We present a solution for efficiently mappfiig/d library functionsnalloc - andfree .

arbitrary C code with pointers anghalloc /free into hardware. In our tool SpC [16], pointer variables are resolved at compile-
Our solution fits current memory management methodologies. tifine to synthesize C functional models in hardware efficiently. In

consists of instantiating a hardware allocator tailored to an applithis paper, we will focus on an implementation of dynamic memory
cation and a memory architecture. Our work also supports the re@llocation alloc , free) in hardware. By definition, in general,
I§torage for dynamically allocated data structures cannot be
) . : . assigned at compile time. The synthesis of C code involving
implementation using the) framework is presented, followed bydynamic memory allocation requires access to some allocation and

some case studies such as the realization of a video filter. deallocation primitives implemented either in software, as in an
1. INTRODUCTION operating sy.stem, orin hardwr.:\re.. . . .
Dynamic memory allocation is tightly coupled with pointers
Different languages have been used as input to high-level syind the notion of a single address space. Pointer derefertaebs (
thesis. Hardware Description Languages (HDLs), such as Verilggores etc.) as well as memory allocation are all referring to a main
HDL and VHDL, are the most commonly used. However, designefsemory. However, in application-specific hardware, designers may
often write system-level models using programing languages, sughnt to optimize the memory architecture by using register banks,
as C or C++, to estimate the system performance and verify theiltiple memories etc. Therefore, memory allocations may be dis-
functional correctness of the design. Using C/C++ offers highetributed onto multiple memories and pointers may reference data
level of abstraction, fast simulation as well as the possibility aftored in registers, memories or even wires (e.g. output of a func-
leveraging a vast amount of legacy code and libraries, which faciional unit). To enable efficient mapping of C code with pointers
tates the task of system modeling. andmalloc ’s into hardware, the synthesis tool has to automatically

The use of C/C++ or a subset of C/C++ to describe both hargenerate the appropriate circuit to dynamically allocate, access
ware and software would accelerate the design process and faéfgad/write) and deallocate data. Memory management as well as
tate the software/hardware migration. Designers could descriBgcurate pointers’ resolution are key features for C-based synthesis.
their system using C. The system would then be partitioned infdey are enablers for the efficient design of applications involving
software and hardware blocks, implemented using synthesis todl@mplex data structures.

The new SystemC initative [6] is an appempt to standardize a C/ The contribution of this paper is to present a solution for effi-
C++-based language for both hardware and software design. ciently mapping arbitrary C code with pointers amalloc /free

C was originally designed to develop the UNIX operating sydt0 hardware. Our solution fits current memory management
tem. It provides constructs to directly access memory (throu ethodologies. It consists of instantiating a hardware allocator tai-

pointers) and to manage memories and I/O using the standardPged to an application and a memory architecture. Our work also
library (malloc , free ,...). These constructs are widely used irSUPPOIs the resolution and optimization of pointers without restric-
software. Nevertheless, many of the networking and multimed$@n on the data structures.

applications implemented in hardware or mixed hardware/software In Section 2, we give an overview of the memory-management
systems are also using complex data structures stored in onen@thodology for embedded applications and present how it can be
multiple memory banks. As a result, many of the C/C++ featuregplied to the hardware synthesis from C. The resolutiomabf

which were originally designed for software applications are nowc and pointers is based on an accurate analysis of the operations
making their way into hardware. performed on the different memory locations. In Section 3, we

In order to help designers refine their code from a simulatidgife€sent our memory representation as well as some pointer-analysis

model to a synthesizable behavioral description, we are trying §@chniques. Then in Section 4, we show how pointers and dynamic
efficiently synthesize the full Rsi C standard [12,15]. This task memory allocation can effectively and efficiently be synthesized.

Finally, in Section 5, we present an implementation and somm@imitives can be called in a C program using the functions defined

results for different examples as well as the realization of a vidéwo the standard library (e.enalloc , free , etc.). Many schemes

filter. have been developed for OS to manage memory. An extensive sur-
vey of the techniques used for memory allocation and deallocation

2. METHODOLOGY AND RELATED WORK can be found in [23].

For decades, memory management has been one of the major Memory management can also be implemented in hardware.
development area both for software and computer architecture.Aar memory allocation and deallocation, instead of the system calls
software, at the user-level, memory management is typically pdée-the OS, requests are sent through signals @dlacator block
formed by the operating system. In hardware, memory bandwid@ka.virtual memory managgimplemented in hardware. Its inter-
is often a bottleneck in applications such as networking, signal pf@ce is shown on Figure 1. Internally, the allocator stores a list of
cessing, graphics and encryption. Memory architecture exploratithie free blocks in memory as well as a list of the allocated blocks.
and efficient memory management technology are key to the desim allocate memory, the size of the block to be allocated
of new high-performance systems. Memory generators commémalloc_sizg is sent. The allocator then searches in its free list a
cially available today [4] enable fast integration of memories in ig enough block and returns the address of the beginning of this
system. Scheduling of memory accesses has also been integréegk (malloc_address Two techniques are often usdiist fit
into most commercial high level synthesis (HLS) tools. Most of thehere the first acceptable free block is returneukst fitwhere the
refinement and compilations steps developed for software applidzlock of minimal size is returned. To free previously allocated
tions can also be used for hardware. Nevertheless, a software metgmory, the address of the block to be deallocdted_(address
odology usually assumes a fixed memory architecture which még/sent to the allocator. The allocator then searches inside of the
be general purpose or application specific like in a DSP or ASIP. &llocated list the block and adds it back to the free list. Adjacent
hardware, at the behavioral level, designers would typically explofeee blocks can then be merged. The implementation itself of the
different memory architectures in order to trade-off area and powaltocator can vary according to the application and the data struc-
for a given timing constraint. tures. A number of these implementations are presented by

