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Abstract tion to the weights {0,0.5,1}, the method of [11] uses two
We describe a method for on-chip generation of weighted testweights denoted by,, andw,,. These weights correspond to
sequences for synchronous sequential circuits. For combinationaihe case where consecutive patterns are assigned complemented
circuits, three weights, 0, 0.5 and 1, are sufficient to achievevalues, i.e., 0 (1) in the first pattern and 1 (0) in the second pat-
complete coverage of stuck-at faults, since these weights are sutern. In the intersection of a subset of two-pattern tests, a weight
ficient to reproduce any specific test pattern. For sequential cir-0f Wy, (or wy) is used for input if input i changes from 0 to 1
cuits, the weights we use are defined based on subsequences of@f from 1 to 0) in a large number of tests.

deterministic test sequence. Such weights allow us to reproduce In this work, we describe an extension of the 3-weight
parts of the test sequence, and help ensure that complete faudtpproach of [10] and the 5-weight approaches of [11] and [15] to
coverage would be obtained by the weighted test sequences gesynchronous sequential circuits. Under the proposed scheme, a

erated. weight is represented by a subsequencand implemented by a
) finite-state machine (FSM) that produces the subsequence
1. Introduction repeatedly. For example, a weight of 001 is implemented by an

Methods to generate weighted pseudo-random patterns for comFSM that produces the subsequence 001 repeatedly, to obtain the
binational circuits were described in [1]-[15]. One of the meth- sequence (001001-001). The sequence repeated times is

ods that can be extended to sequential circuits is the one frontlenoted bya'. We describe the generation of the basic set of
[10]. This method is based on the use of three weights, 0, 0.5 an@veights and the selection of weight assignments for synchronous
1. A weight assignment wassociates one of these weights with sequential circuits based on a single deterministic test sequence
every primary input of the circuit. A preselected number of pat- given for the circuit.

ternsN is applied under every weight assignment. A weight of Due to the use of a deterministic test sequence to guide
0.5 assigned to an inpuby a weight assignment implies that the selection of weight assignments, the proposed method can
pseudo-random patterns are applied to inpuhile N test pat- achieve complete fault coverage for all the circuits considered.

terns are applied to the circuit; a weight of 0 assigned to input To reduce the number of weight assignments required to achieve
implies that input is held at O constantly for the test patterns; complete fault coverage, we explore the possibility of placing
and a weight of 1 assigned to inpumplies that inpui is held observation points to detect some of the faults.
at 1 constantly for thél test patterns. Different approaches to the on-chip generation of test
The weight assignments are computed in [10] based on asequences for synchronous sequential circuits were described in
deterministic test set. Each weight assignment is obtained by[16]-[22]. In the methods of [16]-[19], the on-chip test generator
intersecting a subset of deterministic test patterns. The intersecis connected only to the primary inputs of the circuit, and the
tion of identical values, 0 or 1, yields a weight of 0 or 1, respec-flip-flops are not affected. The methods of [16] and [17] rely
tively. The intersection of different values yields an unspecified only on on-chip test sequence generation, and do not guarantee
value (), which is translated into a weight of 0.5. that complete fault coverage would be achieved. The methods of
To apply this method to sequential circuits, a set of deter-[18] and [19] are based on storage of test sequences, and can
ministic test subsequences was used in [10]. The intersection othus guarantee complete fault coverage. The method of [18] uses
test subsequences yielded weight assignments that were used ineacoding of a deterministic test sequence to reduce memory
similar way to the ones for combinational circuits. However, for requirements. The method of [19] loads into an on-chip memory
sequential circuits, the intersection of a subset of test subsesubsequences of a deterministic test sequence, and then expands
quences of lengtivl results inM weight assignments that have them on-chip into complete test sequences for the circuit. The
to be used consecutively, and changed at every time unit. Thenethod proposed here has the advantages of the methods of [16]
need to change the weight assignment at every time unit is undeand [17] in that no storage of test patterns is required. It has the
sirable. In addition, this method is not applicable when a singleadvantages of the methods of [18] and [19] in that it achieves
test sequence is given for the circuit. complete fault coverage (or the same fault coverage achieved by
A more natural extension of the 3-weight approach to @ deterministic test sequence). The methods of [20]-[22] modify
synchronous sequential circuits is to use a basic set of weight§he circuit flip-flops. In [20], a subset of the flip-flops are incor-
that are capable of producing test subsequences. Methods witRorated into a partial scan @IST register and the resulting
extended sets of weights were described in [11] and [15] for theSequential circuit is tested using weighted random patterns. In

detection of delay faults, that require two-pattern tests. In addi-[21], @ hold mode is added to selected flip-flops. While a flip-
flop is in the hold mode, its value does not change. This mode is

