Delay Minimization and Technology M apping of Two-L evel Structures and
Implementation Using Clock-Delayed Domino L ogic

Jovanka Ciric, Gin Yee, and Carl Sechen
Dept. of Electrical Engineering, Univ. of Washington, Box 352500, Sesattle, WA 98195, U.S.A.

Abstract

This paper presents a new delay minimization and
technology mapping algorithm for two-level structures
(TLS implemented using clock-delayed (CD) domino
logic. We take advantage of CD domino’'s high-speed,
large fan-in NOR and OR gates to increase the speed of a
circuit by partial collapsing. The algorithm is delay-driven
and the delays are obtained from a characterized CD
domino library. The results on eight combinational MCNC
benchmark circuits show an average speed improvement
of 89% for CD domino with TLS compared to static
CMOS implementations generated by Synopsys. CD dom-
ino with TLS using our tools produced on average 44%
faster circuits than CD domino benchmarks minimized and
mapped using Synopsys. At last, the delay results for CD
domino with TLS were on average 22% better than for
standard domino.

1. Introduction

Dynamic circuits have become a standard circuit tech-
nique used in today’s state-of-the-art microprocessors for
meeting timing requirements not achievable with static
CMOS. Design automation of random logic blocks using
dynamic circuits has been limited due to noise considera-
tions, possible charge sharing, and lack of tools. The need
for making faster circuits and time-to-market pressure ne-
cessitates building tools for automatic logic synthesis of
various dynamic logic families.

Dynamic circuits are faster than static CMOS for three
reasons. 1) They have a lower switching threshold, 2) a
smaller input capacitance, and 3) typically fewer logic lev-
els are needed to implement a circuit since wider gates
(gates with more devices in parallel in the pull-down net-
work) are possible. However, the synthesis of the most
popular dynamic logic family, standard domino logic, is
complex because only non-inverting gates are alowed in
the network. Therefore, the network has to be made posi-
tive unate prior to mapping. In the case of clock-delayed
(CD) domino logic, both inverting and non-inverting gates
are permitted in the design, which means that similar algo-

rithms as for static CMOS synthesis and delay optimiza-
tion can be applied to CD domino logic.

Previous work on delay minimization was done during
the technol ogy-independent phase ([2], [3]), or technology
mapping phase [1]. The FHowMap agorithm [12], devel-
oped for lookup-table FPGAS, labels each node with its
optimal depth using the maximum flow a gorithm. Optimi-
zation techniques applied individualy during each of the
phases have limited effect, because decisions made in one
phase affect the result of the next phases. The best results
in delay minimization are obtained when logic decompo-
sition and technology mapping are performed simultane-
ously ([4], [3]).

The algorithm in [3] uses clustering and partial col-
lapsing for delay minimization. It is based on Lawler’s al-
gorithm [7], which minimizes under a cluster capacity
constraint the maximum number of clusters asignal has to
traverse from primary inputs to primary outputs. The
Touati et a. algorithm [3] applies Lawler’s algorithm for
clustering the nodes, and then performs collapsing of all
nodes in the cluster into their root. The drawback of this
approach is that no delay information is known (all nodes
have |oad-independent unit delay).

A generalization of Lawler’s algorithm for circuit par-
titioning is presented in [6]. It describes a delay-optimal
clustering algorithm under the general delay model: each
gate has a characterized delay, delay between the clusters
is D, and there is no interconnection delay between gates
in the same cluster. The clustering constraint is the area
capacity, but any monotone constraint is valid.

The goal of this work is to minimize the delay of the
circuit implemented using high-speed CD domino gates. A
common way to improve the speed of a circuit is to im-
plement it as a PLA structure, by collapsing the network
into two gate levels. However, not al circuits can be col-
lapsed into two levels of logic without paying an intoler-
able cost in area. The aternative approach is to partialy
collapse the network, in order to reduce the number of gate
levels without causing a huge area increase. We are map-
ping the network onto two-level structures (TLS), so we
don’t need the matching techniques as in [1], [4], and [5].
A TLS is in essence a PLA with variable AND and OR
planes. We take advantage of the fast high fan-in gates in

clock-delayed domino logic, to implement the TLS in a
high-speed manner.