A few projects and tools [10,19,1,2,3] have recently beer\wNuytaCk etal.[25]

announced to ease the mapping of C models into hardware. In prac- malloc_size [malloc
tice, current tools don’t support dynamic memory allocation and ma”oc—adaresi—/
have restriction on pointers’ usage [13]. SpC [16], enables the free_address | free

behavioral synthesis of C code with pointer variables to variables
and arrays. In Section 4, we present how pointers in general (€.9. Figure 1: Interface of the allocator block implementing

array of pointers, pointers in structures, pointers to structures etc.) malloc and free functions.

and dynamic memory allocation can also be efficiently synthesized.

Once an architecture is decided, hardware can be implemented
%%ing synthesis tools and compilers can be used for software. As far
g memory management is concerned, memory accesses schedul-

, register/memory allocation and address generation can be inte-
ted into synthesis tools and compilers. The latest development

A methodology for the design of custom memory systems h
been described by Catthoor et al. [7]. It is defined for two sets
applications, networking and signal processing, and supports a li
ited subset of C/C++. The basic concepts presented in Catthogf
work can be generalized to support a larger subset of the C syn .
for an extended set of applications. Two main steps can be dist] ﬂn[dhggvc\j/grgtyn[trzs's have been presented by Catthoor et al. [7]
guished in the methodology: we describe briefly here the transfor-))
mations performed first at the system level, and then at the Our contribution fits in the methodology described above. In
architectural level. particular, we present techniques to automate the synthesis of C

At the system level, the functionality of the algorithm is veri-COde with pointers and dynamic memory allocation into hardware.

fied. Data formats are refined. For example, after quantization, tgg%v(\)/;:gonr? oedglfs?rlljrcrienstgfi;grri]l c')s ié?_oétzﬁﬁer;gg;:gd gggm':fs
format of data can be refined from floating-point to fixed-poin ially available svnthesis tools 9 y y

[11]. Data structures can also be refined for example to reduce fria"y y ’

number of indirect memory references. Examples of such transf%- BACKGROUND

mations for networking applications have been studied by Wuytack

et al. in [25,24]. In software, the semantics of pointers is the address of an ele-

At the architectural level, after partitioning, the system typiMent in memory. This definition implies that the C program is tar-

cally consists of multiple communicating processes to be mappgeted to a virtual architecture consisting of one memory in which

to hardware or software [2,10]. Memory segments are defined foY€'ything is stored. Even thougfyister declaration may allow

internal storage and/or shared memory. These memory segmetj@drammers to specify the variables to place in registers, the

can then be mapped to one or multiple memories during Syntheg_g[signment of variables to registers is generally done by the com-

Some of the storage area (e.g. internal variables, etc.) can be sfiif- The notions of caches and memory pages are transparent to
cally allocated during synthesis or compilation. However, to sufYC9rammers.

port dynamic storage allocation (e.g. for recursive data structures), In hardware, at the behavioral level, designers want to have
allocation and deallocation primitives implemented in software aontrol on where data are stored and want to optimize the locality
hardware shall be defined. of the storage. Typically, a chip design contains multiple memory
éganks, register files, registers and wires. Pointers may be used to
erence any variable no matter where its information is available.
inters must be considered as references: references to memory

In software, memory allocation and deallocation are impl
mented as primitives part of the operating system (OS). Thegtg)

elements, registers, wires or ports. In particular, pointers can Be1 Pointer ana|ysis

used to allocate, read, write and deallocate data. In this paper we o))))]
call the action of reading data using a pointkraal. Subsequently, ~ Pointer analysis is a compiler technique to identify at compile-
astoreis the action of writing data using a pointer. Allocation andime the potential values of the pointers in the program. This infor-
deallocation are performed through the standard library functiofdation is used to determine the set of locations the pointer may
malloc andfree . Their implementation is however tailored for aPoint to. For synthesis, in the casel@dds stores andfree , we
given application and memory architecture. want to synthesize the logic to access, modify or deallocate the

. ocation referenced by the pointer. For this purpose, the points-to
The synthesis of pointers in general consists of generating)¢, mation must be botsafeandaccurate safebecause we have
appropriate circuit for allocating and accessing data. For this py

b consider all of the locations the pointeayreference andccu-
pose, we change the addresses into numbers (i.e. encode poin o P y

1858 because the smaller the points-to set is, the less logic we have
values) and repladeadsandstoresby some assignments directly P ’ 9

. . ; Y to generate.
accessing the data the pointer may reference (i.e. resolve pointers).