+ Research supported in part by NSF Grant No. MIP-9725053. used in order to apply to the combinational logic of the circuit an
appropriately biased set of random patterns. In [22], partial reset




is used to bring the circuit into states that are required in order tosequence match&g perfectly at time units 8 and 9. In addition,
detect hard-to-detect faults. This work is supported by the theorythis sequence match&g at a total of 8 time units. Finally, using
developed in [23], where it was shown that the availability of Lg=3, we can repeat the subsequence 100 four times or
reset into one or more states is sufficient to detect every sequermmore to obtain the sequence (1001001001 This sequence
tially irredundant fault. The method proposed here belongs tomatchesT, perfectly at time units 7, 8 and 9. In addition, it
the first class of techniques that do not modify the circuit flip- matchesT, at a total of 7 time units. Of the three subsequences
flops. Thus, it avoids the routing overhead for controlling the 1, 01 and 100, the subsequence 01 results in the largest number

flip-flops, especially when the number of flip-flops is large. of matches withT,. Therefore, we select this subsequence to
The paper is organized as follows. In Section 2, we pre- define the weight for input= 0.
sent an example to demonstrate the proposed approach. In Sec- We continue to consider the other inputs in the same way.

tion 3, we describe the selection of basic weights from which For inputi = 1, the subsequences 0, 00 and 000 are the only sub-
weight assignments will be constructed, and the hardware genersequences of lengthis; = 1, 2 and 3 that allow perfect matching
ation of these weights. In Section 4, we describe the selection ofvith T, at the last_g time units until time unit 9. All these sub-
weight assignments, and the corresponding hardware implemensequences produce the same sequerice (0000000000- -)
tation. Experimental results are included in Section 5. Section 6that matched; at a total of seven time units. We select the sub-

concludes the paper. sequence O for inpuit= 1.
For inputi = 2, we select the subsequence 100 that results
2. Example in the sequence (10010010013). This sequence match&s per-

A test sequence for ISCAS-89 benchmark circus27 is shown fectly at time units 7, 8 and 9, and it matciigsat a total of six
in Table 1. For every time unit, the test pattern included at time units.

time unitu of T is denoted by (u). The test sequence shown in For inputi = 3, we select the subsequence 1 that results in
Table 1 detects all the stuck-at faults in the circuit. The faults arethe sequence (11111111:11). This sequence matchds per-
denoted by fo, fy, -+, f3;. The time unit where faultf is fectly at time unit 9, and it matchds at a total of seven time
detected byl is denoted byig( f), and referred to as thietec- units.
tion timeof f. Using the subsequences selected above to generate a
Table 1: A test sequence Table 2: A weighted sequence Sequence of length 12, we obtain the sequeRgeshown in
T(u) To(U) Table 2. This sequence detedtg as well as eight additional
uli=0 i=1i=2i=3 ul|i=0i=1i=2 i=3 faults.
The weights above were selected based on the subse-
0 0 1 1 1 0 0 0 1 1 guences that yielded the best matches with the sequéndes
1 1 0 0 1 1 1 0 0 1 also possible to use the second-best matches to obtain an addi-
2 0 1 1 1 2 0 0 0 1 tional test sequence. The second-best matches consist of the
3 1 0 0 1 3 1 0 1 1 subsequence 100 for input 0 that results in 7 matches, the subse-
4 0 1 0 0 4 0 0 0 1 guence 00 for input 1 that results in 7 matches, the subsequence
5 1 0 1 1 5 1 0 0 1 01 for input 2 that results in 5 matches, and the subsequence 100
6 1 0 0 1 6 0 0 1 1 for input 3 that results in 7 matches. Using these subsequences,
7 0 0 0 0 7 1 0 0 1 we obtain a weighted sequence that detects 4 additional faults.
8| O 0 0 0 8 0 0 0 1 Additional weight assignments can be used to detect the
9 1 0 1 1 9 1 0 1 1 remaining faults. We point out that certain subsequences result
10 0 0 0 1 in the same sequence after repetition. For exanaple,0 and
11 1 0 0 1 a, =00 result in the same sequence after repetition, -(0P0
. . Similarly, a; =01 anda, = 0101 result in the same sequence,
We useT; to denote the sequengerestricted to input. (010101 - ). However, for the purpose of selecting weight
Thus, T;(u) is the value assigned Ayto inputi at time unitu. In assignments, it is more convenient to keep these different subse-
Table 1,To = (0101011001)T, = (1010100000), and so on. guences even though they produce identical sequences when

