
HW/SW Codesign of an Engine Management System∗

M. Baleani†‡ A. Ferrari‡ A. Sangiovanni-Vincentelli‡§ C. Turchetti†

†Department of Electronics
University of Ancona
60131 Ancona, Italy

{mbaleani,turchetti}@ee.unian.it

‡PARADES EEIG
Via San Pantaleo, 66
00186 Rome, Italy

aferrari@parades.rm.cnr.it

§Department of EECS
University of California

Berkeley, CA 94709
alberto@eecs.berkeley.edu

Abstract

The design process for an engine management system
is presented. The functional specification of the system
has been captured using C and C++ as specification lan-
guages. The validation of the specification has been car-
ried out using functional simulation. Then an architec-
ture for the implementation of the functional specification
is selected among a set of three possible alternatives, all
based on the same micro-controller, characterized by differ-
ent hardware-software trade-offs. The choice is motivated
by a fast performance estimation that can also be used to
identify the parts of the design that could be moved across
the hardware-software partition to obtain better cost or bet-
ter performance. The case study has been performed in the
Felix VCC framework.

1. Introduction

Embedded systems are likely to become pervasive in all
aspects of everyday life. Given the strong pressure on time-
to-market and production cost, there is a growing interest
in design methodologies that can substantially reduce de-
sign time and yet improve its quality, cost and reliability.
There has been a flurry of activities in this domain that have
yielded a number of environments, description languages,
and algorithms for verification and synthesis of embedded
systems. However, there is still a lack of experimental re-
sults that prove the effectiveness of the proposed approach.
Our goal is to demonstrate how a fairly complex, real, appli-
cation of embedded system design can be tackled within the
framework described in [3]. The automotive domain repre-
sents an important share of the embedded systems’ market,
where complexity, hard real-time constraints, product cus-
tomization and safety are ever increasing requirements. In

∗This work has been partially funded by CNR – MADESS II project,
code 2.1.3.

Figure 1. The VCC design methodology

this paper the case study of the full architectural/behavioral
design of an engine management unit is presented. We fo-
cus on engine position acquisition and treatment, for which
six different hw/sw architectures are devised and analyzed.

The basic tenets of the design methodology [1, 3] are
presented pictorially in Figure 1.

Behaviors and Architectures. The system behavior is
entered and analyzed. Parts of the overall behavior may be
taken from an existing library of behavioral components.
The analysis of system behavior allows to capture design
errors early in the design phase. Analysis may be performed
by simulation or by formal verification techniques.

In parallel, a class of architectures, i.e. a class of physical
or ideal components, is selected. For example, a particular
micro-processor architecture (e.g. 32-bit or 16-bit, RISC or
CISC), a DSP, an interconnection scheme (e.g. the AMBA
Bus), are chosen as candidates for the implementation of
the behavior. These components may come from an exist-
ing library of architectural IPs or may be ideal models of
components that will be designed later.

Architecture selection may be performed with different
criteria in mind: from cost to reliability, from performance
to commercial viability, thus allowing a careful examination



of tradeoffs that are not purely technical but that can also
incorporate business objectives.

Mapping. A critical step is mapping a behavior onto
a candidate architecture, i.e. assigning behavioral func-
tions and communication arcs to the architectural resources.
At this point, partitioning between hardware and software
takes place. When several behavioral blocks are mapped
onto a programmable IP block, such as a micro-processor
or a DSP, the corresponding functions are implemented as
software tasks running on the processor. Since the tasks
may be concurrent, the choice of a scheduling policy for the
processor is needed. When a behavioral block is assigned
to a dedicate hardware unit, that behavior is implemented
directly in hardware. The mapping process establishes a
set of relationships between the application behavior and
the architecture on which it will be realized. The resulting
system is then evaluated via performance analysis of speed,
power and cost. In the VCC environment this is done by
running behavioral simulation annotated with information
derived from architectural estimated models representing
the performance of the selected architecture. With early ac-
curate performance analysis, a design where constraints are
not met can be corrected early, re-designing the behavior
to be implemented or changing the target architecture. Be-
havior specification, architecture selection and mapping are
iterated and analyzed until a satisfactory solution is found.