We developed a new delay minimization and technol-
ogy mapping agorithm for TLS implemented using CD
domino logic. The delay-driven clustering and collapsing
algorithm is tailored to minimize circuit delay. In our ap-
proach, we collapse the nodes which belong to the same
cluster and the delay of the resulting node changes, so the
premises of delay optimality in [6] can not be applied. The
reason is that the collapsing may also simplify the node so
the delay is not monotonic. Instead of cluster size, the
clustering algorithm uses delay improvement to select the
nodes belonging to the same cluster.

Then a technology mapper was developed to map the
minimized circuit onto a set of TLS. Since we characterize
the delays of the TLS, the delay minimization agorithm
can use the actual delay information to minimize the delay.

The remainder of the paper is organized as follows.
Section 2 describes clock-delayed domino logic. The syn-
thesis and design flow of CD domino gates using TLS is
presented in Section 3. The delay minimization algorithm
and technology mapping onto TLS is explained in Section
4. Experimental results comparing CD domino with TLS
decomposition and static CMOS on eight MCNC bench-
mark circuits are shown in Section 5. The comparison with
standard domino logic [10] and CD domino mapped using
Synopsys tool are also included. Finally, concluding re-
marks are in Section 6.

2. Clock-Delayed (CD) Domino Logic

Clock-delayed domino is a self-timed dynamic logic
family that provides both inverting and non-inverting
functions [8]. A CD domino gate consists of a dynamic
gate, and an optional delay element for the clock signal.
The self-timed clock output of the delay element tells the
fan-out gates when the data output is ready. The clock de-
lay ensures that the clock output’s evaluation edge for the
fan-out gates occurs when the driving gate’s output is sta-
ble, and prevents false evaluation of the subsequent gates

caused by non-monotonic input transitions.
vdd vdd

Figure 1. CD domino footed OR2 and NOR2 gate

Fig. 1 depicts the precharge-low footed CD domino
OR2 and NOR?2 gates. Inverting gates (e.g. the NOR2 in
Fig. 1) have a NAND gate attached to the precharge node,
which receives one input from the clock. This ensures that
the output will be zero during precharge. The size (speed)
of the NAND gate must be tuned to the speed of the nMOS

dynamic gate to prevent an unacceptable glitch (e.g. more
than 1% of V) at the output at the start of evaluation. The
precharge-low footless CD domino gates look the same,
except that the evaluation transistor is omitted. The foot-
less CD domino gates are faster than footed gates. We aso
use dual-output gates in the design, when both polarities of
asigna are needed. In this way, the only invertersin a de-
sign appear at the primary inputs and outputs. An example
of a footed dual_OR2 gate is shown in Figure 2. All CD
domino gates are sized for speed.

vdd

clk_out

Figure 2. CD domino footed dual_OR2 gate

Our CD domino circuits are fully levelized as shown in
Fig. 3. In this way, only one delay element is needed per
level. This delay element is tuned to the dowest gate at its
corresponding level, plus a margin (we use 20%, as thisis
an upper bound on atypical industrial process) to allow for
process variations. The delay element istypically a copy of
the slowest gate in that level, augmented with additional
wire load to yield the desired margin.

(other gates) (other gates) (other gates)

[N

['S : [
] dynamic dynamic | dynamic
—] gate | (gate (=
inputs—+ t |
from]]
other .

dynamic | |

gates || dynamic dynamic ‘

Ioarl hs+ gate | (gte |
cf

dynamic
gate

L

g
=
3

delay 1 L_»(delays

ckl ck3

]
| gatelevel 1

gatelevel 2 gatelevel 3

Figure 3. CD domino levelized clocking scheme

All of the gates at the same stage (i) receive inputs from
the previous stage (i-1). In order to fully levelize a circuit,
it may be necessary to insert dynamic buffersif asignal is
generated more than one stage prior to the stage that uses
the signal as an input. For example, a signa that is gener-
ated in stage i-3 and is used as an input in stage i must
propagate through stages i-2 and i-1 by way of dynamic
buffers.