Next, we consider weights represented by subsequencesepeated.
of lengthsLs =1, 2 and 3 in order to create weight assignments
and test sequences that detect the fauls2ef A weight repre- 3. Selection of Weights
sented by a subsequenzewhen assigned to an inpytimplies In this section, we first describe the hardware implementation of
that the sequence’ is assigned to inplit Therefore, a subse-  \yeights. We then describe a procedure for selecting weights.
quencea of lengthLs selected for input can be used to gener-  The construction of weight assignments is considered in the next
ate a sequence’ that matches the sequenEeperfectly at least  ggction.
at Lg time units. Our goal is to obtain perfect matches between A given weight represented by a subsequenizimple-
the sequences’ and T; around the detection times of faults, mented by an FSM that produces the sequencewo or more
thus maximizing the fault coverage achieved by each teStsubsequenceal, ay -+ ay of the same length can be imple-
sequence. Let us consider time unit 9 of T and the input  enieqd by the same FSM. For illustration, we show in Table 3
i =0 in Table 1. Two faults are detected at time unifg,and an FSM the produces the subsequences 00010, 01011 and 11001.
fi,. UsingLs =1 anda =1, and repeating at least ten imes,  After resetting the machine to sta® it will produce the

we obtain the sequeneg =(1111111111--) that matchesl, seguences (00070bn 010115 on z, and (11001) on
perfectly at time uniu =9, whereTo(u) = 1. In addition, this un?iluit i resfet agai?:. Z ( ) onz ( )on z,

sequence matche$, at a total of five time units where To implementm subsequences of lengths, we use an

To(u) = 1. UsingLg =2, we can repeat the subsequence01 . . .
five times or more to obtain the sequence (01010102DThis FSM with Lg states andn outputs. In the implementation of the



Table 3: An FSM for three weights

PS| NS| z z 1z
A B 0 0 1
B C 0 1 1
C D 0 0 0
D E 1 1 0
E A 0 1 1

machine, we haveldog, Ls[0 state variables and therefore
2Mo%LsUstates, onlyL g of them reachable from the initial state.

We use one FSM for every set of subsequences of the sam

applying a subsequeneestarting at time unit 0, and repeatimg
as many times as necessary. Our goal is to obfgin) = T,(u")
for 5< U’ < 8 (i.e., the sequenag’ produces the value &f, at
every time uniu’ such that = u' < 8). At an arbitrary time unit
u', the sequence’ has the vector included im at time unit
u'%Lg, where % is the modulo operation. For exampl€))
appears at time units Qg, 2Lg, - -- of the sequence’; a(1)
appears at time units Lg+1, 2Lg+1, - - - of the sequence’;
and so on. Thus, we determine based on the equation
To(Uu) =a"(u) =a(U%Lg) for 5< U’ < 8. Inthe example of the
subsequence 1100 at time units 5 to 8, we oltdBPo4)=
G(1)= To(5) =1, a(6%4)= a(2) = To(6) = 1, a(7%4)= a(3) =

length. Thus, in general, comparing output functions corre- To(7) = 0 anda(8%4)= a(0) = To(8) = 0, ora = 0110. Repeat-

sponding to subsequences of lengthg and Lg, such that

Lg, < Ls,, the following observations can be made. (1) If
Oog, L 0< Oog, Ls,0 then output functions corresponding to
subsequences of lenglhs require fewer state variables than
output functions corresponding to subsequences of leingth

(2) If Dog, Ls, 0= Oog, Lg,0 then output functions correspond-
ing to subsequences of lendtly have more unspecified values

because of unreachable states than output functions correspon

ing to subsequences of lendth,.

