
-- --

Built-In Generation of Weighted Test Sequences for Synchronous Sequential Circuits+

Irith Pomeranz and Sudhakar M. Reddy
Electrical and Computer Engineering Department

University of Iowa
Iowa City, IA 52242, U.S.A.

Abstract
We describe a method for on-chip generation of weighted test
sequences for synchronous sequential circuits. For combinational
circuits, three weights, 0, 0.5 and 1, are sufficient to achieve
complete coverage of stuck-at faults, since these weights are suf-
ficient to reproduce any specific test pattern. For sequential cir-
cuits, the weights we use are defined based on subsequences of a
deterministic test sequence. Such weights allow us to reproduce
parts of the test sequence, and help ensure that complete fault
coverage would be obtained by the weighted test sequences gen-
erated.

1. Introduction
Methods to generate weighted pseudo-random patterns for com-
binational circuits were described in [1]-[15]. One of the meth-
ods that can be extended to sequential circuits is the one from
[10]. This method is based on the use of three weights, 0, 0.5 and
1. A weight assignment wassociates one of these weights with
every primary input of the circuit. A preselected number of pat-
ternsN is applied under every weight assignment. A weight of
0.5 assigned to an inputi by a weight assignmentw implies that
pseudo-random patterns are applied to inputi while N test pat-
terns are applied to the circuit; a weight of 0 assigned to inputi
implies that inputi is held at 0 constantly for theN test patterns;
and a weight of 1 assigned to inputi implies that inputi is held
at 1 constantly for theN test patterns.

The weight assignments are computed in [10] based on a
deterministic test set. Each weight assignment is obtained by
intersecting a subset of deterministic test patterns. The intersec-
tion of identical values, 0 or 1, yields a weight of 0 or 1, respec-
tively. The intersection of different values yields an unspecified
value (x), which is translated into a weight of 0.5.

To apply this method to sequential circuits, a set of deter-
ministic test subsequences was used in [10]. The intersection of
test subsequences yielded weight assignments that were used in a
similar way to the ones for combinational circuits. However, for
sequential circuits, the intersection of a subset of test subse-
quences of lengthM results inM weight assignments that have
to be used consecutively, and changed at every time unit. The
need to change the weight assignment at every time unit is unde-
sirable. In addition, this method is not applicable when a single
test sequence is given for the circuit.

A more natural extension of the 3-weight approach to
synchronous sequential circuits is to use a basic set of weights
that are capable of producing test subsequences. Methods with
extended sets of weights were described in [11] and [15] for the
detection of delay faults, that require two-pattern tests. In addi-

+ Research supported in part by NSF Grant No. MIP-9725053.

tion to the weights {0,0.5,1}, the method of [11] uses two
weights denoted byw01 and w10. These weights correspond to
the case where consecutive patterns are assigned complemented
values, i.e., 0 (1) in the first pattern and 1 (0) in the second pat-
tern. In the intersection of a subset of two-pattern tests, a weight
of w01 (or w10) is used for inputi if input i changes from 0 to 1
(or from 1 to 0) in a large number of tests.

In this work, we describe an extension of the 3-weight
approach of [10] and the 5-weight approaches of [11] and [15] to
synchronous sequential circuits. Under the proposed scheme, a
weight is represented by a subsequenceα , and implemented by a
finite-state machine (FSM) that produces the subsequenceα
repeatedly. For example, a weight of 001 is implemented by an
FSM that produces the subsequence 001 repeatedly, to obtain the
sequence (001001. . .001). The sequenceα repeatedr times is
denoted byα r . We describe the generation of the basic set of
weights and the selection of weight assignments for synchronous
sequential circuits based on a single deterministic test sequence
given for the circuit.

Due to the use of a deterministic test sequence to guide
the selection of weight assignments, the proposed method can
achieve complete fault coverage for all the circuits considered.
To reduce the number of weight assignments required to achieve
complete fault coverage, we explore the possibility of placing
observation points to detect some of the faults.

Different approaches to the on-chip generation of test
sequences for synchronous sequential circuits were described in
[16]-[22]. In the methods of [16]-[19], the on-chip test generator
is connected only to the primary inputs of the circuit, and the
flip-flops are not affected. The methods of [16] and [17] rely
only on on-chip test sequence generation, and do not guarantee
that complete fault coverage would be achieved. The methods of
[18] and [19] are based on storage of test sequences, and can
thus guarantee complete fault coverage. The method of [18] uses
encoding of a deterministic test sequence to reduce memory
requirements. The method of [19] loads into an on-chip memory
subsequences of a deterministic test sequence, and then expands
them on-chip into complete test sequences for the circuit. The
method proposed here has the advantages of the methods of [16]
and [17] in that no storage of test patterns is required. It has the
advantages of the methods of [18] and [19] in that it achieves
complete fault coverage (or the same fault coverage achieved by
a deterministic test sequence). The methods of [20]-[22] modify
the circuit flip-flops. In [20], a subset of the flip-flops are incor-
porated into a partial scan orBIST register and the resulting
sequential circuit is tested using weighted random patterns. In
[21], a hold mode is added to selected flip-flops. While a flip-
flop is in the hold mode, its value does not change. This mode is
used in order to apply to the combinational logic of the circuit an
appropriately biased set of random patterns. In [22], partial reset

-- --

is used to bring the circuit into states that are required in order to
detect hard-to-detect faults. This work is supported by the theory
developed in [23], where it was shown that the availability of
reset into one or more states is sufficient to detect every sequen-
tially irredundant fault. The method proposed here belongs to
the first class of techniques that do not modify the circuit flip-
flops. Thus, it avoids the routing overhead for controlling the
flip-flops, especially when the number of flip-flops is large.

