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Abstract

This paper is about gate sizing under a statistical delay
model. It shows we can solve the gate sizing problem
exactly for a given statistical delay model. The formulation
used allows many different forms of objective functions,
which could for example directly optimize the delay
uncertainty at the circuit outputs. We formulate the gate
sizing problem as a nonlinear programming problem, and
show that if we do this carefully, we can solve these
problems exactly for circuits up to a few thousand gates
using the publicly availablelarge scale nonlinear program
ming solver LANCELOT.

1. Introduction

This paper isabout gate sizing under astatistical delay mod-
el. Gate sizing refers to the process of optimally assigning
drivestrengthsto theindividual gatesof acircuit for agiven
cost function and constraints. For example, one might want
tomeet acertaindelay val uefor minimum areaand/or power
penalty.

Gate sizing (as any kind of delay optimization) suffers
from the problem that the delay model used might not accu-
rately reflect the delaysthat will occur later onthechip. First
of al, not al details of thefinal layout might be known yet,
giving riseto uncertainty inwiredelays. Also, gatesizingis
usually based upon astatic delay model, which assumesthat
agatewill always havethe samedelay, regardless of for ex-
ampl e the boolean values on itsinput pins. In practice this
assumptionisnot trueaswell. Totry to aleviate these kinds
of problems, statistical delay models have been introduced,
which allow one to express the amount of uncertainty in
delay values of gates and wires. In this paper we show that
we can perform gate sizing under such astatistical model for
gate and/or wire delays. Thisisto our knowledge the first
time astatistical delay model is used in gate sizing.

Statistical delay analysisishasically astatic delay analy-
siswhere each delay—inducing element (gate or wire) hasan
associated delay probability function. Thisfunction expres-
ses delay uncertainty: either because not al details of the
layout are yet known, or to express the fact that delay in a
logic circuit isbasically dynamic, it depends on things like
stateand local temperature of agate, or crosstalk incaseof a
wire. See[1] and [2] for amore detailed analysis.

The statistical treatment of delay uncertainty can replace
thetraditional best case/ typical / worst case delay analysis,
which isknown to give very pessimistic estimates in many
cases. Real statistical calculationscan derivethedelay prob-
ability functionsat thecircuit outputsasafunction of thein-
dividual delay probabilities of the delay inducing elements,
and of the circuit structure. As has been very clearly shown
in[1] and[2], especialy theeffect of the circuit structure on
statistical calculations will result in the fact that the uncer-
tainty in the delay of the total circuit is often much smaller
than the uncertainty in the delay of theindividual delay ele-
ments. We can only deducethiswhenwedo aredl statistical
delay analysis.

In the recent past, afew attempts have been madeto per-
form static timing analysisin a statistical way. Thefirst at-
tempt known to the authors is described in [6] and [7].
Unfortunately, the details of how the statistical calculations
were performed are not revealed in the papers. A more re-
cent attempt isdescribed in [9], where the statistical proper-
ties were obtained with Monte Carlo simulations. Monte
Carlo simulations can however take along timeto complete
and aretherefore not practical in an environment directed at
optimization, in which repeated delay evaluations are re-
quired.

The statistical delay analysis used in this paper is based
on[1] and[2]. In these papers, the mean and standard devi-
ation of the distribution resulting from applying the maxi-
mum operator on two normal distributions is obtained by
sampling. Thisdoesnot allow for aformal model of gatesiz-
ing, sointhispaper wederiveand useanal ytical expressions
for them. Both mean and standard deviation of the distribu-
tion resulting from applying the maximum operator can be
expressed asafunction of only themeansand standard devi-
ations of the operandi. Aswewill seethisanalytical expres-
sioniskey to enabling theuse of the statistical delay method
for gatesizing. Ananalytical expression enablesustoderive
analytical first and second order derivatives of the objective
function and the constraints to the variables (among which
are the drive strengths) of the gate sizing problem. This
again makes it possible to solve the large scale nonlinear
minimization problem, that gate sizing under a statistical
delay model is, efficiently. We will solve the gate sizing
problem using LANCELOT [5].