Functionsmalloc andfree are subsequently changed as memory ~ Two main types of analyses can be distinguished. fianst
allocation can be distributed onto multiple memories. and context-insensitivanalyses [18] don't distinguish the order in

) o which the statements are executla(-insensitivity and the dif-
Example 1.Let us consider an application, where a hardwargerent calls of a functiorcontext-insensitivily They are the least
block receives objects of different sizes and processes them. Sgm&rate but the relative simplicity of their implementation makes
of these objects are copied in a registey(). Some other are only them more suitable for very large prografisw- and context-sen-
used within this block and are stored in private memory;sve analysessuch as [20,21] by Wilson and Lam, on the other

(local_RAM). Finally some, larger, may also to be accessed bjang, provide more accuracy with an increased complexity.
other blocks and are stored in a shared memsitgréd_RAM). . .
Even though the complexity of flow- and context-sensitive

if(object.is reg) analyses may be exponential, it is not a limitation for hardware syn-
p= &@g; thegls becayse we deal with rather small and simple programs with
if(object.is_internal) I|m|t_ed calling contexts for functions and often no recursions.
/I allocate memory itocal RAM Beside these analyses leads to more accurate results, which makes
p = malloc(4); - them more suitable for hardware synthesis. Most of the inaccuracy
else comes from the way memory in represented. Different techniques
/I allocate memory ishared RAM have been used to identify the different locations in memory.
p = malloc(8); 3.2 Memory representation
/I storeinreg , local_ RAM orshared RAM The simplest memory representation consists of a single
*p = object.data; address space in which all data are stored. This trivial representa-
e tion however prevents from optimizing the locality and paralleliz-
if(lobject.is_reg) _ ing the code. On the other hand, the most accurate representation,
/I free storage itocal_RAM or inshared_RAM which would distinguish each element of arrays or of recursive data
free(p); structures, is not practical. As a result, most analysis techniques
In order to implement the sto(e=object.data), the tool has combine elements within a single data structure. Some techniques

to schedule a write operation into the registeg , the memory combine elements based on their allocation contexts [20,21] or on
local RAM or the memoryshared RAM. It also needs to limiting the length of access paths to some fixed conskalin(t-
instantiate the correct circuit (steering logic) to access thesiag). Shape analysis [8,9] gives the most accurate representation as
locations. For this purpose, we need to know at compile-time tiileey may distinguish trees from DAGs, linear lists from cyclic lists
set of locations the point@rmay point togoints-to set and so on. However its implementation to support large C programs
To implementree(p) , assuming that each memdogal RAM remains challenging.

andshared_RAM is managed by a specific allocator, the tool also | order to find both an accurate and practical representation

needs to schedule a deallocation operation on one allocator or thgr hardware synthesis, we propose to use the notitmcafion

other. The points-to information for the pointeis also necessary. setsdefined in [20,21]. Locations sets support any of the data struc-
As we can see in Example 1, in order to rumuls storesas tures available in C including arrays, structures, arrays of structures

andfree operations into hardware, we need to know at compilénd structures containing arrays. This representation is also rela-

time the set of locations the pointers may referepoi(s-toinfor- tively simple as it combines the different elements of an array or of
mation). recursive data structures. It can therefore be used for large C pro-

Such information is also widely used in compilers. In order tgrams.)
parallelize programs onto distributed architectures, the independent A location setl = [f, sl IN x Z represents the set of
sets of data which can be processed in parallel have to be extractegations with offset{ f +is|ilJZ} in a particular block of
The problem there is to find statements in the program that maemory. That isf is anoffsetwithin a block and is thestride. If
read or write the same locations (aliasing problem). For this pdfe stride is zero, the location set contains a single element. Other-
pose, theliasinginformation has to be determined between pointwise, it is assumed to be an unbounded set of locations. Table 1
ers. The points-to information and the aliasing information arghows the location sets for various expressions.

equivalent and can be determined by recent analysis techniques For simple data structures (arrays, structures, array of struc-
calledpointer-analysior alias-analysis tures), offsets are used to identify the different fields of structures

Type Expression Location Set of a process (e.g. global variables or data internal to some other
: process) are not allowed. Their resolution would require the synthe-
! 2 (0, 00 sis of some kind of interface between the processes. Such interface
struct {int F;} s S.E F, O0J is usually defined during system partitioning and, hence, before
synthesis. As a result, memory allocated in one process is assumed

int afl; al] (0, s to be accessed and deallocated only within this same process.
struct {int F;} r]; rlil.F ¥, s The second limitation stems from the fact that most commer-
struct {int F[10]:} r: r.F[i] Cf mods, §J cial synthesis tools also have restrictions on functions. Recursions
are usually not supported. Procedures that are mapped to compo-
Table 1: Location set examples (f=offset of field F), (s=stride or array nents typically have restrictions both on their functionality and
element size) their parameters. For example, the same function called within dif-
ferent contexts may usually not be shared. Besides, most synthesis
tools do not synthesize parameter passed by reference, because this
|5[°]-a ‘S[Ol-b |S[11-a ‘ s{ilb | S[Zl-a‘ 5[21-b| 5[3]-3‘ e is not supported by most HDL syntax. The synthesis of functions in
N~] C, and therefore the resolution of pointers anatloc /free inside
offset stride siride stride of functions, is beyond the scope of this paper.