The paper is organized as follows. In Section 2, we pre-
sent an example to demonstrate the proposed approach. In Sec-
tion 3, we describe the selection of basic weights from which
weight assignments will be constructed, and the hardware gener-
ation of these weights. In Section 4, we describe the selection of
weight assignments, and the corresponding hardware implemen-
tation. Experimental results are included in Section 5. Section 6
concludes the paper.

2. Example
A test sequenceT for ISCAS-89 benchmark circuits27 is shown
in Table 1. For every time unitu, the test pattern included at
time unitu of T is denoted byT(u). The test sequence shown in
Table 1 detects all the stuck-at faults in the circuit. The faults are
denoted by f0, f1, . . . , f31. The time unit where faultf is
detected byT is denoted byudet(f), and referred to as thedetec-
tion timeof f .

Table 1: A test sequence Table 2: A weighted sequence
T(u) TG(u)

u i = 0 i = 1 i = 2 i = 3 u i = 0 i = 1 i = 2 i = 3

0 0 1 1 1 0 0 0 1 1
1 1 0 0 1 1 1 0 0 1
2 0 1 1 1 2 0 0 0 1
3 1 0 0 1 3 1 0 1 1
4 0 1 0 0 4 0 0 0 1
5 1 0 1 1 5 1 0 0 1
6 1 0 0 1 6 0 0 1 1
7 0 0 0 0 7 1 0 0 1
8 0 0 0 0 8 0 0 0 1
9 1 0 1 1 9 1 0 1 1

10 0 0 0 1
11 1 0 0 1

We useTi to denote the sequenceT restricted to inputi .
Thus,Ti (u) is the value assigned byT to inputi at time unitu. In
Table 1,T0 = (0101011001),T1 = (1010100000), and so on.

Next, we consider weights represented by subsequences
of lengthsLS = 1, 2 and 3 in order to create weight assignments
and test sequences that detect the faults ofs27. A weight repre-
sented by a subsequenceα , when assigned to an inputi , implies
that the sequenceα r is assigned to inputi . Therefore, a subse-
quenceα of lengthLS selected for inputi can be used to gener-
ate a sequenceα r that matches the sequenceTi perfectly at least
at LS time units. Our goal is to obtain perfect matches between
the sequencesα r and Ti around the detection times of faults,
thus maximizing the fault coverage achieved by each test
sequence. Let us consider time unitu = 9 of T and the input
i = 0 in Table 1. Two faults are detected at time unit 9,f10 and
f12. Using LS = 1 andα = 1, and repeatingα at least ten times,
we obtain the sequenceα r = (1111111111. . .) that matchesT0
perfectly at time unitu = 9, whereT0(u) = 1. In addition, this
sequence matchesT0 at a total of five time units where
T0(u) = 1. UsingLS = 2, we can repeat the subsequenceα = 01
five times or more to obtain the sequence (0101010101. . .).This

sequence matchesT0 perfectly at time units 8 and 9. In addition,
this sequence matchesT0 at a total of 8 time units. Finally, using
LS = 3, we can repeat the subsequenceα = 100 four times or
more to obtain the sequence (1001001001. . .). This sequence
matchesT0 perfectly at time units 7, 8 and 9. In addition, it
matchesT0 at a total of 7 time units. Of the three subsequences
1, 01 and 100, the subsequence 01 results in the largest number
of matches withT0. Therefore, we select this subsequence to
define the weight for inputi = 0.

We continue to consider the other inputs in the same way.
For inputi = 1, the subsequences 0, 00 and 000 are the only sub-
sequences of lengthsLS = 1, 2 and 3 that allow perfect matching
with T1 at the lastLS time units until time unit 9. All these sub-
sequences produce the same sequenceα r = (0000000000. . .)
that matchesT1 at a total of seven time units. We select the sub-
sequence 0 for inputi = 1.

For inputi = 2, we select the subsequence 100 that results
in the sequence (1001001001. . .). This sequence matchesT2 per-
fectly at time units 7, 8 and 9, and it matchesT2 at a total of six
time units.

For inputi = 3, we select the subsequence 1 that results in
the sequence (1111111111. . .). This sequence matchesT3 per-
fectly at time unit 9, and it matchesT3 at a total of seven time
units.

Using the subsequences selected above to generate a
sequence of length 12, we obtain the sequenceTG shown in
Table 2. This sequence detectsf10 as well as eight additional
faults.