Based on the observations above, we prefer to use th
shortest possible subsequences in defining weight assignmen
for a given circuit. In addition, we would like to use the smallest

ing a, we obtain the sequence (01100110pwhich matched,
perfectly at time units 5 to 8. For input 1, we usex = 0000;
for inputi = 2, we user = 0100; for inpui = 3, we use the same
subsequence used fori =0. Each one of the subsequences
0110, 0000 and 0100 is added3o

If Sis extended using time unitandLg=u+1, Scon-
tains subsequences that allow us to reproducempletely up to
gime unit u. This guarantees the detection of all the faults
detected byl at time unitu or earlier. Wheru = L — 1, whereL
is the length of T, and Lg=u+1=L, the complete test

esequencé’ can be reproduced. In practice, complete fault cover-

t;§ge can be achieved with subsequences that are much shorter
thanT.

possible number of different subsequences. We achieve these

goals by considering the time units ©f at which faults are

detected, one at a time, until all the faults are detected. For ever)é
time unit u, we select subsequences of increasing length tha

allow us to reproducd& as closely as possible, with a perfect

match around time unit. We increase the subsequence length

until the subsequences we already selected allow us to detect
the faults detected by at time unitu. The details of the proce-
dure are given next.

We maintain a set of subsequen&svhich is initially
empty. We also maintain a set of fauRsthat contains all the
target faults which have not been detected yet. Initiédlgon-

tains all the target faults. At every iteration, we select a detection

time u and a lengthLg, and we extend by adding to it subse-

guences of lengths. We then construct weight assignments and

test sequences based on the new weightS, iand drop the
detected faults. The selection ofand the extension db are
done as follows.

We consider the largest time unifor which there exists
a yet-undetected fault O F such thaug(f) = u. The consid-

t

4. Selection of weight assignments

iven a set of weights (or subsequen&ajhd a maximum sub-
sequence lengthg, we describe in this section the selection of
weight assignments based 8n

aﬂ.l Selecting weight assignments

Weight assignments are constructed around the detectiorutime
of a yet-undetected fauft (the detection time is the time unit at
which f is detected by the given test sequefige Next, we
describe the selection of weight assignments for a given detec-
tion timeu of a yet-undetected fauft.

For every inpui and every subsequence length< L,
we find every subsequenee O S of length L5 that results in a
perfect match with the ladts time units ofT; until time unitu.
A perfect match is obtained ifT;(u")=a(u'%Ls) for
u-Ls+1<u <u. We denote byA the set of subsequences
out of Syielding perfect matches with the las§ time units of
T; until time unitu. For example, we conside27 with the
deterministic test sequence shown in Table 1, the set of weights

erations behind this choice are the following. Faults with higher ; = e -
detection times tend to be more difficult to detect, and their test> SPOWn in Table 4, antls = 3. Considering time unit 9 where
sequences tend to detect higher numbers of other faults. Once w&o is detected, we obtain the seﬁsshown in _Table 5. To the
define new subsequences and include the® ime also define left of each subsequence, we show its indeg |F|pr every sub-
weight assignments, and generate test sequences based on the?ﬁ.quencai,j - A".’ we compute the numbgr of “”?e 'unlts where
Faults detected by these test sequences are droppedFfrom @i matchesT,, ie., the number of time units’ where
Thus, starting from the detection times of the more difficult to @i;(U) = Ti(u'). We denote this number by,, and include it in
detect faults is likely to minimize the total number of subse- Table 5. We order the subsequences,iby decreasing value of
guences and the total number of weight assignments required t®m-
detect all the target faults.