One of the key advantages of CD domino is that it uses
single-rail circuits to implement alogic function. Thisisin
contrast to standard domino logic, where dua rail circuits
are needed for mapping a binate logic network. Another
important advantage of CD domino is that high-speed,
large fan-in NOR and OR gates are provided, with only
two nMOS transistors in series for footed gates, and only
one nMOS for footless gates. Moreover, very large fan-in
NOR and OR gates can be decomposed into two or three
levels.

3. CD Domino Synthesisusing TLS

Motivation for our proposed TLS comes from PLAS, a
common implementation of logic blocks that need to be
high speed. In TLS, the PLAs AND plane is implemented
using CD domino NOR gates and the OR plane is imple-
mented using CD domino OR gates (Fig. 4).

a—1 [-
b— AND —— OR [—
—| plane plane [
72— [-
Standard PLA

a— e — Cb [—
b — domino 1 domino —
~] NOR OR [

, T gates gates [

Two-Level Structure

Figure 4. Standard PLA vs. Two-Level Structure

The problem we are addressing is how to decompose a
network into one or more TLS (Fig. 5) such that the over-
all delay is minimized, where the underlying technology is
CD domino. In degenerate cases, a TLS can be an OR gate
(missing AND plane) or a NOR gate (mlssmg OR plane).

PO PO

TLs TLs TLs

Figure 5. TLS decomposition of a network

The synthesis and design flow for CD domino logic
using TLS is presented in Figure 6. The delay minimiza-
tion agorithm will be described in Section 4.1, and the
technology mapping agorithm in Section 4.2. The design
is carefully verified after each step in the flow.

1. Delay minimization

CD domino library

Library
characterization

2. Technology mapping
onto TLSs

3. Standard CD domino
design steps

Figure 6. CD domino synthesis and design steps [8]

4. Delay Minimization and Technology M ap-
ping for Two-Level Structures

The purpose of the delay minimization algorithm is to
partially collapse the network, in order to minimize the
delay after it is mapped onto TLS. The main premisein the
algorithm is that at any stage, we know the delay of each
node in the network, since it will be mapped onto a TLS

during technology mapping. All of the NOR and OR CD
domino gates in the library are pre-characterized for delay
versus load. Therefore, given a particular number of liter-
als for a product term and a particular number of product
terms, it is straightforward to look up the relevant delay for
anode to be implemented asa TLS. The delay model takes
into account the loading on the node. Currently, the load-
ing due to interconnect is not included, but it would be
easy to include these estimates if desired.

4.1. Delay Minimization Algorithm

The delay minimization algorithm is based on Ragjara-
man’s algorithm [6]. The algorithm consists of two phases:
Labeling (Fig. 8) and Mapping. At the beginning, the
original network is minimized using SIS [9], and decom-
posed into inverters, OR and AND gates with 2-11 inputs,
using the SIScommand t ech_deconpose -al1l1 -0 11

In the labeling part, the nodes are visited in topological
order from primary inputs to primary outputs. The label of
the primary inputsis assigned to 0. The label of each inter-
nal node in the network corresponds to the best found de-
lay realized at the node. When anode v is visited, all nodes
in its fan-in cone have been already processed and labeled
accordingly. The node v is potentially merged using es-
presso (from SIS) with one of the nodes in its fan-in
cone. Espresso is a command in SIS for two-level
minimization. The nodes in the fan-in cone are sorted in
non-increasing order of their labels. In that way, v will be
first merged with its predecessors with greater delays. If
the delay at the output of node v is smaller after merging, it
becomes the new best delay for the node. The merged
predecessor node is added to the cluster of v. The process
of potential merging stops when the delay doesn’t improve
after checking al input nodes to the cluster of v. The best
delay at v is saved as its label, together with the nodes
which belong to the cluster of v.