The weights above were selected based on the subse-
quences that yielded the best matches with the sequencesTi . It is
also possible to use the second-best matches to obtain an addi-
tional test sequence. The second-best matches consist of the
subsequence 100 for input 0 that results in 7 matches, the subse-
quence 00 for input 1 that results in 7 matches, the subsequence
01 for input 2 that results in 5 matches, and the subsequence 100
for input 3 that results in 7 matches. Using these subsequences,
we obtain a weighted sequence that detects 4 additional faults.

Additional weight assignments can be used to detect the
remaining faults. We point out that certain subsequences result
in the same sequence after repetition. For example,α1 = 0 and
α2 = 00 result in the same sequence after repetition, (000. . .).
Similarly, α1 = 01 andα2 = 0101 result in the same sequence,
(010101. . .). However, for the purpose of selecting weight
assignments, it is more convenient to keep these different subse-
quences even though they produce identical sequences when
repeated.

3. Selection of weights
In this section, we first describe the hardware implementation of
weights. We then describe a procedure for selecting weights.
The construction of weight assignments is considered in the next
section.

A given weight represented by a subsequenceα is imple-
mented by an FSM that produces the sequenceα . Two or more
subsequencesα1, α2, . . ., α m of the same length can be imple-
mented by the same FSM. For illustration, we show in Table 3
an FSM the produces the subsequences 00010, 01011 and 11001.
After resetting the machine to stateA, it will produce the
sequences (00010)r on z1, (01011)r on z2 and (11001)r on z3,
until it is reset again.

To implementm subsequences of lengthLS, we use an
FSM with LS states andm outputs. In the implementation of the

-- --

Table 3: An FSM for three weights

PS NS z1 z2 z3

A B 0 0 1
B C 0 1 1
C D 0 0 0
D E 1 1 0
E A 0 1 1

machine, we have log2 LS state variables and therefore

2 log2 LS states, onlyLS of them reachable from the initial state.
We use one FSM for every set of subsequences of the same
length. Thus, in general, comparing output functions corre-
sponding to subsequences of lengthsLS1

and LS2
such that

LS1
< LS2

, the following observations can be made. (1) If
 log2 LS1

 <  log2 LS2
, then output functions corresponding to

subsequences of lengthLS1
require fewer state variables than

output functions corresponding to subsequences of lengthLS2
.

(2) If  log2 LS1
 =  log2 LS2

, then output functions correspond-
ing to subsequences of lengthLS1

have more unspecified values
because of unreachable states than output functions correspond-
ing to subsequences of lengthLS2

.
Based on the observations above, we prefer to use the

shortest possible subsequences in defining weight assignments
for a given circuit. In addition, we would like to use the smallest
possible number of different subsequences. We achieve these
goals by considering the time units ofT, at which faults are
detected, one at a time, until all the faults are detected. For every
time unit u, we select subsequences of increasing length that
allow us to reproduceT as closely as possible, with a perfect
match around time unitu. We increase the subsequence length
until the subsequences we already selected allow us to detect all
the faults detected byT at time unitu. The details of the proce-
dure are given next.

We maintain a set of subsequencesS which is initially
empty. We also maintain a set of faultsF that contains all the
target faults which have not been detected yet. Initially,F con-
tains all the target faults. At every iteration, we select a detection
time u and a lengthLS, and we extendS by adding to it subse-
quences of lengthLS. We then construct weight assignments and
test sequences based on the new weights inS, and drop the
detected faults. The selection ofu and the extension ofS are
done as follows.

We consider the largest time unitu for which there exists
a yet-undetected faultf ∈ F such thatudet(f) = u. The consid-
erations behind this choice are the following. Faults with higher
detection times tend to be more difficult to detect, and their test
sequences tend to detect higher numbers of other faults. Once we
define new subsequences and include them inS, we also define
weight assignments, and generate test sequences based on them.
Faults detected by these test sequences are dropped fromF.
Thus, starting from the detection times of the more difficult to
detect faults is likely to minimize the total number of subse-
quences and the total number of weight assignments required to
detect all the target faults.

After selecting a detection timeu, we generate subse-
quences of lengthsLS = 1, 2,. . . that can be used to reproduce
subsequences ofT of lengthLS that end at time unitu. The gen-
eration of subsequences of a given lengthLS is demonstrated by
the following example. We considers27 under the test sequence
given in Table 1. Letu = 8 andLS = 4. For inputi = 0, the sub-
sequence of length 4 ending at time unit 8 is 1100. Based on our
approach, we can obtain this subsequence at time units 5 to 8 by