After selecting a detection time, we generate subse- ‘

Table 4: A set of weights fors27
1 2 3 4 5 6 7 8 9

0
qguences of lengthkg=1, 2,--- that can be used to reproduce 0

: X i 1 00 10 01 11 o000 100 010 110
subsequences @f of lengthL s that end at time unit. The gen-
eration of subsequences of a given lerigétis demonstrated by . ‘ 10 1 12 13
the following example. We conside27 under the test sequence 6:1 ‘ 501 101 Ol il

given in Table 1. Lett =8 andLg =4. For inputi =0, the sub-
sequence of length 4 ending at time unit 8 is 1100. Based on our
approach, we can obtain this subsequence at time units 5 to 8 by



Table 5: The setsA, for s27 defined by the set4; are considered. Fav; to be considered, at

Ay A A, A least one subsequeneeg; included in it must be of lengthg.
j ‘ o Ny | ayi Mo | s, Nm | Qs N For every weight assignment that satisfies this condition, the pro-
5 (4)0le . (0)6 5 (751100 6 (1’;1 7 cedure generates a test sequehgef Igng_th Lg, WwhereLg is a
1| (100 7| (2)00 7| (4)01 5| (7)100 7 preselected constant. The sequefigeis simulated, and all the
2| (1 5| (6000 7| (1)1 4| (401 6 faults detected by are dropped fronF. The weight assign-

ments producing test sequences that are useful in detecting any

It is interesting to note that in Table 5, there is no apparentyet-undetected faults are stored in aGet
relationship between the number of matchgsand the lengths The worst-case complexity of the proposed procedure is
of the subsequences. In general, sorting the subsequencess follows. In the worst case, the procedure performs a number
according to decreasing value gf may place subsequences of of iterations equal to the number of target faulg, For every
smaller lengths higher in the list. This has an advantage in ensurfault, we derive at modt subsequences for every oneNof; pri-
ing that the test sequences generated have larger periods than theary inputs. The derivation of a subsequence has complexity
lengths of the individual subsequences they are made up of. O(L). Thus, we hav®(NgL?Np,) for the complexity of deriv-

Our goal in selecting the weight assignments is to maxi- ing the subsequences. For every possible subsequence llgngth
mize the number of matches, since this is likely to maximize thewe have at mostNp, weight assignments (since only weight
number of faults detected. Therefore, we start with a weightassignments that have at least one subsequence of lengtk
assignment based an, for every inputi. Since we keep the  considered). For each weight assignment, we fault simulate a
subsequences iy sorted by decreasing valuemy, a; o has the sequence of lengtih.g. The total complexity of simulation is
largest value ofy, of all the subsequences i. By selecting  therefore equal to the simulation G(NgLNp,) sequences of
a; o for every inputi, we select the weight assignment with the length Ls. The simulation effort is the dominant part of this
largest number of matches for all the inputs. &%, we select computation. We reduce it by first simulating a sample of faults
the weight assignment based on the subsequences 01, 0, 100 aHtder every sequendgs, including the fault for whichlg was
1. We generate a sequence based on this weight assignmerggnerated. If no fault out of the sample is detected, simulation of
fault simulate it, and drop the faults detected. $23t, the weight T stops.
assignment above results in the sequence of Table 2. Recall that )
the setsA; were computed based on the detection tiroéa yet- 4.3 Postprocessing
undetected faulf . If any fault f' with the same detection time The set of weight assignmerfisis constructed by first consider-
as f is left undetected, we consider next the weight assignmenting weight assignments based on short subsequences, and then
based ory; ; for every inputi. For s27, this implies the weight  extending the subsequence lengths as necessary to detect a yet-
assignment based on the subsequences 100, 00, 01 and l0@detected fault. This structure of the procedure is advantageous
Again, we generate a sequence based on this weight assignmerity ensuring that the subsequences used would be as short as pos-
fault simulate it, and drop the faults detected. We repeat this pro-sible. However, it may result in the inclusion ofédundant
cess using weight assignments basedi@s long as an unde- weight assignments if2. A weight assignmenQ; 0 Q is

tected fault f' exists with uge(f') =u. With every weight redundant if weight assignmeng ,Q,,,--- generated after
assignment we increase the valuejofThis ensures that new Q;, produce test sequences that detect all the faults detected by
weight assignments are considered at every iteration. the sequence based On. We remove redundant sequences from