Figure 2: Representation of struct{int a; int b} s[]; Other restrictions are also added in the implementation section
whereas strides are used to record array-element sizes. Figuri@ grder to be able to translate C models into Verilog synthesizable
gives an example of representation for an array of structures. T commercial high-level synthesis tools. These restrictions are
representation doesn'’t distinguish the different elements within tfi@wever not required for the resolution of pointers and dynamic
array but it distinguishes the different instantiations of variablégemory allocation and do not apply for the next section.
and structures. This makes sense since all elements of an arra

y ar
usually alike. £"SYNTHESIZING MALLOC AND FREE

Nested arrays and structures, type casting and pointer ariw-l Resolution of pointers in complex data
metic are making things more complicated, leading to some moré

inaccuracies. Example 2 shows how references to array neste®UCtUres
structures are represented approximately. The array bound informa-

Ejion in the deq:jared typ(te) cangot Ee Llfed becafuse the C langugge,yis [20,21] in which memory locations are represented by
oes not provide array-bounds checking. A reference to an anig¥aion sets. The points-to information is then used to encode the

nested in a structure could access other elements of the structur%(l%ters, value and to generate the appropriate logic for accessing
using out-of-bound array indices. and deallocating data.

Our implementation uses a flow- and context-sensitive pointer

Example 2.Consider the array.F] nested in a structune: After encoding, the size of the pointers can be reduced as
struct { shown in [16,17]. However, in order to support type casting and
char a; out-of-bound array accesses, we assume that pointers have a fixed
char b; size. The size of a pointer itself is not defined by the ANSI stan-
int F[8]:} r; dard. It is therefore implementation (or compiler in our case)

References to one of the array element (ef2]) are dependent. In order to map pointers into hardware, the addresses
represented approximately by the locations Egtsizeof(int) O (i.e. pointers’ values) are encoded. Memory locations are repre-
which regroups all of the elements of the array as wallaas sented by location sets.

Dynamically allocated memory locations (heap-allocate®efinition 1. The encoded value of a pointprconsists of two
objects) are represented by a specific location set. As far as acfields:
racy, the goal is to distinguish complete data structures. The differ- - thetagp.tag (left part of the code) corresponds to the loca-
ent elements of a recursive data structure would typically be tion set referenced by the pointer,
combined. For example, we want to distinguish one list from . theindexp.index (right part of the code) stores the number
another but we do not want to distinguish the different elements of of strides corresponding to the data referenced within the
a list. Heuristics are used to partition the heap. Storage allocated in |5cation set.
the same context is assumed to be part of the same equivalence

class. These heuristics have been proven to work well as long as the LSBMSB___LSEMSB __LSBMSB___LSENSE

program uses the standard memory allocation routines [20]. e |tab'efp["” Etkbleipm | table*p['ﬂi 3
e e ta index

3.3 Definition of the subset Figure 3: Encoding of pointers in an array

The pointer analyses and memory representation presenteg , .
the previous sections support the complete ANSI C syntax. In t%ﬁ%%néﬂfa%zg;;? 3 gives an llustration of pointers’ encoding

paper however, we define our own synthesizable subset. Our subse int *table_p[J;
includesmalloc /free as well as all types of pointers and type L) . .
casting. Nevertheless we set the following two restrictions. If the elementable_p[i] ~ were to point txs[2].b defined on

) o)) Fi?ure 2, indexable_pli].index would be equal to 2.
The first restriction applies to systems described as a set o

parallel processes: pointers that reference data outside of the scope TN€indexpart of the code is stored within the first bits (least
significant bits) to support pointer arithmetic, especially when a

pointer is type-casted into an integer. This encoding scheme hemed into differenimemory segmenta which data can be allo-
limitations on the number of location sets in the points-to set amdted.

on the number of elements addressable within each location §§kfinition 2. A memory segmeris defined as an array of finite size
For example, if we allocate 8 bits for tkeg and 8 bits for the i, \which data are allocated by a unique allocator. This array may

index The pointer can reference at most 256 location sets and {§g&yr on be mapped to one or more memories during synthesis.
indexcan have at most 256 values (e.g. from -127 to 128). These

limitations should hardly be a problem in most designs. In our tool, the partitioning of the memory into the different

]))) memory segments is done by the designer. Other tools could be
Example 4.Consider the expressiqiq+1)=*p+1) , in which ysed to assist this task at the system-level. Foraltér in the
pointerp points to variables andb and pointerq points to an code, the designer selects in which memory segment the storage is
element of arrayable . The value op is encoded. Its tap.tag allocated. Since the size of the dynamically allocated memory is a

is defined as follows: the valleis associated with variabke and priori unknown at compile time, the designer also sets the size of
the valuel is associated with variable. Since pointep doesnt each memory segment. The tool instantiates then the allocators cor-
point to any array element, its indpsndex is not used. On the responding to each memory segment and synthesizes the appropri-
other hand, pointer points to a single location set which ate circuit to allocate, access and deallocate data.