Figure 7. An example of Labeling (v)

Before outlining the algorithm Labeling, we will define
the terms used. Cluster (v) refers to the set of nodes in the
fan-in cone of node v which are merged with v. Label (V)
corresponds to the maximum delay at the output of v. Input
(v) are al the nodes which are inputs to node v. The
best_found_cluster_delay is the best found delay so far re-
alizable at the output of cluster (v). Candidate set is the
set of nodes in the fan-in cone which could become part of
cluster(v) if after merging all the nodes in the candi-
date set the resulting overal delay is smaller than the
best_found_cluster_delay. Candidate set is a superset of
cluster (v). Sis the array of nodes in the fan-in cone of v,

sorted in non-increasing order of their labels, which need
to be processed. Node _delay (V) is the delay from any in-
put of v to its output (Smple node delay). Figure 7 shows
an example of labeling node v.

At the beginning, nodes u, w and y are in S sorted in
non-increasing order of their labels. Let's say that after
merging u and wwith v, the resulting delay at the output of
v improves. Then, u and w become part of cluster(v), and
nodes s, t, and x are added to S. First, node s is tried to
merge with cluster(v), and if the delay does not improve, it
is added to candidate _set. Then, nodest and x are tried and
added to candidate _set because the delay is not better. If
after trying nodes z and y the delay does not improve, the
process ends and cluster(v) contains nodes v, u, and w.
Otherwise, candidate set becomes part of cluster(v), and
the nodes which are input to the nodes in candidate set are
addedto S
Algorithm Labeling (node v)

Begin

cluster(v) = {v};

candidate set = {v};

best_found_cluster_delay = node_delay(v) + max{label(k) | k T
input(v)};

S~ input(v); sorted in non-increasing order of their labels
while (St /&)

remove the first node u from S,

candidate set = candidate set E {u}

S- S\{u};

ut- espresso { candidate _set};

new_delay = node_delay (ut) + max {label (i) |

i1 input(candidate_set) };

if (new_delay < best_found_cluster_delay)

cluster(v) - cluster(v) E candidate set;
best_found_cluster_delay = new_délay;
S- SE input(candidate_set);

endif
endwhile
label (v) = best_found_cluster_delay;
save {label (v), v espresso {cluster (V)}};
end

Figure 8. The Labeling algorithm

Note that in the Labeling algorithm u¢ is a single node,
obtained by running espr esso on the set of nodes in the
candidate set. Also, in the implementation of the algo-
rithm, instead of saving the set of nodes in cluster (v), we
save a single node v obtained by performing espr esso
on all nodesin cluster (v). From now on, we will denote v
to be the merged node obtained by running espr esso on
cluster (v).

After the labeling phase, al nodes in the network are
marked with their best delays and how they should be
merged with other nodes in the fan-in cone to obtain these
delays. The label of each node v in the network is given by
the formula:

label (v) = node_ delay(V) + max{label (i) |iT input(V)}

In the next phase, called Mapping, the nodes are visited
from primary outputs to primary inputs. In this phase, we
generate a new network N¢, by selecting the clusters
among those generated in the first phase. We maintain a
list L of nodes whose clusters will be added to the new
network N¢. Initially L is set to the set of al primary out-
puts of N. Then the following 3 steps are repeated until L
is empty: 1) remove a node v from L; 2) add the merged
node v to the new network N¢; 3) for every node x I L,
suchthat xisaninputto v and %1 N¢, addxtoL.

The complete algorithm for delay minimization is out-
lined in Fig. 9.