In spite of the advantages of sorting the subsequences by) by performing reverse order simulation of the weight assign-
decreasing number of matches, the longest subsequences have gfents inQ. During this simulation process, the weight assign-
advantage in that their matches are obtained at the last time unitgents inQ are considered in reverse order of generation. When a
before the detection time of a yet-undetected target faufit weight assignmer®; is considered, the test sequefeebased
Duplicating T at the time units before the detection timefa on Q; is generated and fault simulated using the set of f&ults
likely to enable us to deteét To accommodate this observation, |ntially, F includes all the target faults. WheY) is considered,
om0y e 2 ol e rangng e ok a5l e s ot o etk b s tooed TnE 110
mentw, ={a ;1< < n} such that the length of;  is L for aults out ofF are detected by, thenQ; is removed fronf.
every inputi. If no such weight assignment exists, we redefine
A, for everyi by adding at its beginning the subsequence
ai,k O A1 W|th Iength LS-

4.4 Implementation

To implement a test sequence generator based on the et

use the structure shown in Figure 1. For the figure, we assume
that the circuit-under-tes€UT) has three inputd,, I, and|,,

and thatQ contains four weight assignmen@y,---,Q,. We
Assume tha®; consists of subsequences. Each subsequence
a;; is generated by an FSM as described in Section 3. The con-
trol inputs s, and s, come from a binary counter that advances
every L clock cycles, wherd; is the length of the sequence
Ts applied based on every weight assignment.

In the implementation above, we do not allow pseudo-
random sequences (&SR sequences) on the circuit inputs.
Adding this option is likely to reduce the number of subse-
guences that need to be generated.

4.2 Overall procedure
The overall procedure for selecting weight assignments proceed
as described next.

The procedure starts with the set of target fakbltson-
sisting of all the faults detected by the deterministic test
sequenceT. Considering the detection timesin decreasing
order, and allowing the subsequence lendgth$o increase start-
ing from Lg =1, the procedure first exten@&based oru and
Ls. It then constructs the set& by using subsequences of
length at most g included inS. Based on the set, the proce-
dure generates weight assignments of the foum =
{ai;:1<i<n}. However, not all the weight assignments



Table 6: Experimental results
o1 0o2003 Toa 011 012013 014 021 Up2023 0o

given seq proposed FSMs
circuit len det seq subs le num  out
coun S1 S1 S1 s208 105 137 10 39 1 14 38
ter | S 4.1 S, 4.1 S, 4.1 298 117 265 3 9 4 7 9
s344 57 329 9 60 8 56
Iy I I $382 516 364 5 15 21 9 15
s386 121 314 20 94 1 13 80
s400 611 380 4 12 15 8 12
s420 108 179 5 90 1 11 90
CuT s444 608 424 4 12 23 8 12
s526 1006 454 11 32 16 28 32
s641 101 404 10 145 1 10 127
Figure 1: A test sequence generator $820 491 814/ 14 244 8 28 236
s1196 238 1239 151 14 3 10
5. Experimental results s1423 1024 1414 15 223 201 46 219
We applied the proposed procedure to ISCAS-89 benchmark cirS1488 455 1444 6 46 22 16 46
cuits. The results are reported in this section. We report theS9378 646 3639 27 701 2 25 679
results of the proposed procedure when it is used to achievé3°932 150 35109 14 445 53 23 436

complete fault coverage, and then consider the proposed procesignificantly smaller than the number of subsequences. Never-
dure in conjunction with the insertion of observation points. theless, the number of FSMs may be large in some cases. For
Observation points are not necessary for achieving completesych cases, we explore the use of observation points to reduce
fault coverage; however, they can allow complete fault coveragethe number of weight assignments, and thus, the number of sub-
to be achieved with fewer We|ght a55|gnments. sequences and FSMs required_

_ The length of the test sequences generated based on each ~ The observation point insertion experiment proceeds as
weight assignment isLg =2000. As a deterministic test follows. We apply the proposed procedure to generate the set of
sequencd’, we use test sequences generated by the test generggeight assignment@ (before reverse order simulation). We then
tion proceduresSTRATEGATH24] and SEQCOM[25], and  select weight assignments out @fone at a time. Initially, we
compacted by static compaction. have an empty set of selected weight assignn®@ptsand a set