applying a subsequenceα starting at time unit 0, and repeatingα
as many times as necessary. Our goal is to obtainα r (u′) = T0(u′)
for 5 ≤ u′ ≤ 8 (i.e., the sequenceα r produces the value ofT0 at
every time unitu′ such that 5≤ u′ ≤ 8). At an arbitrary time unit
u′, the sequenceα r has the vector included inα at time unit
u′%LS, where % is the modulo operation. For example,α (0)
appears at time units 0,LS, 2LS, . . . of the sequenceα r ; α (1)
appears at time units 1,LS + 1, 2LS + 1, . . . of the sequenceα r ;
and so on. Thus, we determineα based on the equation
T0(u′) = α r (u′) = α (u′%LS) for 5 ≤ u′ ≤ 8. In the example of the
subsequence 1100 at time units 5 to 8, we obtainα (5%4)=
α (1) = T0(5) = 1, α (6%4)= α (2) = T0(6) = 1, α (7%4)= α (3) =
T0(7) = 0 andα (8%4)= α (0) = T0(8) = 0, orα = 0110. Repeat-
ing α , we obtain the sequence (011001100. . .) which matchesT0
perfectly at time units 5 to 8. For inputi = 1, we useα = 0000;
for input i = 2, we useα = 0100; for inputi = 3, we use the same
subsequenceα used for i = 0. Each one of the subsequences
0110, 0000 and 0100 is added toS.

If S is extended using time unitu and LS = u + 1, S con-
tains subsequences that allow us to reproduceT completely up to
time unit u. This guarantees the detection of all the faults
detected byT at time unitu or earlier. Whenu = L − 1, whereL
is the length of T, and LS = u + 1 = L, the complete test
sequenceT can be reproduced. In practice, complete fault cover-
age can be achieved with subsequences that are much shorter
thanT.

4. Selection of weight assignments
Given a set of weights (or subsequences)S and a maximum sub-
sequence lengthLS, we describe in this section the selection of
weight assignments based onS.

4.1 Selecting weight assignments
Weight assignments are constructed around the detection timeu
of a yet-undetected faultf (the detection time is the time unit at
which f is detected by the given test sequenceT). Next, we
describe the selection of weight assignments for a given detec-
tion timeu of a yet-undetected faultf .

For every inputi and every subsequence lengthL′S ≤ LS,
we find every subsequenceα ∈ S of length L′S that results in a
perfect match with the lastL′S time units ofTi until time unitu.
A perfect match is obtained ifTi (u′) = α (u′%L′S) for
u − L′S + 1 ≤ u′ ≤ u. We denote byAi the set of subsequences
out of S yielding perfect matches with the lastL′S time units of
Ti until time unit u. For example, we considers27 with the
deterministic test sequence shown in Table 1, the set of weights
S shown in Table 4, andLS = 3. Considering time unit 9 where
f10 is detected, we obtain the setsAi shown in Table 5. To the
left of each subsequence, we show its index inS. For every sub-
sequenceα i , j ∈ Ai , we compute the number of time units where
α r

i , j matches Ti , i.e., the number of time unitsu′ where
α r

i , j (u′) = Ti (u′). We denote this number bynm, and include it in
Table 5. We order the subsequences inAi by decreasing value of
nm.

Table 4: A set of weights fors27

j 0 1 2 3 4 5 6 7 8 9
α j 0 1 00 10 01 11 000 100 010 110

j 10 11 12 13
α j 001 101 011 111

-- --

Table 5: The setsAi for s27

A0 A1 A2 A3
j α0, j nm α1, j nm α2, j nm α3, j nm

0 (4)01 8 (0)0 7 (7)100 6 (1)1 7
1 (7)100 7 (2)00 7 (4)01 5 (7)100 7
2 (1)1 5 (6)000 7 (1)1 4 (4)01 6

It is interesting to note that in Table 5, there is no apparent
relationship between the number of matchesnm and the lengths
of the subsequences. In general, sorting the subsequences
according to decreasing value ofnm may place subsequences of
smaller lengths higher in the list. This has an advantage in ensur-
ing that the test sequences generated have larger periods than the
lengths of the individual subsequences they are made up of.

Our goal in selecting the weight assignments is to maxi-
mize the number of matches, since this is likely to maximize the
number of faults detected. Therefore, we start with a weight
assignment based onα i ,0 for every inputi . Since we keep the
subsequences inAi sorted by decreasing value ofnm, α i ,0 has the
largest value ofnm of all the subsequences inAi . By selecting
α i ,0 for every inputi , we select the weight assignment with the
largest number of matches for all the inputs. Fors27, we select
the weight assignment based on the subsequences 01, 0, 100 and
1. We generate a sequence based on this weight assignment,
fault simulate it, and drop the faults detected. Fors27, the weight
assignment above results in the sequence of Table 2. Recall that
the setsAi were computed based on the detection timeu of a yet-
undetected faultf . If any fault f ′ with the same detection time
as f is left undetected, we consider next the weight assignment
based onα i ,1 for every inputi . For s27, this implies the weight
assignment based on the subsequences 100, 00, 01 and 100.
Again, we generate a sequence based on this weight assignment,
fault simulate it, and drop the faults detected. We repeat this pro-
cess using weight assignments based onu as long as an unde-
tected fault f ′ exists with udet(f ′) = u. With every weight
assignment we increase the value ofj . This ensures that new
weight assignments are considered at every iteration.