Li%ﬁ_sems the elements of arraple . Onlyg.index is being For each memory segment, a different aIIO(_:ator is instantiated.
. . .) Eachmalloc mapped to this memory segment is then replaced by
*After r?movmg the pointers, we end up with the following code f%\rcall to the specific allocator. The pointer that takes the result of
(a+1)="p+1 , where tmp_p and tmp_q are two temporary hemajioc function is defined as follows: itagis set according to
vanableg.) the corresponding memory segment andéhiiexis set by the allo-
switch p.tag: cator. When multiplenalloc calls are mapped to a single memory

case 0:tmp_p = &; segment, the corresponding allocator is shared.
case 1:tmp_p=b;

tmp_q = tmp_p + 1; For a callfree(p) , the data to bg deallocated may be in one
table[g.index+1]=tmp_q; memory segment or another depending on the value of the pointer
peVWe generate a branching statement in which the different alloca-
rs corresponding the different memory segments may be called
cording to the pointertag. The pointer'sndexis then sent to the
allocator to indicate which block should be deallocated. Loads,
] stores and addresses are resolved as shown in the previous section.
p->{a,b} g.index Examples 5 and 6 illustrate hawalloc andfree calls are
g->{table[]} resolved while removing pointers.

An implementation for this code segment is shown in Figure 4. T!
load is implemented using a 2-input multiplexer controlled b
p.tag . Assuming the array table is mapped to a memory. The in
g.index is used directly as the data address in memory.

Example 5.Consider the following code segment.

p = malloc(1);

out = *p;

free(p);
i) If malloc is mapped to a memory segment cafledlof size 32
Figure 4: Implementation of *(g+1)=*p+1 bytes, we generate the following code (assuming that the size of

. . . . char is one byte):
In this section, we have presented simple techniques to trans- .o, segl[32]: /I memory segmensegl

form a C code with pointers into a code without pointers. The reso- p.index = alloc_seg1(SPC_MALLOC, 1):
lution of pointers can be further optimized. When the pointers’ - segllp in?jex]' - -
location set contains a single element (e.g. pointer variable), the 4j0c seq1 éPC FI,?EE index):

number of live variables befoteadsandstorescan be reduced _segl(- P-)
[16]. Heuristics can also be applied to encode the pointers’ valuq

The allocator component corresponding to the function
Féc_segl is called for bothmalloc andfree . It implements

a

(tag part) [17]. both the allocation and deallocation functions.

4.2 Resolution ofmalloc and free Example 6.Let us now consider a more complex example where
In order to support dynamic memory allocation and dealloc&’-o'mirp_fgn point to different memory segments:.

tion, the hardware needs to access an allocator. In general the allo- if(i==)_ loc(1): // locl

cator could be implemented in software (for mixed hardware/ | p = malloc(1); mafloc

software implementations) or completely in hardware. Since this else — malloc(d): // loc2

work is on the hardware synthesis of C code, only a hardware t_p*—'ma oc(4); matloc

implementation is presented. Nevertheless, the techniques pre- ?r:ezp)!)’

sented here could also be targeted to a software implementation.)
We assumenalloclis mapped to the memory segmsegland

malloc2 is mapped to the memory segmeay2 Both memory
8egment are of size 32 bytes (set by the user). The resulting code,
after removingnalloc /free is the following:

In softwaremalloc andfree are implemented as standard
library functions. Similarly, for hardware synthesis, we use
library of hardware components implementinglioc andfree .
The idea here is have one component, calktator, implement-
ing both themalloc andfree functions as introduced in Section 2. if(i==0) {

In order to efficiently manage memory, the memory space is parti- ptag =0

p.index = alloc_seg1(SPC_MALLOC,1); the allocator stores the list of allocated blocks in an array. The

}else { index corresponding to an allocated block in this array is then
p.tag = 1; encoded inside of thimg. During deallocation, the allocator can
p.index = alloc_seg2(SPC_MALLOC,4); then directly find the allocated block according to this index, with-

} out having to search the entire array. The resulting optimized allo-

cator is calledptimized general purpose

If(p.t?ﬁt_;os)eg1[p.index]; 4.3.2 Specific purpose allocator
else Themalloc function takes one argument: the size of the
out = seg2[p.index]; block to be allocated. When this size is a unique conktdot all
of themalloc mapped a single memory segment, this memory seg-
if(p.tag==0); ment can then be represented as an array of elements ¢f.size
alloc_seg1(SPC_FREE,p.index); Allocating memory in this segment can simply be performed by
else returning the first available element in the array. For deallocation,
alloc_seg2(SPC_FREE,p.index); the address of the block to deallocate can easily be derived from its
If each memory segment is mapped to a different RAM duriagdress. The architecture of the corresponding allocator can then be
synthesis, we end up with the architecture on Figure 5. simplified. For example a simple bit-vector can be used to keep
track of the allocated and free blocks in the memory segment. Such
segl seg2 an allocator, which can only deal with blocks of one size, is called
RAM RAM specific purpose.
9. v Constant propagation can be performed before selecting the
Main Module <« alloc_segl allocator in order to have as mamyglloc as possible with con-
stant size.
| alloc_seg2 4.3.3 Removing sequences ofalloc andfree calls