Thispaper isorganized asfollows: First wetakealook at
the delay model in section 2. Then we examinethetheory of
statistical cal culationsin section 3 and present theanalytical
result for the stochastic maximum-—operation. Section 4
presents our gate sizing model including our new statistical
delay model and formulations. A small example depicting
theformulation of agatesizing problemisgiveninsection5.
We present results on circuits of up to afew thousand gates
using both traditional aswell as novel gate sizing objective
functions and constraints in section 6. In section 6 we also
present gate sizing results on asmall tree—circuit in order to
get afeeling for themeaning of and responseto different op-
timization objectives. Finally, wedraw conclusionsand dis-
cuss future work in section 7.

2. Delay model
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Figure 1. General Delay Model

We assume a delay model with both gate and wire delays.
Seefigure1forillustration. Different delaysfrom eachinput
to each output are allowed, aswell as different rise and fall
times. We can calculate T, and T,,; with:
Tow = riffaf((Ti + 1) D
Tw,i = Tou + L 2
Though the statistical delay model allowsdifferent delay
times from the output of the gate to the inputs of the fanout
gates[1] wewill limit ourselves, for the purposeof clarity, to
onestatistical delay for the gate delay. However, weareable
to deal with different gate delays. Our model of a sizable
gate, takenfrom[3], whichisused to rel ate the speed factors
and the cell propagation delay (see also section 4), does not
yet takeinto account different delaysfor several wiring seg-
ments. We therefore do not differentiate between different
wire delays and assume one capacitance due to wiring.

3. Theory of statistical calculations

To model the basic uncertainty in the real delay value, we
model the schedule time of asignal as a stochastic variable
T, which we assume normally distributed with a mean -
and astandard deviation o. Wewill also model the delay of
agate asastochastic variable t, with mean u, and standard
deviation o..In[1] itisshownthat, aslongaswehaveavalid
mean and standard deviation, the actual shape of the dis-
tribution for thedelay elementsisalmost irrelevant if weare
only interested in the total circuit delay distribution.

Traditional delay cal culationwould calculatethedelay at
the output of atwo—input gate by:

Tow = max(T,, Ty +t 3)
This calculation involves two operations: a maximum-—op-
eration and an addition. For two statistically independent
normally distributed stochastic variables A and B we can
calculatethe stochastic variable C, which isthe addition of
A and B, by:

Be = Ua t+ Us 4

0i =04+ 03
We al so have to perform the maximum-—operation with sto-
chasticvalues. To seewhat happensinthiscase, wewill con-
centrate on calculating C = max(A, B), with A, Band C
stochastic variables. A and B are normally distributed with
means p, and ug and standard deviations o, and og. Whatis
the distribution of C ? For any value x we can write:

P(C = x) =PA = x)nPB = X) (5)
Assuming statistical independenceof A and B, wecanwrite
equation 5 as:

P(C = x) =PA <= Xx)-PB < x) (6)
Assuming statistical independence is an approximation in
case of reconverging paths in the circuit. [2] shows this
approximation only givesvery small errors. Wewill usethe
notation F, for the distribution function of the stochastic
variable A. We will also use the notation:

X

PA = x) =Fix) = f fa(u)du ()

inwhich the probability density function f ,(x) for anormal
distribution is given by:

f 1 e %(X;MA)Z 8
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Notethat in case of anormal distribution no closed form for
F, exists. Using this notation, and taking the derivative | eft
and right of equation 6, we get:

fe(¥) = fa(X)Fa(X) + Fa(x)fa(x) C)
Werefer the reader to [1] and [2] whereit is shown that the
resulting probability density function f(x) for stochastic
variable Cisvery similar to, but not necessarily equal to, a
normal distribution. We judge that the resulting probability
density function approximatesthe normal distribution close
enough for our purposes. Given any probability density
function we can always calculate the mean and standard
deviation [10Q]. In case of the normal distribution the proba-
bility density function is completely characterized by the
mean and standard deviation. We now give pc which isa
function of just w,, pg, 04 and og:
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inwhich ¢(x) isgiven by:

H(x) = I e2%du (12)
We also give EX2:
2
2 ¥ o2 ;( Hatp )
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X2 = (ua + o) —=—e \VA'8) +  (12)
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We can now calculate o by:
o¢ = Exg-ue (13)
We have now expressed . and o¢ as functions of just w,,
Ug, 0, and og. Appendix A givesthederivation of equations
10and 12. Thisanalytical expressionfor pc.and ocisan ex-
tensionto[1] and[2], whichisrequired to beableto perform
gate sizing under a statistical delay model efficiently.

4. Gate sizing

We build upon the sizable model of a gate, which was
introduced in [3]. The propagation delay of agate asafunc-
tion of its speed factor S, is given there by:

Ciows + 2 CuiS

SceII
In this equation, t;, is a constant denoting the delay due to
capacitancesinternal to the gate, C,,,yiSaconstant denoting
the capacitance loading the gate (mainly in wiring), C;,isa
constant denoting the gate oxide capacitance of transistors
driven by thegateand S; isthe speed (sizing) factor of those
gates. The constant ¢ relates propagation delay to capaci-
tance. The internal delay t;,, does not change while sizing,
becausethe decreasein resistanceis counteracted by thein-
creasein internal capacitance. The remaining capacitances
of wiring and successor gates, however, do not changedueto
thesizing of thisgate. The speed factor S, canvary from 1,
meaning no speed—up, to limit times speed—up.

In order to have fewer nonlinear termsto deal with, we
multiply equation 14 by S.y. Thisgivesus:

teat = tiw + C- (14)

toaiSeal = tineScar + C(Cload + z Cin,isi) (15)

Inthe gate sizing approach using the statistical delay model
wetakethemean of thegatedelay . equal tothedelay t in

equation 15. We also want to change the gate's standard
deviation while sizing. Therefore we define the standard
deviation as:

ot = f(tear) (16)
Now that we have discussed the equations relating delay to
sizing, we need to discuss calculating the circuit delay. In
our statistical approach we need to calcul ate the maximum
arrival timeat theinputsof agate (seeal so section 2 equation
1). For each gate we calcul ate the mean and standard devi-
ation of themaximum of thecircuit delaysat theinputsof the
gateusing equations 10, 12 and 13. Now westill havetotake
into account the gate delay. We add this gate delay (see also
section 2 equation 2) to the calculated maximum circuit
delay at the inputs using equation 4. We aso calculate the
delay distribution of thetotal circuit by taking the stochastic
maximum over all the primary outputs of the circuit.

The total gate sizing formulation for minimal delay is
givenineguation 17. Notethat also different objectivefunc-
tions are possible. In equation 17 max, and max, denote
functionscal cul ating the mean and standard deviation of the
maximum of anumber of normal distributed stochastic vari-
ables. Note that the constraintsin equation 17 are either all
equality constraintsor simple constraintson therange of in-
dividual variables, and that, whilesomearelinear, othersare
highly nonlinear. We will solve the constrained nonlinear
programming formulation of theform described in equation
17 using the large scale nonlinear programming package
LANCELOT [5].

minimize T o an
Ut = maxu(“To’loTovl! cves Wt 00 )

OTmax = maXU(MTQlO'TO’l, . MTO,I’]’ GTO,I’])

and for each gate:

Wiy Seat = TineSear + C(Cload + z Cin,isl)
i
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u‘Umax = maXM(uTivlotTi’lY seny I‘LTi‘nl GTi,n)

OUpax = maXG(MTivlo'Tivlr'"i W, O'Tiyn)

ot = (f(u,))?