Algorithm Min_Delay (Network N)

Begin

sort all non-PI nodesin topological order to obtain list T
/* Labeling phase */

for al Pl nodesp1 N, dolabel (p) =0;

while(T! A

remove first nodev from T;

cal Labeling (v);
endwhile
/* Mapping phase */

L= PO;
N¢- A
while(L* A

remove node Vv from L;

Ne¢- NCE {V};

L- LEinput(v)\{d]a1 N¢};
endwhile
Ndis the new partially collapsed network;
end

Figure 9. The delay minimization algorithm

The key difference between Rajaraman’s [6] and our
algorithm is that we perform two-level minimization of the
nodes in the cluster and obtain a new merged node whose
delay is accurately estimated from the characterized li-
brary. Also, we don't have a cluster size as a clustering
congtraint. The only constraint in clustering is delay im-
provement. This algorithm is a heuristic, but we achieved
satisfactory results as reported in the next section. To make
the algorithm optimal, one would have to try all the sub-
trees of the node's fan-in cone (rooted in the node), and
pick the one with the smallest delay. The reason is that the
espr esso command can return a node that is simplified,
so the monatonic property for the delay doesn’t hold. But
the complexity of the optimal agorithm is exponential, so
itisnot practical for the usual circuit sizes.

4.2. Mapping onto Two-L evel Structures

The technology mapper maps the minimized and par-
tially collapsed network to a TLS representation. Each
node in the network is represented in a sum-of-products
form. Each product term is implemented using a CD
domino NOR gate, and the sum of product terms is im-
plemented using either a CD domino OR, NOR or

dua_OR gates, depending on the needed signal polarities.
The mapper also recognizes XOR and XNOR functions
and implements them as a single gate. If both polarities of
the XOR gate output are needed, the mapper inserts a
dual_XOR gate.

If the number of literalsin a product term or the number
of product terms exceed the maximum fan-in of the gates
in the CD domino library, the NOR or OR gates are de-
composed into two levels.

The CD domino library contains NOR, OR, and
dua_OR gates from 2 to 11 inputs, XOR and dual_XOR
gates, and a static inverter for inverting the primary inputs.
The mapped circuits are fully levelized, and appropriate
delay elements including 20% margin are then added, as
described in Section 2.

5. Experimental Results

To evaluate the effectiveness of the new delay minimi-
zation and technology mapping algorithm for TLS, we
compared Synopsys-generated static CMOS implementa-
tions of eight MCNC benchmark circuits with those we
generated using footless CD domino implementations (Ta-
ble 1). CD domino circuits were placed using the Tim-
berWolf placement tool, and routed using Cadence’s Sili-
con Ensemble. TimberWolf was constrained to place the
cells belonging to alogic level in adjacent rows [11]. The
static CMOS results were obtained using Silicon Ensemble
for both placement and routing. We used the 0.8mm MO-
SIS CMOS process for the simulations. Pathmill was used
to measure the longest path delay through each benchmark
for static CMOS and Hspice for CD domino. Both versions
of each benchmark were logically verified to ensure they
each yield the same combinational logic function as im-
plied by the input descriptions.

The static CMOS library contains 30 cells: 26 logically
different cells, plus 2x and 4x inverters and buffers. The
cells are the same as in the 1ib2 library from SIS with the
addition of buffers. They are: 2-4 input NAND and NOR
gates, XOR, XNOR, eight AOIs and eight OAls, inverters
and buffers. The nMOS device widths were 8mm, and the
pMOS device widths ranged from 15nmm to 27mm for the
various gates. For CD domino, the logic devices in al
gates were 5.5mm (except for the XORs where they were
7.5mm). The precharge devices had the same widths as the
logic devices. The static library was characterized using
Hspice, and the delay data were used for creating the Syn-
opsys target library. The static benchmarks were mini-
mized for delay and tech-mapped using the Synopsys
synthesis tool. We used four scripts for delay optimization:
with flattening and structuring, with flattening and no
structuring, without flattening and with structuring, and
without flattening and structuring. The reported delays are
from the script that produced the smallest delay. The CPU
times for CD domino include the times for both the delay

minimization and mapping tools. The longer running times
are for the benchmarks which start with a larger number of
nodes. The mapping phase takes less than a second for all
the benchmarks.