The results of the proposed procedure are reported inof faults F that contains all the target faults. We select the
Table 6. After the circuit name, we show the length of the testweight assignmen®; O Q that detects the largest number of
sequencd’, and the number of fault_s it detects. Under column fgylts out of F. We addQ; to Q;y, simulate the test sequence
proposed we show the results obtained by the proposed proce-gefined byQ;, and drop fromF all the faults it detects. This is
dure after reverse order simulation. We show the number of tes?epeated until all the faults i are detected.
sequences that detected yet-undetected faults, which is also the For every seD);,, we use observation points to increase
number of weight assignments includedrafter reverse order he fault coverage ac“kTileved By.,. To select the lines on which
smulatlon. Nex.t, we S.hOW the number of s.ubsequences tha bservation points will be inserted, we perform the following
define these weight assignments, and the maximum length of an omputation. For every fault [ F (F contains the faults not
of these subsequences. The fault coverage achieved by thgetected b)Q'- ), we compute a set of lin&P(f) such that if
weight assignments computed by the proposed procedure is thSn observati(m p,)oint is added on any ln&l OP(f), f will be

same as the fault coverage of the deterministic test seqliénce detected by one of the sequences define@py We then use a

every case. From Table 6.' it can be seen that the maX'mumcovering procedure to select a minimal number of lDBsuch
length of any subsequence is significantly shorter than the Iengtqhat for everyf O F, if OP(f) # @, OP contains at least one

Icgnthtﬁ (;etter;nc:lsqIiﬂ?efsgrzegﬂif?cci:htﬁ?g96r'0332263\/ueeinﬁ§>sd Otfest”ne out of OP(f). The setOP defines the set of observation
9 ; P 9 points for the circuit. [fOP contains a line out dDP(f), then f
sequences that achieve complete fault coverage.

Next ide inf i bout the ESM ired t is detected on one of the selected observation points.
. ext, we provide information about the S required to The results of the experiment above are reported in Tables
implement the weight assignments selected after reverse orde;_16

simulation. As discussed above, we implement all the subse- as follows. For everfly,, we report the following infor-

quences of the same length by a single FSM. The different Sub_mation. We show the number of test sequences used (which is

sequences of the same length are implemented by different ou also the number of weight assignment<i,), the number of

puts of the FSM. Thus, the number of FSMs is equal to thesubsequences defining these weight assignment, the length of the

number of different subsequence lengths, and the number of ou longest subsequence, and the fault efficiency achieved. The fault

. efficiency is defined as the number of faults detectedfy

puts for all the FSMs is equal_to the number of subsequences. I%Iivided by the number of faults detected @y Next, we show
son&e casgs, ;/_ve lobtaln two d|ffehrentﬂs]ubsequampeatdcéz tl?at the number of observation points added to the circuit based on
plro uce_| 8? ica jequ_engiglw end ey a;rhe repeated. For exansli"m’ and the fault efficiency achieved using these observation
pO(:aL’Oi(l)l_ ( )han ﬂz = ( ) produtl:e ehsame sequenlt_:e,_ points. We only report the results when the final fault efficiency
( ), when they are repeated. In such a case, we elimi-i;"gg, higher. For space considerations, we only report on
natea, and user; instead. Under columRSMsof Table 6, we some of the circuits considered in Table 6

show the number of FSMs required to implement all the weight . '

assignments, and the total number of outputs for all the FSMs. I[F As may be expected, there is a tradeoff between the num-

can be seen that the number of different FSMs is in most caseR€" Of Weight assignments selected, and the number of observa-
lon points required to improve the fault efficiency. In some



cases, there is a minimum number of weight assignments neceg®]

sary to allow 100% fault efficiency to be achieved by insertion of

observation points.

Note that the results in Tables 7-16 for 100% fault effi- (10!
ciency without observation points may be different from the
results of Table 6. This is because in Table 6, we used reversFll]
order simulation on the s€ produced by the proposed proce-
dure, whereas observation point insertion is done with a different
selection procedure for including weight assignmengg;jin [12]
6. Concluding remarks
We described a method for on-chip generation of weighted tesi13]
sequences for synchronous sequential circuits. The weights we
used were defined based on subsequences of a deterministic test
sequence. A weight represented by a subsequerssigned to
inputi implies that inpuf assumes the sequenteobtained by
repeatinga r times. The use of a deterministic test sequence to 15]
define the weights allowed us to reproduce parts of the tesl[
sequence, and helped ensure that complete fault coverage would
be obtained. We described a procedure for defining a set o 16]
weights from which weight assignments can be constructed, a
procedure for selecting weight assignments so as to detect target
faults, and presented experimental results to demonstrate thgh7
complete fault coverage can be achieved by this method. We also
investigated the tradeoff between the number of weight assign-
ments and the number of observation points required to achievé18]
complete fault coverage. The use of pure-random sequences as
part of the weight scheme, followed by the synthesis of the on-
chip test generation hardware, are the subject of future work.  [19]
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Table 7: Observation point insertion fors208