1< Sy < limit

In order for LANCELOT to solve a nonlinear gate sizing
formulation asin equation 17 we have to calculate the first
and second order derivatives of al termsin the problem to
every problem variable. Only when first and second order
derivativeinformationisavailablewill LANCELOT beable
todeal with highly nonlinear problemsefficiently. Wefindit
advantageous to have as many linear terms, as opposed to
nonlinear terms, as possible in each constraint, because this
increases the efficiency of LANCELOT. Thisisthe reason
behind the reformulation of equation 14 to equation 15. We



also use only the squared version of standard deviationsin
the model. Therefore we introduce a new variable which is
equal tothe squareof thestandard deviation. Theneed to ex-
pressexplicitly inthegatesizing formul ation therel ation be-
tween mean and standard deviation of the result of the
maximum—operator and the means and standard deviations
of the operandi asafunction, aswell asto calculate exactly
thefirst and second order derivativesof thisfunction arethe
reasonsbehind the exerci se of expressing themean and stan-
dard deviation of the maximum—operation as functions of
the means and standard deviations of its operandi. These
analytical functionsenable usto calculateanalytical deriva-
tives.

We can also choose other objective functions and add
additional constraints to the gate sizing formulations. We
can choose aweighted sum of sizing factorsin the objective
function. Thiscanmodel area, or, if wetakeinto account ca-
pacitancesand switching activity under zero delay model in
the weights, power. Apart from the change in switching ac-
tivity due to the change in timing as aresult of gate sizing,
both areaand power scale linear with the sizing factor. This
has been shown in [3] and [8].

We can also add delay constraints. on the mean circuit
propagation delay or on the mean plus one or several times
the standard deviation. Adding the standard deviationinthe
circuit propagation delay constraint ensuresthat alarger per-
centage of the circuitswill conform to the delay constraint.
Incaseof just ur,,, 50% of thecircuitswill conform, incase
of ur, . + Ot 84.1% will conform and in case of
Ut + 307, 99.8% will conform to the delay constraint
Set.

5. Example
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Figure 2. Statistical delay model gate sizing example

Wewill now look at theexampleof figure2. Thegatesinthis
network are denoted by the capital letters A to D and thepri-
mary inputs by the small letters ato c. We give the corre-
sponding gate sizing formulation for minimal
W + 307, delay using the statistical delay method in
equation 18. Thismeansthat we cal cul ate the sizing factors
for each gate in the circuit such that 99.8% of the circuits
have the minimum possible propagation delay. The maxi-
mum over all outputsistakenin 18a. Notethat we can only
calculate the statistical maximum for two operandi directly
at the same time. For the multiple inputs of gate D, we use
thetwo—operand maximum operation repeatedly (18b). The
gate delay is added to the maximum over the inputsin 18c.

Theeqguationsrelating gatesizeand delay arein 18d. For the
function relating mean and standard deviation of a gate we
assumethe standard deviation to be aquarter of themeanin
this example (18€). We assume a maximum speed—up of 3
for each gate (18f).

minimize  wr, + 307, (18)
Wringe = MaX,(Wr e, Or e, bry, O7p) (18a)
OThax = maxa(“‘Tcy Ot P—TDaOTD)

Mup = MaX,(MaX,(wry, Oy Wr, 07, (18b)

maxo(MTB. Ot Ut GTC)v UT OTA)
OUD = maxc(maxu(uTBI OTB! MTci OTC)v
maxo(MTBy Orgs U1 GTC)v W, OTA)

Wy = By + Uy (18c)
0$D = GSD + of
Wi, Sa = Saliw, + C- (CloadA + CinSD) (18d)

WeSe = Seli, + C - (CloadB + CinSD)

igSe = Scling + € * (Cioage + CiSo)

WipSp = Soliny + € Cioay,

= 0.25y,, (18¢)
O, = 0.25;1.tB

0y, = 0.25u

O, = 0'25“10

1<S,=<3 (18f)
1<S,=<3

1<S.<3

1=5 =<3

6. Results

We have done two sets of experiments. The first set of ex-
perimentsisdoneto show boththeapplicability of thestatis-
tical delay gate sizing method to circuits of up to a few
thousand gates, as well as the additional objectives and
constraintswe can formulate using our statistical gatesizing
method. As can be seen intable 1 the method isableto dedl
with circuits of up to afew thousand gates. We have done
several experimentswiththethreecircuits. Thefirst two en-
triesfor each circuit givetherangeinwhich themean propa-
gation delay and sum of speed factors (the measure of area
used in our experiments) can vary. The next two entriesfor
each circuit show the results of minimizing the mean propa-
gation delay plus one time the standard deviation and the
mean propagation delay plus three times the standard devi-
ation. Thelast three entriesin the table for each of the three
circuits minimize the area (sum of speed factors) subject to
constraintson the mean propagation delay, the mean propa-
gation delay plus onetime and plusthree timesthe standard
deviation.
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Table 1. Results of statistical sizing for some large benchmark circuits