In spite of the advantages of sorting the subsequences by
decreasing number of matches, the longest subsequences have an
advantage in that their matches are obtained at the last time units
before the detection timeu of a yet-undetected target faultf .
DuplicatingT at the time units before the detection time off is
likely to enable us to detectf . To accommodate this observation,
we modify the setsAi as follows. After arranging the setsAi as
described above, we check whether there exists a weight assign-
ment wj = {α i , j : 1 ≤ i ≤ n} such that the length ofα i , j is LS for
every inputi . If no such weight assignment exists, we redefine
Ai for every i by adding at its beginning the subsequence
α i ,k ∈ Ai with lengthLS.

4.2 Overall procedure
The overall procedure for selecting weight assignments proceeds
as described next.

The procedure starts with the set of target faultsF con-
sisting of all the faults detected by the deterministic test
sequenceT. Considering the detection timesu in decreasing
order, and allowing the subsequence lengthsLS to increase start-
ing from LS = 1, the procedure first extendsS based onu and
LS. It then constructs the setsAi by using subsequences of
length at mostLS included inS. Based on the setsAi , the proce-
dure generates weight assignments of the formwj =
{α i , j : 1 ≤ i ≤ n}. However, not all the weight assignments

defined by the setsAi are considered. Forwj to be considered, at
least one subsequenceα i , j included in it must be of lengthLS.
For every weight assignment that satisfies this condition, the pro-
cedure generates a test sequenceTG of lengthLG, whereLG is a
preselected constant. The sequenceTG is simulated, and all the
faults detected byTG are dropped fromF. The weight assign-
ments producing test sequences that are useful in detecting any
yet-undetected faults are stored in a setΩ.

The worst-case complexity of the proposed procedure is
as follows. In the worst case, the procedure performs a number
of iterations equal to the number of target faults,NF. For every
fault, we derive at mostL subsequences for every one ofNPI pri-
mary inputs. The derivation of a subsequence has complexity
O(L). Thus, we haveO(NF L2NPI) for the complexity of deriv-
ing the subsequences. For every possible subsequence lengthLS,
we have at mostNPI weight assignments (since only weight
assignments that have at least one subsequence of lengthLS are
considered). For each weight assignment, we fault simulate a
sequence of lengthLG. The total complexity of simulation is
therefore equal to the simulation ofO(NF LNPI) sequences of
length LG. The simulation effort is the dominant part of this
computation. We reduce it by first simulating a sample of faults
under every sequenceTG, including the fault for whichTG was
generated. If no fault out of the sample is detected, simulation of
TG stops.

4.3 Postprocessing
The set of weight assignmentsΩ is constructed by first consider-
ing weight assignments based on short subsequences, and then
extending the subsequence lengths as necessary to detect a yet-
undetected fault. This structure of the procedure is advantageous
in ensuring that the subsequences used would be as short as pos-
sible. However, it may result in the inclusion ofredundant
weight assignments inΩ. A weight assignmentΩ j ∈ Ω is
redundant if weight assignmentsΩk1

, Ωk2
, . . ., generated after

Ω j , produce test sequences that detect all the faults detected by
the sequence based onΩ j . We remove redundant sequences from
Ω by performing reverse order simulation of the weight assign-
ments inΩ. During this simulation process, the weight assign-
ments inΩ are considered in reverse order of generation. When a
weight assignmentΩ j is considered, the test sequenceTG based
on Ω j is generated and fault simulated using the set of faultsF.
Initially, F includes all the target faults. WhenΩ j is considered,
all the faults out ofF detected byTG are dropped fromF. If no
faults out ofF are detected byTG, thenΩ j is removed fromΩ.

4.4 Implementation
To implement a test sequence generator based on the setΩ, we
use the structure shown in Figure 1. For the figure, we assume
that the circuit-under-test (CUT) has three inputs,I0, I1 and I2,
and thatΩ contains four weight assignments,Ω1, . . . , Ω4. We
assume thatΩ j consists of subsequencesα i , j . Each subsequence
α i , j is generated by an FSM as described in Section 3. The con-
trol inputs s1 and s2 come from a binary counter that advances
every LG clock cycles, whereLG is the length of the sequence
TG applied based on every weight assignment.

In the implementation above, we do not allow pseudo-
random sequences (orLFSR sequences) on the circuit inputs.
Adding this option is likely to reduce the number of subse-
quences that need to be generated.

-- --

CUT

coun
ter 4→1 4→1 4→1

s1

s2

s1

s2

s1

s2

I0 I1 I2

α0,1 α0,2α0,3 α0,4 α1,1 α1,2α1,3 α1,4 α2,1 α2,2α2,3 α2,4

Figure 1: A test sequence generator

5. Experimental results
We applied the proposed procedure to ISCAS-89 benchmark cir-
cuits. The results are reported in this section. We report the
results of the proposed procedure when it is used to achieve
complete fault coverage, and then consider the proposed proce-
dure in conjunction with the insertion of observation points.
Observation points are not necessary for achieving complete
fault coverage; however, they can allow complete fault coverage
to be achieved with fewer weight assignments.

The length of the test sequences generated based on each
weight assignment isLG = 2000. As a deterministic test
sequenceT, we use test sequences generated by the test genera-
tion proceduresSTRATEGATE[24] and SEQCOM [25], and
compacted by static compaction.