Some of the dynamic memory allocations are sometimes not
necessary and can be removed at compile-time. This is especially
o . true for legacy code in whiahalloc/free are used to manually
4.3 Allocators and Optimizations control storage. The idea here is to isolate the finite sequences of

. . Lo [calls which can be replaced by references to statically allo-
In this sections we present three optimizations. The first twg:teodc data P y y

optimizations aim at simplifying the allocator architecture. The

goal for the last optimization is to automatically remove some dfxample 7.Consider the following code segment.
the dynamic memory allocation for sequencesnafioc and p[1] = malloc(4); /I mallocl

free . p[2] = malloc(8); /I malloc2

Figure 5: Architecture for multiple memory and allocator

Our library of allocator components contains three main types f.r.ee([1]): I freel
of allocators synthesized directly from C using SpC. In Section 3, free(p[Z]): I free2
the notion a hardware allocator, which implements bothriile) PLl); o .
loc andfree functions, was introduced. We definegeseral pur- In this example, a finite number of objects (two) are allocated by
posean allocator that can allocate blocks of any size. In Sectidgi@lloclandmalloc2 Later on, these blocks are freedfigeland
4.3.1 we present aoptimized general purpos#locator, for which freé2 The dynamic memory allocation in this case can be
the deallocation scheme is optimized. When the size of the block@Btimized by creating the two temporary array elements
be allocated is a fixed constant, the architecture of the allocator ¢BR_malloc1[4] and tmp_malloc2[8] . The size of these
be greatly simplified. Thepecific purposallocator presented in €lements corresponds to the size of the object allocated at each
Section 4.3.2 can be used in such case. malloc . Themalloc calls are then replaced by references to these

temporary variables and thieee calls are removed. We end up

Different implementations of these allocators can be generatggy the following code segment in which memory is statically
by changing the allocation and deallocation schemes as well as fi§caied.

data structures internal to the allocator [25]. They can be added t0 op5r tmp_mallocL[4];
our framework as new components in the library. The designer or op5y tmp_malloc2[8]z

the tool would select which allocator fits the application best. p[1] = tmp_malloc1; /I malloc(4)
4.3.1 Optimized general purpose allocator p[2] = tmp_malloc2; /I malloc(8)
When a block is freed using thieee function call, the })lfree(p[l]);

address of the beginning of the block is passed as an argument. The // free(p[2])
allocator then searches for the exact block characteristics (e.g. size)
in the list of allocated blocks before adding it back to the list of frel_e.
blocks. Ir

This optimization can be performed under two conditions.
st, the size of the data to be allocated has to be constant. If the
o)] size of the data to be allocated is not known at compile-tigena
In order to simplify the process of looking up for a given blocleral purposeallocator would have to be used. Second, dynami-
during deallocation, we propose to encode the characteristics of hgly-allocated data have to be both allocated and deallocated
allocated block inside of the pointet&y. In our implementation, within the same unbounded loop (e.g. cannot optimiec in a

while loop). Using the results of the pointer analysis, we haviestantiated and the custom allocator functions are mapped to these
implemented a dataflow analysis which finds at compile time thellocator modules. The communication between each allocator and
malloc andfree calls that can be optimized (i.e. removed). the main module is done using hand-shakes. The resulting HDL

The idea is to have a counter for each dynamically-allocat&&’de can then be synthesized using traditional high-level synthesis

location set. During the analysis, the counter is incremented edOR!s-
time an element of the corresponding location set is allocated. S ; ; ;

sequently, each time an eIerrF])ent ofgthe location set is dealloca%]t;2 Experlmental results and discussion

(result from the pointer analysis), the associated counter is decre- For the set of examples presented here, we have synthesized
mented. This way, location sets allocated and not deallocatgttee types of allocators in our library. In the results presented in
within a loop can be found. Thealloc andfree corresponding Table 2, allocators are designed to allocate up to 16 blocks of mem-
to these locations cannot be optimized. Otherwise, they can be opily. They are synthesized directly from C using $i6Cand Syn-
mized. opsys Behavioral Compilgs]. The general purpose allocators use

During optimization a temporary variable is created for eadiyst-fit to_allocate blocks and merge adjacent free blocks during
malloc which can be removed. The size of the temporary variabl€§allocation. The first row presents the results forgéreeral pur-
corresponds to the size in thelloc call. These temporary vari- p_oseallocator without any optimization. The second row shows the

ables are then statically allocated during synthesis. The correspopig€ Of theoptimized general purposallocator for which the deal-

ingfree calls are removed. location scheme has been optimized using the modédigds pre-
sented in Section 4.3.1. Even though the complexity of controller is

5. IMPLEMENTATION AND RESULTS reduced (from 52 states to 46), the size of the optimized allocator is
roughly the same because of an increase in the steering logic. The

5.1 Toolflow latency of the deallocation task will however be reduced as we see

in the examples below. Finally the third row presents the results for
In the previous sections, we have shown how pointers amigle specific purposellocator introduced in Section 4.3.2. As
malloc /free can be resolved at compile-time. It is the first stexpected its size is much smaller thandeaeral purposelloca-
for the synthesis of C code involving pointers and dynamically allgers.
cated memory.