Note that our new delay minimization and technology
mapping algorithms have sharply reduced the number of
gate levels compared to the static CMOS implementations,
despite the fact that the latter are minimized for speed via
Synopsys. Also, each gate level is quite fast since the gates
are typically NOR, OR or XOR gates. So even though our
delay elements are tuned to the slowest gate at each level,
and even though each delay element incurs an additional
delay due to the 20% margin requirement, significant
speed gains over static CMOS are readily available. Gen-
eraly, the gate count increase ratio is less than the delay
improvement ratio. Our current delay minimization algo-
rithm does not consider gate count in any way. We are cur-
rently extending the algorithm to avoid aggressive col-
lapsing of nodes off the critical path to achieve appreciable
areareduction.

Table 1. Benchmark results for static CMOS and CD domino
using two-level structures (TLS).

benchmark active #gate dday[ns] dday CPU
s—static area levels ratio time[s)
t-TLS [mm?
des (s) 11.21 12 6.95 1.84 -
des (1) 20.07 7 3.78 1 349.2
term1 (s) 0.48 11 3.86 2.46 -
teml(t) 3.76 4 1.57 1 10.1
x3(s) 2.40 10 4.22 242 -
X3 (t) 8.52 4 1.74 1 18.6
k2 (s) 3.68 15 7.07 253 -
k2 (1) 12.57 5 2.79 1 293.9
C1355(s) 1.69 17 9.07 1.95 -
C1355 (1) 4.71 8 4.66 1 33.8
481 (9) 0.17 8 253 159 -
481 (t) 0.26 4 1.59 1 1.2
dalu () 2.65 14 6.13 132 -
dalu (t) 6.37 9 4.64 1 102.2
rot (s) 281 13 5.62 1.04 -
rot () 10.45 11 5.41 1 72.6

We also directly compared our delay minimization and
technology mapping algorithm with the mapper in Synop-
sys, both using the same previously mentioned CD domino
library. To encourage Synopsys to use higher fan-in gates,
a large fanout limit was used. Note that the standard CD
domino design steps [8] reduce the fanout limit to 16. We
also gave Synopsys a high cost for inverter usage (since
our library provides both polarities of the output) so that
inverters appear only at the primary inputs. The delay data
from the characterized CD domino library were used for
creating a Synopsys dynamic target library. Two minimi-
zation scripts were applied with high mapping effort: flat-

tening and structuring, and flattening and no structuring.
After mapping, the final circuit is obtained with standard
CD domino design steps. The pre-layout results are pre-
sented in the column CD-Syn in Table 2. The delays were
obtained from dyn, a CD domino synthesis tool [11].

On average, CD domino with TLS using our new tools
produced 44% faster circuits. These results show that our
delay minimization and technology mapping algorithm is
clearly more effective at minimizing delay than Synopsys
when using the same library.

We compared our CD domino results with standard
domino results published in [10]. The standard domino re-
sults were also obtained using MOSIS 0.8mm CMOS proc-
ess. The logic devices in the gates were 12nm, evaluate
devices were 20mm, and precharge devices were 8mm. The
results presented in the DOM column of Table 2 show an
average 22% speed improvement for CD domino with
TLS. Note that only the TLS results are post-layout, im-
plying that the speed improvements shown are actually
lower bounds on what would be obtained after layout for
the CD-Syn and standard domino implementations.

Table 2. Delay comparison between CD domino with TLS, CD
domino using Synopsys (CD-Syn), and standard domino (DOM).

benchmark CD-TLS | CD-Syn % DOM %
[ng] [ng] worse [ng] worse
(post- (pre- than (pre- than
layout) | layout) CD-TLS| layout) CD-TLS
des 3.78 7.49 98 N/A N/A
terml 157 2.90 84 20 27
x3 174 252 45 28 61
k2 2.79 4.68 68 39 40
C1355 4.66 6.04 30 N/A N/A
t481 1.59 167 5 N/A N/A
dalu 4.64 4.62 0 4.7 1
rot 541 6.71 24 43 -21
6. Conclusion