The results of the proposed procedure are reported in
Table 6. After the circuit name, we show the length of the test
sequenceT, and the number of faults it detects. Under column
proposed, we show the results obtained by the proposed proce-
dure after reverse order simulation. We show the number of test
sequences that detected yet-undetected faults, which is also the
number of weight assignments included inΩ after reverse order
simulation. Next, we show the number of subsequences that
define these weight assignments, and the maximum length of any
of these subsequences. The fault coverage achieved by the
weight assignments computed by the proposed procedure is the
same as the fault coverage of the deterministic test sequenceT in
every case. From Table 6, it can be seen that the maximum
length of any subsequence is significantly shorter than the length
of the deterministic test sequence. Fors1196, subsequences of
length at most three are sufficient to produce weighted test
sequences that achieve complete fault coverage.

Next, we provide information about the FSMs required to
implement the weight assignments selected after reverse order
simulation. As discussed above, we implement all the subse-
quences of the same length by a single FSM. The different sub-
sequences of the same length are implemented by different out-
puts of the FSM. Thus, the number of FSMs is equal to the
number of different subsequence lengths, and the number of out-
puts for all the FSMs is equal to the number of subsequences. In
some cases, we obtain two different subsequencesα1 andα2 that
produce identical sequences when they are repeated. For exam-
ple, α1 = (01) and α2 = (0101) produce the same sequence,
(010101. . .), when they are repeated. In such a case, we elimi-
nateα2 and useα1 instead. Under columnFSMsof Table 6, we
show the number of FSMs required to implement all the weight
assignments, and the total number of outputs for all the FSMs. It
can be seen that the number of different FSMs is in most cases

Table 6: Experimental results

given seq proposed FSMs
circuit len det seq subs len num out
s208 105 137 10 39 18 14 38
s298 117 265 3 9 44 7 9
s344 57 329 9 60 8 8 56
s382 516 364 5 15 211 9 15
s386 121 314 20 94 14 13 80
s400 611 380 4 12 154 8 12
s420 108 179 5 90 18 11 90
s444 608 424 4 12 231 8 12
s526 1006 454 11 32 161 28 32
s641 101 404 10 145 10 10 127
s820 491 814 14 244 86 28 236
s1196 238 1239 151 14 3 3 10
s1423 1024 1414 15 223 201 46 219
s1488 455 1444 6 46 225 16 46
s5378 646 3639 27 701 25 25 679
s35932 150 35100 14 445 53 23 436

significantly smaller than the number of subsequences. Never-
theless, the number of FSMs may be large in some cases. For
such cases, we explore the use of observation points to reduce
the number of weight assignments, and thus, the number of sub-
sequences and FSMs required.

The observation point insertion experiment proceeds as
follows. We apply the proposed procedure to generate the set of
weight assignmentsΩ (before reverse order simulation). We then
select weight assignments out ofΩ one at a time. Initially, we
have an empty set of selected weight assignmentsΩlim, and a set
of faults F that contains all the target faults. We select the
weight assignmentΩ j ∈ Ω that detects the largest number of
faults out ofF. We addΩ j to Ωlim, simulate the test sequence
defined byΩ j , and drop fromF all the faults it detects. This is
repeated until all the faults inF are detected.

For every setΩlim, we use observation points to increase
the fault coverage achieved byΩlim. To select the lines on which
observation points will be inserted, we perform the following
computation. For every faultf ∈ F (F contains the faults not
detected byΩlim), we compute a set of linesOP(f) such that if
an observation point is added on any lineg ∈ OP(f), f will be
detected by one of the sequences defined byΩlim. We then use a
covering procedure to select a minimal number of linesOP such
that for every f ∈ F, if OP(f) ≠ φ , OP contains at least one
line out of OP(f). The setOP defines the set of observation
points for the circuit. IfOP contains a line out ofOP(f), then f
is detected on one of the selected observation points.

The results of the experiment above are reported in Tables
7-16 as follows. For everyΩlim, we report the following infor-
mation. We show the number of test sequences used (which is
also the number of weight assignments inΩlim), the number of
subsequences defining these weight assignment, the length of the
longest subsequence, and the fault efficiency achieved. The fault
efficiency is defined as the number of faults detected byΩlim
divided by the number of faults detected byΩ. Next, we show
the number of observation points added to the circuit based on
Ωlim, and the fault efficiency achieved using these observation
points. We only report the results when the final fault efficiency
is 99% or higher. For space considerations, we only report on
some of the circuits considered in Table 6.

As may be expected, there is a tradeoff between the num-
ber of weight assignments selected, and the number of observa-
tion points required to improve the fault efficiency. In some

-- --

cases, there is a minimum number of weight assignments neces-
sary to allow 100% fault efficiency to be achieved by insertion of
observation points.

Note that the results in Tables 7-16 for 100% fault effi-
ciency without observation points may be different from the
results of Table 6. This is because in Table 6, we used reverse
order simulation on the setΩ produced by the proposed proce-
dure, whereas observation point insertion is done with a different
selection procedure for including weight assignments inΩlim.