. . . . lines size
In this section, we present an implementation based on today’ allocator
commercial synthesis tools. We are not trying to solve the problen C | HDL comb. non-comb.
of efficiently synthesizing all of the ANSI C syntax at once here. | general purpose 297| 353 204,191 80,193
As a result, the examples used here do not contain type casting ai general purpose (opt| 289| 349 212,065 81,652
structures which are hard to translate into efficient synthesizablg specific purpose 85| 135 33,579 19,830
HDL code.

. .) Table 2: Implementation of the different allocators (area in library
We have implemented the different techniques presented here |its using the tsmc.35 target library: comb. and non-comb.

using the SUIF environment [22]. The toolflow is shown on Figure epresents respectively the area of combinational logic and non-

6. Our implementation takes a C function with pointersraad combinational logic (i.e. registers, etc.) at 100MHz)
loc /free and generates a Verilog module. This module can then)
be synthesized using the Behavioral Compiler of Synopsys [5]. Table 3 shows the results for three different examples. The

rst two exampledestlandtest2consists of threealloc calls

In addition to the C input function, the designer defines a Sg}ﬁd twofree calls. Allmalloc calls allocate objects of the same

of memory segments as well as the mapping of eatbc call to . e
one of these memory segments. fadioc /free calls that are not constant size. Hencespecific purposealiocator can be used. 'For
the first example, all callsalloc andfree can be removed during

removed by the optimization are then replaced by_ca_lls to the C%Sﬁtimizations. For the second example, one ofrtiadoc S is
tom allocator functionspecifi general purposer optimized gen- lled inside of a unbounded loop and cannot be removed. The

eral purposé. Pointers are then removed and the code gerf . : : . !
X . .) ird example is a filter used in the JPEG library of Synopsys C
translated into Verilog. Each type of allocator is defined as an ha P [5] and is used, for example, for RGB to YCrCb transforma-

ware component in a library. During the translation into HDL, th ions. The filter implements the operation

different allocators corresponding to each memory segment aﬁi] = clip(ADX[i] +B, C) fori = {1,2, ...n} , whereA is a

3x 3 matrix, B andC are vectors andf andX are three3x n
C+ memory binding dynamically-allocated matrix.
(functional description)

| For each example, the first set of results illustrates the case

Dynamic Memory Allocatio Wherema!loc calls are mapped to tv\general-purposc_allocators
Resoltion T (no sharing. For the other results, one allocator is shared. As
| expected, the latency (measured by simulation at the RTL level)
increases without sharing with a decrease in area. In the table, we

| Pointers Resolut|0|+ can also verify that the total latency of the design decreases when
| the optimized general purposalocator @gen. alloc. optimizedis

| High Level Synthesi%s used. The use of specific purposellocator épec. alloc) when
v possible provides significant reduction both in latency and area.

Finally, further optimizations can be performed when sequences of

Figure 6: Resolution of dynamic memory allocation and pointers malloc andfree calls can be removeddquence

for hardware synthesis from C

sizeooox) | CPU Conference on Programming Language Design and Implemen-

test | MA0C| C | optm-jroL | total e tation, pp 230-241, June 94.
T i n i n - . .
ee |fnes| zation | fnes |1AIENCY] comb.| non-C.| g | [9] Rakesh Ghiya and Laurie Hendrers fi a tree, a DAG, or a
en. alloc.| 344 713] s568| 269| 14.8 cyclic graph? A shape analysis for heap-directed pointers in

no sharing) C,” proceedings of the 23th Annual ACM Symposium on Prin-
gen.alloc) 315/ 735 391) 180/ 1338 ciple of Programming Languages.
oep{?nai?.l!gc' 323 617| 405 199| 14.4| [10] Abhijit Ghosh, Joachim Kunkel, Stan Lid#élardware Synthe-
sequence| 167 32| 135 87| 14.3 sis frpm C/C++/) procfeedings of the Desigr], Automation and
n%r;hfr!%' 330| 1425 s551| 271| 138 Testin !Europe DATE 99, pp. 387-389, Munich, 199.9.