We developed a new delay minimization and technol-
ogy mapping agorithm for two-level structures imple-
mented using clock-delayed (CD) domino logic. Thisis a
delay-driven algorithm based on partia collapsing. We use
ideas similar to Rajaraman’s agorithm, but with perform-
ing two-level minimization on the nodes in the cluster. We
also apply the delay improvement as a clustering con-
straint, not the cluster size. The algorithm labels each node
in the network with its best achievable delay, and then se-
lects the clustering solution such that the overal circuit
delay is minimized. The delays are obtained from a char-
acterized CD domino library. We take advantage of high-
speed, large fan-in NOR and OR gates from CD domino,
to reduce the number of gate levels and increase the speed
of the circuit. The circuit is mapped onto a network of TLS
implemented using CD domino gates from the library.

Eight combinational MCNC benchmarks were imple-
mented using static CMOS and CD domino with TLS de-
composition. The results show that CD domino circuits are
on average 89% faster than static CMOS. To compare the
effectiveness of our algorithm, we minimized and mapped
CD domino benchmarks using the Synopsys synthesis toal.
CD domino with TLS using our tools produced on average
44% faster circuits. CD domino with TLS is on average
22% faster than standard domino.

7. Acknowledgements

We are grateful for the financial support provided by
the SRC, CDADIC, National Science Foundation and Sun
Microsystems. We would like to acknowledge the help of
Tyler Thorp.

References

[1] Y. Kukimaoto, R. Brayton, and P. Sawkar, “Delay-Optimal
Technology Mapping by DAG Covering,” Proc. of 35"
ACM/IEEE Design Automation Conference, pp. 348-351,
June 1998.

[2] K.J. Singh, A. Wang, R. Brayton, A. Sangiovanni-Vincentelli,
“Timing Optimization of Combinational Logic,” Proc. of
IEEE/ACM Int. Conference on Computer-Aided Design, pp.
282-285, 1988.

[3] H. Touati, H. Savoj, and R. Brayton, “Delay Optimization of
Combinational Logic Circuits by Clustering and Partial Col-
lapsing,” Proc. of IEEE/ACM Int. Conference on Computer-
Aided Design, pp. 188-191, Nov. 1991.

[4] E. Lehman, et a., “Logic Decomposition during Technology
Mapping,” Proc. of IEEE/ACM Int. Conference on Computer-
Aided Design, pp. 264-271, November 1995.

[5] M. lyer, L. Stok, and A. Sullivan, “Wavefront Technology
Mapping,” Proc. of IWLS98, pp. 419-426, June 1998.

[6] R. Rgaraman, and D. F. Wong, “Optimum Clustering for
Delay Minimization,” IEEE Trans. On Computer-Aided De-
sign of Integrated Circuits and Systems, Vol. 14, No. 12, pp.
1490-1495, December 1995.

[7] EL.Lawler, K.N. Levin, and J. Turner, “Module Clustering
to Minimize Delay in Digital Networks,” IEEE Transactions
on Computers, Val. C-18, pp. 47-57, Jan. 1966.

[8] G. Yee, and C. Sechen, “Dynamic Logic Synthesis,” Proc. of
IEEE CICC, pp. 345-348, May 1997.

[9] E. M. Sentovich, et a., “SIS: A System for Sequentia Circuit
Synthesis,” Technical Report UCB/ERL M92/41, University
of Californiaat Berkeley, May 1992.

[10] T. Thorp, G. Yee, and C. Sechen, “Domino Logic Synthesis
Using Complex Static Gates,” Proc. of IEEE/ACM Int. Conf.
on Computer-Aided Design, pp. 242-247, November 1998.

[11] G. Yee, “Dynamic Logic Design and Synthesis Using
Clock-Delayed Domino,” Ph.D. thesis, University of Wash-
ington, Seattle, June 1999.

[12] J. Cong, and Y. Ding, “FlowMap: An Optima Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs,” |EEE Trans. on Computer-Aided De-
sign, pp.1-12, January 1994.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