6. Concluding remarks
We described a method for on-chip generation of weighted test
sequences for synchronous sequential circuits. The weights we
used were defined based on subsequences of a deterministic test
sequence. A weight represented by a subsequenceα assigned to
input i implies that inputi assumes the sequenceα r obtained by
repeatingα r times. The use of a deterministic test sequence to
define the weights allowed us to reproduce parts of the test
sequence, and helped ensure that complete fault coverage would
be obtained. We described a procedure for defining a set of
weights from which weight assignments can be constructed, a
procedure for selecting weight assignments so as to detect target
faults, and presented experimental results to demonstrate that
complete fault coverage can be achieved by this method. We also
investigated the tradeoff between the number of weight assign-
ments and the number of observation points required to achieve
complete fault coverage. The use of pure-random sequences as
part of the weight scheme, followed by the synthesis of the on-
chip test generation hardware, are the subject of future work.

References
[1] H. D. Shnurmann, E. Lindbloom and R.G. Carpenter, "The

weighted Random Test-Pattern Generator", IEEE Trans. on Com-
puters, pp. 695-700, July 1975.

[2] R. Lisanke, F. Brglez, A. De Geus and D. Gregory, "Testability-
Driven Random Pattern Generation", in Proc. Intl. Conf. on
Computer-Aided Design, 1986, pp. 144-147.

[3] J. A. Waicukauski and E. Lindbloom, "Fault Detection Effective-
ness of Weighted Random Patterns", in Proc. Intl. Test Conf., pp.
245-250, 1988.

[4] H.-J. Wunderlich, "Multiple Distributions for Biased Random
Test Patterns", in Proc. Intl. Test Conf., 1988 pp. 236-244.

[5] F. Siavoshi, "WTPGA: A Novel Weighted Test Pattern Genera-
tion Approach for VLSI Built-In Self-Test", in Proc. Intl. Test
Conf., 1988, pp. 256-262.

[6] R. W. Bassett et. al., "Low Cost Testing of High Density Logic
Components", in Proc. Intl. Test Conf., 1989, pp. 550-557.

[7] F. Brglez, C. Gloster and G. Kedem, "Hardware-Based Weighted
Random Pattern Generation for Boundary Scan", in Proc. Intl.
Test Conf., 1989, pp. 264-273.

[8] F. Muradali, V. K. Agarwal, B. Nadeau-Drostie, "A New Proce-
dure for Weighted Random Built-In Self-Test", in Proc. Intl. Test
Conf., pp. 660-669, 1990.

[9] S. Pateras and J. Rajski, "Generation of Correlated Random Pat-
terns for the Complete Testing of Synthesized Multi-Level Cir-
cuits", in Proc. Design Autom. Conf., June 1991.

[10] I. Pomeranz and S. M. Reddy, "3-Weight Pseudo-Random Test
Generation Based on a Deterministic Test Set", IEEE Trans. on
Computer-Aided Design, July 1993, pp. 1050-1058.

[11] I. Pomeranz and S. M. Reddy, "On the Generation of Weights for
Weighted Pseudo Random Testing", in Proc. 1993 VLSI Design
Conf., Jan. 1993, pp. 69-72.

[12] J. Hartmann and G. Kemnitz, "How To Do Weighted Random
Testing for BIST?", in Proc. Intl. Conf. on Computer-Aided
Design, Nov. 1993, pp. 568-571.

[13] R. Kapur, S. Patil, T. J. Snethen and T. W. Williams, "Design of
an Efficient Weighted Random Pattern Generation System", in
Proc. Intl Test Conf., Oct. 1994, pp. 491-500.

[14] B. Reeb and H.-J. Wunderlich, "Deterministic Pattern Generation
for Weighted Random Pattern Testing", in Proc. Europ. Design
and Test Conf., 1996, pp. 30-36.

[15] S. Cremoux, C. Fagot, P. Girard, C. Landrault and S. Pravos-
soudovich, "A New Test Pattern Generation Method for Delay
Fault Testing," in Proc. VLSI Test Symp., 1996, pp. 296-301.

[16] L. Nachman, K. K. Saluja, S. Upadhyaya and R. Reuse, "Ran-
dom Pattern Testing for Sequential Circuits Revisited", in Proc.
26th Fault-Tolerant Computing Symp., June 1996, pp. 44-52.

[17] I. Pomeranz and S. M. Reddy, "Built-In Test Generation for Syn-
chronous Sequential Circuits", in Proc. Intl. Conf. on Computer-
Aided Design, Nov. 1997, pp. 421-426.

[18] V. Iyengar, K. Chakrabarty, and B. T. Murray "Built-in Self Test-
ing of Sequential Circuits Using Precomputed Test Sets," in Proc.
VLSI Test Symp., April 1998, pp. 418-422.

[19] I. Pomeranz and S. M. Reddy, "Built-In Test Sequence Genera-
tion for Synchronous Sequential Circuits Based on Loading and
Expansion of Test Subsequences", in Proc. 36th Design Autom.
Conf., June 1999.

[20] H. Wunderlich, "The Design of Random-Testable Sequential Cir-
cuits", in Proc. 19th Fault-Tolerant Computing Symp., June
1989, pp. 110-117.