[11] H. Keding, M. Willems, M. Coors, H. MeyrFRIDGE: A
st elliey bl gz fed o s Fixed-Point Design And Simulation Environmeptoceedings

testl| 3/2 72

el iE | 0P aEndlbe) sy dzed SR A 192 of the Design Automation and Test in Europe DATE'98, pp.
specalloc| 294| 781| 190 109| 12.9 429-435, 1998.

sequence| 173| 298| 159 86| 139/ [12] Brian Kernighan, Dennis RitchieThe C Programming Lan-
guagé, Prentice Hall Software Series, Englewood Cliffs, NJ,

. alloc.
e haringy | 659| 438| 1,287 747| 21.7 1988,
jpeg | 4/4 | 190/ gen. alloc| 630| 465 1,023 632| 20.6| [13] Giovanni De Micheli, Hardware Synthesis from C/C+4in
oeplriIm%Iég)c 640 403| 1,025 637| 20.6 the proceeding of the Design, Automation and Test in Europe

DATE’'99, pp. 382-383, Munich, 1999.
Table 3: Results for the different examples and optimizations (size in [14] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolaudg-

library units using the tsmc.35 target library; frequency 100MHz for ory Issues in Embedded Systems-On-Chip : Optimizations and
test1 and test2, 50MHz for JPEG; CPU time measured on Sun Ultra2 Exploration” Kluwer Academic Pub, October 1998.
does not include high level synthesis) [15] P. J. Plauger,The Standard C library,Prentice Hall Software

6. CONCLUSION Series, Englewood Cliffs, NJ, 1991.

]) [16] Luc Séméria, Giovanni De MichelBpC: Synthesis of Pointers
We have presented an extension of the synthesizable C subsetjn C. Application of Pointer Analysis to the Behavioral Synthe-
to pointers andhalloc /free . The resolution of dynamic memory sjs from C”, proceedings of the International Conference on
allocation and pointers enables the implementation of complex data computer-Aided Design ICCAD'98, pp. 321-326, San Jose,
structures into hardware. Our solution fits into current application- Ngvember 98.

specific memory management methodology. In order to efﬁcienthi
partition the storage among the different data structures duri
analysis and synthesis, memory is representelddation sets
Dynamic memory allocation and deallocation are performed within
each user-definedemory segmenksy an optimized hardware allo-

7] Luc Séméria, Giovanni De MicheliEnhcoding of Pointers for

9 Hardware Synthesjsproceedings of the International Work-
shop on IP-based Synthesis and System Design IWLAS'98, pp
57-63, Grenoble, December 98.

cator [18] Bjarne SteensgaafBoint-to Analysis by Type Inference of
) .) . Programs with Structures and Unionsfyroceedings of the
Our tool SpC takes a C function with pointers aredloc / 1996 International Conference on Compiler Construction,

free and generates a Verilog module which can be synthesized by pp.136-150, April 96.
commercial tools. We provide a library of hardware allocators. The
different allocators are selected and optimized according to t
application and the memory architecture.

9] Kazutoshi WakabayashiC*based Synthesis with Behavioral
€ “Synthesizer, Cybgrproceedings of the Design, Automation
and Test in Europe DATE'99, pp. 390-391, Munich, 1999.

7. ACKNOWLEDGMENT [20] Robert Wilson;Efficient, Context-Sensitive Pointer Analysis
For C Programs’, PhD Dissertation, Stanford University, 1997.
This work was supported in part by Synopsys Inc. Koichi Satg1] Robert Wilson, Monica LantEfficient Context-Sensitive
was on leave from NEC Corporation. Pointer Analysis for C Programs”proceedings of the ACM

SIGPLAN'95 Conference on Programming Languages Design
8. REFERENCES and Implementation, pp.1-12, Jur?e 95. ’ 94 ’
[1] C Level Design, C2HDLhttp://www.cleveldesign.com/ [22] R.P.Wilson et al. Suif: An Infrastructure for Research on Par-
[2] CoWare, N2Chttp://www.covare.com/ allelizing and Optimizing CompileksACM SIPLAN Notices
[3] Frontier Design, A|rt Buildehttp://www.frontierd.com/ 28(9), pp-67-70, Sept. 1994.
[4] Silicon Access, DRAMatichttp://wwwsiliconaccess.com/ [23] Paul Wilson, Mark Johnstone, David BoleByhamic Storage
[5] Synopsys toolshttp://www.synopsys.com/ Allocation: A Survey and Critical Revigwpresented at Int.

Workshop Memory Management, Kinross, Scotland, Sept. 95.
;24] Sven Wuytack, Francky Catthoor, Hugo De Mafrahsform-

' ing set data types to power optimal data stuctUt&€E Tans-
Lode Nachtergaele, Amout Vandecappell@u$tom Mgmory actions on Computer Aided Design, pp. 619-629, June 1996.
Management MethodologyKluwer Academic Publishers, . . .
Dordrecht, June 98. [25] Sven Wuytack, Julio da Silva Jr., Francky Catthoor, Gjalt de
Jong, Chantal Ykman,Memory Management for Embedded
Network Applicationd transactions on Computer Aided
Design, Volume 18, number 5, pp 533-544, May 99.

[6] SystemC http://www.systemc.ay/
[7] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin Balas

[8] Alain Deutsh, ‘Interprocedural may-alias analysis for pointers:
Beyond k-limiting, proceedings of the ACM SIGPLAN'94

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