name #eells minimize constraint UTmax OTmax S CPU

apex1 982 2S5 173.72 5.867 982
WTmax 73.21 2.099 1989 | 41m135s
WTmex+OTmax 73.26 1.972 1949 | 41m108s
WTmax+30Tmax 7357 1.701 1843| 67m548s
sS WTmax<<120 120.00 2.950 998 | 67m499s
35 WTmax+OTmac<120 117.16 2.842 1001 | 103m19.4s
35 WTmax+30Tmax<<120 112.07 2.645 1007 | 85m43.1s

apex2 117 S 31.50 1.784 117
WTrmax 23.45 1.419 304 1855
WTmax+OTmax 23.48 1.373 294| 10m165s
UTmax+30Tmax 23.79 1.202 279 5225
55 UTmac<29 29.00 1.488 123 42.1s
=S UTmax+O0Tmax<<29 27.64 1.365 131 7.0s
IS UTmax+30Tmax<29 25.47 1.176 154 38.3s

k2 1692 S5 183.98 3.281 1692
WTmax 75.00 1.293 3750 54m26.1s
UTmax+OTmax 75.02 1.228 3690 50m45.7 s
UTmax+30Tmax 75.23 1.120 3596 83m20.7s
S5 UTmac<120 120.00 1.829 1794 | 221m32.0s
S5 UTmax+0Tmac<120 118.27 1.744 1801 | 214m384s
P UTmax +30Tmax<120 115.10 1.637 1814 | 157mb50.6s

Gate sizing combined with the statistical delay calcula
tion method thus enables usto size circuits, in order to get a
certain confidence in the circuit realizing its timing
congtraints, or to optimize the number of circuits that will
operate at the required clock frequency given the uncertain-
tiesinitspropagation delay. All experimentsare performed
on a Hewlett Packard K260. The CPU—times reported are
for solving the various gate sizing formulations under a sta-
tistical delay model using thelarge scal enonlinear optimiza-
tion package LANCELOT [5].

The second set of experiments is on the tree—circuits of
figure 3, which contains seven NAND—gates. These experi-
ments are to show how different constraints and objective
functions effect the speed factors for this simple circuit.

Thefirst two entries of table 2 denote therange in which
the areaand mean propagation delay of the circuit can vary.
Wehave sel ected threeval ues of themean propagation delay
inthisrange. Oneis chosen in the middle and the other two
nearer theextremesof therange. Table 2 showsthat thereisa
margin to change the standard deviation given afixed mean

propagation delay, and that the interval is largest for the
middle choiceintherange of mean propagation delays. Itis
alsoclear fromtable 2 that minimal standard deviationgiven
afixed mean propagation delay leadsto ahigher areausage
than just minimizing areagiven the mean propagation del ay.

a
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Figure 3. Tree circuit



Table 2. Results for tree—circuit

objective constraint UTmax OTmax DA
min 2S 7.4 0.811 7.00
Min WTmax 5.4 0.592 21.00
min =S UTma=5.8 5.8 0.631 14.73
MinoTmax | Wrmax=5.8 5.8 0.622 15.66
max oTmax | WTmax=5.8 5.8 0.667 19.22
min £ UTmac=6.5 6.5 0.704 9.54
MinoTmax | Wrmax=6.5 6.5 0.689 10.20
max oTmax | Wrmax=6.5 6.5 0.831 1551
min =S UTma=7-2 7.2 0.786 7.21
mMinoTmax | Wrmax=7.2 7.2 0.689 7.25
max oTmax | Wrmax=7.2 7.2 0.817 9.08