Table 13: Observation point insertion fors526

circuit seq sub len f.e. obs f.e. circuit seq sub len f.e. obs f.e.
s208 2 15 18 93.4 7 100.0 s526 1 3 138 95.4 18 100.0
3 20 18 95.6 4 100.0 2 6 161 96.9 14 100.0
4 23 18 97.8 3 100.0 3 9 161 98.0 9 100.0
5 26 18 98.5 2 100.0 4 12 161 98.5 7 100.0
6 28 18 99.3 1 100.0 5 15 161 98.9 5 100.0
7 30 18 100.0 0 100.0 6 18 161 99.3 3 100.0
Table 8: Observation point insertion fors298 ; 3‘11 121 ggg i 1888
circuit seq sub len fe. obs fe. 9 27 161 100.0 0 1000
$298 1 3 17 98.1 4 100.0 Table 14: Observation point insertion fors641
2 6 44 99.6 1 100.0
3 9 44 100.0 0 100.0  circuit seq sub len f.e. obs f.e.
Table 9: Observation point insertion fors344 s64l 43 9841 1100 9%%5 %2 l%%ooo
circuit | seq  sub  len f.e. obs fe. > 106 10 99.3 3 100.0
344 4 30 8 97.0 9 1000 6 18 10 99.7 1 1000
5 35 8 98.2 6 100.0 7 133 10 100.0 0 100.0
6 44 8 99.1 3 100.0 Table 15: Observation point insertion fors1423
7 53 8 99.7 1 100.0
8 57 8 100.0 0 100.0  circuit seq sub len f.e. obs f.e.
Table 10: Observation point insertion fors386 s1423 54 8%8 220011 9%84830 79 1%%00%0
circuit seq sub len fe. obs fe. 6 102 201 99.72 4 100.00
386 2 12 10 742 33 99.0 7118 201 99.86 2 100.00
3 19 14 79.9 26 99.4 8 135 201  99.93 1 100.00
4 21 14 85.7 20 99.4 9 150 201 100.00 0 100.00
5 24 14 88.8 17 99.7 Table 16: Observation point insertion fors5378
6 25 14 91.1 13 99.7
7 31 14 93.0 12 100.0 circuit seq sub len f.e. obs f.e.
8 38 14 94.6 10 100.0 s5378 2 64 24 94.17 78 99.20
9 41 14 95.5 8 100.0 3 89 24 96.70 39 99.81
10 47 14 96.5 7 100.0 5 155 24 97.86 31 100.00
12 56 14 97.8 6 100.0 6 189 24 98.13 30 100.00
13 63 14 98.1 5 100.0 7 223 24 98.38 27 100.00
14 66 14 98.4 4 100.0 8 253 24 98.60 20 100.00
16 75 14 99.0 3 100.0 9 286 24 98.82 19 100.00
17 82 14 99.4 2 100.0 10 320 24 99.04 17 100.00
18 88 14 99.7 1 100.0 11 338 24 99.23 12 100.00
19 91 14 100.0 0 100.0 12 372 24 99.37 11 100.00
Table 11: Observation point insertion fors400 12 igg gj gggg ? 18888
circuit seq  sub len fe. obs fe. 17 504 24 99.81 5  100.00
400 1 3 116 96.3 12 99.7 18 534 24 99.86 4 100.00
2 6 154 98.2 7 100.0 20 572 25 99.92 3 100.00
4 12 154 100.0 0 100.0 22 594 25 99.97 1 100.00
23 629 25 100.00 0 100.00
Table 12: Observation point insertion fors420
circuit seq sub len f.e. obs f.e.
s420 2 37 18 97.2 3 100.0
3 56 18 98.9 2 100.0
4 75 18 99.4 1 100.0
5 91 18 100.0 0 100.0
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