[21] F. Muradali, T. Nishida and T. Shimizu, "A Structure and Tech-
nique for Pseudorandom-Based Testing of Sequential Circuits",
Journal of Electronic Testing: Theory and Applications, 1995, pp.
107-115.

[22] M.-L. Flottes, C. Landrault and A. Petitqueux, "Partial Set for
Flip-Flops based on State Requirement for Non-scan BIST
Scheme", in Proc. Europ. Test Workshop, pp. 104-109, May
1999.

[23] I. Pomeranz and S. M. Reddy, "On Full Reset as a Design-for-
Testability Technique", in Proc. 1997 VLSI Design Conf., Jan.
1997, pp. 534-536

[24] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, "Sequential Circuit
Test Generation Using Dynamic State Traversal", in Proc. 1996
Europ. Design & Test Conf., March 1996, pp. 22-28.

[25] I. Pomeranz and S. M. Reddy, "On Generating Compact Test
Sequences for Synchronous Sequential Circuits", in Proc.
EURO-DAC ’95, Sept. 1995.

-- --

Table 7: Observation point insertion fors208

circuit seq sub len f.e. obs f.e.
s208 2 15 18 93.4 7 100.0

3 20 18 95.6 4 100.0
4 23 18 97.8 3 100.0
5 26 18 98.5 2 100.0
6 28 18 99.3 1 100.0
7 30 18 100.0 0 100.0

Table 8: Observation point insertion fors298

circuit seq sub len f.e. obs f.e.
s298 1 3 17 98.1 4 100.0

2 6 44 99.6 1 100.0
3 9 44 100.0 0 100.0

Table 9: Observation point insertion fors344

circuit seq sub len f.e. obs f.e.
s344 4 30 8 97.0 9 100.0

5 35 8 98.2 6 100.0
6 44 8 99.1 3 100.0
7 53 8 99.7 1 100.0
8 57 8 100.0 0 100.0

Table 10: Observation point insertion fors386

circuit seq sub len f.e. obs f.e.
s386 2 12 10 74.2 33 99.0

3 19 14 79.9 26 99.4
4 21 14 85.7 20 99.4
5 24 14 88.8 17 99.7
6 25 14 91.1 13 99.7
7 31 14 93.0 12 100.0
8 38 14 94.6 10 100.0
9 41 14 95.5 8 100.0

10 47 14 96.5 7 100.0
12 56 14 97.8 6 100.0
13 63 14 98.1 5 100.0
14 66 14 98.4 4 100.0
16 75 14 99.0 3 100.0
17 82 14 99.4 2 100.0
18 88 14 99.7 1 100.0
19 91 14 100.0 0 100.0

Table 11: Observation point insertion fors400

circuit seq sub len f.e. obs f.e.
s400 1 3 116 96.3 12 99.7

2 6 154 98.2 7 100.0
3 9 154 99.7 1 100.0
4 12 154 100.0 0 100.0

Table 12: Observation point insertion fors420

circuit seq sub len f.e. obs f.e.
s420 2 37 18 97.2 3 100.0

3 56 18 98.9 2 100.0
4 75 18 99.4 1 100.0
5 91 18 100.0 0 100.0

Table 13: Observation point insertion fors526

circuit seq sub len f.e. obs f.e.
s526 1 3 138 95.4 18 100.0

2 6 161 96.9 14 100.0
3 9 161 98.0 9 100.0
4 12 161 98.5 7 100.0
5 15 161 98.9 5 100.0
6 18 161 99.3 3 100.0
7 21 161 99.6 2 100.0
8 24 161 99.8 1 100.0
9 27 161 100.0 0 100.0

Table 14: Observation point insertion fors641

circuit seq sub len f.e. obs f.e.
s641 3 81 10 96.5 12 100.0

4 94 10 98.3 6 100.0
5 106 10 99.3 3 100.0
6 118 10 99.7 1 100.0
7 133 10 100.0 0 100.0

Table 15: Observation point insertion fors1423

circuit seq sub len f.e. obs f.e.
s1423 4 68 201 98.80 9 100.00

5 85 201 99.43 7 100.00
6 102 201 99.72 4 100.00
7 118 201 99.86 2 100.00
8 135 201 99.93 1 100.00
9 150 201 100.00 0 100.00

Table 16: Observation point insertion fors5378

circuit seq sub len f.e. obs f.e.
s5378 2 64 24 94.17 78 99.20

3 89 24 96.70 39 99.81
5 155 24 97.86 31 100.00
6 189 24 98.13 30 100.00
7 223 24 98.38 27 100.00
8 253 24 98.60 20 100.00
9 286 24 98.82 19 100.00

10 320 24 99.04 17 100.00
11 338 24 99.23 12 100.00
12 372 24 99.37 11 100.00
13 388 24 99.48 8 100.00
14 423 24 99.59 7 100.00
17 504 24 99.81 5 100.00
18 534 24 99.86 4 100.00
20 572 25 99.92 3 100.00
21 574 25 99.95 2 100.00
22 594 25 99.97 1 100.00
23 629 25 100.00 0 100.00

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