We now look at the speed factorsin table 3 corresponding to
the sizing experimentsfor the tree—circuit for minimal area,
minimal and maximal standard deviation. Table 3 shows
that both sizing for minimal area (sum of speed factors) and
for minimal standard deviation treat similar gates (first
group: Su, S, Sp and S¢; second group: Scand S¢) similar-
ly, and gatestowardstheoutput of thecircuit get larger speed
factors. This behavior ismore extreme in case of sizing for
minimal standard deviation. The standard deviation for
gatesnearer theinput doesnot need to beassmall asfor gates
nearer the output, because for a balanced mean delay and
similar gates the maximum operator results in a slightly
higher mean but considerably smaller standard deviation.
Sizing for maximal standard deviation clearly differentiates
delays on different paths to maximize the standard devi-
ation, asisto be expected. Thelast gate Sg isthen appropri-
ately sized to achieve the required mean propagation delay.

Table 3. Speed factors for tree—circuit for prmax=6.5

objective [ Sa [ S8 [ Sc | S | S| & | Se

min =S 122 122) 145 122 1.22| 145| 1.74

min otmax | 1.00 | 1.00 | 2.01 | 1.00 | .00 | 2.01 | 3.00

max otmax | 3.00 | 1.00 | 1.00 | 3.00 | 3.00| 3.00 | 1.51

7. Conclusions and future work

We have presented a gate sizing method under a statistical
delay model, which we expressed as a nonlinear program-
ming problem. As an essentia step in the modeling of the
statistical gate sizing method, we have expressed the mean
and standard deviation of theresult of the maximum-—opera-
tor asafunction of the meansand standard deviations of the
operandi. We have solved the gate sizing formulation under
adtatistical delay problem exactly for problemsup to afew

thousand gatesusing thelarge scale nonlinear programming
package LANCELOT. We have presented several improve-
ments to the gate sizing formulation and discussed imple-
mentation details crucial to solving the gate sizing problem
efficiently. We also presented experiments demonstrating
the effect of different objective functions and the result of
those objective functions on the speed factors.

Future work will look into dealing with correlations be-
tween stochastic variablesin thecircuit, asaresult of recon-
verging paths, which is currently not included in our delay
model, as we assume statistical independence. Another in-
teresting challenge could be to express the mean and stan-
dard deviation of the maximum of multiple (morethan two)
operandi explicitly, rather than asthe repeated maximum of
two operandi.
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Appendix A

Wewill now derive the mean and standard deviation of a
stochastic variable C which is the maximum of two normal
distributed statistically independent stochastic variables A
and B. In order to derive this mean and standard deviation
we will change the bases of the double integration:

j Xfa(X) I fa(y)dydx (19)

—o —o0

which part of the calculation of ue = Ex. asfollows:
X—MA _ UOB VGA

On 2 2 2 2
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and:
Y—Ug _ UOa VOg
%8 _\/02+02-|-\/02+02
A B A B
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For this change of base we calculate:

+ a (21)
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+ e (23)

O0n08g oL
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The mean of the stochastic variable C then becomes:

0

Uc = j xfo(x)dx (25)
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inwhich ¢(x) is given by:

d(x) = J e#du (26)
Note that in some lines of equation 25 we have only given
onehalf of theequation explicitly. Theother half isdepicted
by triple dots, and issimilar to the first half of the equation.
We will now calculate the standard deviation of stochastic
variable C intwo steps. The first step is the calculation of
ExZ:

%

Ex2 = J x2f (x)dx (27)

—

= szfA(x)FB(x)dx + JXZFA(x)fB(x)dx
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Notethat in equation 27 we a so have given only one half of
the equation explicitly, with the other half which issimilar
tothefirst, depicted by tripledots. We can now calculatethe
standard deviation of stochastic variable C with thefollow-

ing eguation:
= BExgue

(28)

We have now expressed p. and o as functions of just u,,

Ug, 04 aNd Op.
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