Refinement. Upon completion of the mapping step,
the architecture with the implemented behavior is succes-
sively refined to micro-architectural levels where detailed
instruction sets, RTL models and programming languages
are selected and tested for compliance with the higher level
requirements. Since now the ideal components are bet-
ter characterized, it may be necessary to back-annotate the
higher level models with more accurate parameters, so that
performance evaluation can be re-done with more confi-
dence about the final outcome. The refined target architec-
ture can finally be exported to external environments such
as a ISS/logic simulator co-verification environment or a
rapid-prototyping board.

2. Engine Management Systems

The overall goal of engine management systems is to of-
fer appropriate driving performance (e.g. speed, comfort,
safety) while minimizing fuel consumption and emissions.
Engine management has at its disposal as engine control
inputs: throttle position1, fuel injection and spark ignition.
While the throttle position is controlled at fixed sampling
time, fuel injection and spark ignition require synchroniza-
tion with the engine crankshaft position.

In this paper we address the specific problem of injec-
tion and ignition synchronization in 4-cylinder multi-point

1In modern drive-by-wire systems.

spark-ignition engines. In more detail, the term synchro-
nization means the computation of the current position of
each piston and the working phase (i.e. intake, compres-
sion, expansion or exhaust) of the related cylinder. Syn-
chronization is essential for timing the opening of fuel in-
jectors and the ignition of the spark plugs. For example, to
burn completely the air/fuel mixture, the ratio between air
and fuel should be close to the stoichiometric ratio and the
spark should be fired with a certain advance with respect
to the compression Top Dead Center (TDC). The supplied
torque and the emitted pollutants depend crucially on the
accuracy of these operations. Moreover, the measurement
of the engine-position changing rate allows to compute the
engine-revolution speed (RPM), which is a basic parameter
for any engine control law.

The engine position (i.e. both the position of each pis-
ton and the working phase of the related cylinder) is rep-
resented by the engine angle, an angular reference with a
720◦ period corresponding to a complete engine cycle. The
engine angle is computed by acquiring and processing two
synchronization signals. The fly-wheel signal is provided by
a Hall-effect sensor faced to a toothed wheel integral with
the crankshaft. The wheel has 60 teeth, hence each tooth
corresponds to a 6 gradient degree angle slice. Two teeth
are missing, in order to create a reference needed for their
numbering. The crankshaft angular reference (or crankshaft
angle) has a 360◦ period: two crankshaft revolutions are
performed for every engine cycle. The phase signal is pro-
vided by a Hall-effect sensor placed on the camshaft. It is
faced to a wheel integral with the camshaft, whose revolu-
tion period corresponds to an engine cycle. The particular
shape of the camshaft wheel yields two different logic levels
for every successive crankshaft revolution, thus allowing to
compute the engine angle value (i.e. the 720◦ angular refer-
ence) from the crankshaft angle one (see Figure 2).

Numbering fly-wheel teeth and computing the engine an-
gle involves sensing the crankshaft signal edges, detecting
the asymmetry and “building” the two missing teeth. Since
synchronization is critical for the overall engine control
strategy, the functional description contains an algorithm
that guarantees robustness. A 6◦ error is allowed, provided
that it is corrected within one crankshaft revolution. The
system is instructed to filter the fly-wheel signal, to mon-
itor engine stalls, to detect sensor failures (e.g. the loss of
a tooth, the presence of glitches, the absence of transitions
on either signal) and, in this case, to recover (if possible)
system functionality, to re-synchronize the system or, in the
worst case, to shut-down the engine.

3. Functional Description and Validation

The system model has been described using the glob-
ally asynchronous locally synchronous (GALS) formal



Figure 2. Crankshaft angle and engine angle

model [1], supported by the Felix/VCC environment.
The original behavioral block specifications, in essence

extended FSMs with timeouts and period measurements,
have been decomposed into pure functional blocks and pure
time-related blocks (e.g. timers and free running coun-
ters). The functional blocks have the semantics of Co-
design FSM [1] and are captured using a C subset, called
PoindexterC. The timing blocks are captured using the full
C++ language, which has been used also to describe test-
bench blocks.

The overall functional specification, including also fault
diagnosis and recovery, consists of 13 CFSMs, 3 down-
counters and 2 free-running counters 2, for a total of about
2000 C/C++ code lines.

The behavioral description of the system has been vali-
dated performing extensive simulations. The functional re-
quirements state that the error on the RPM calculation must
be less than 0.2%, while the accuracy of the TDC event de-
tection must be at least 0.1 gradient degree. These prop-
erties are verified for all the performed simulations using
a C++ behavioral block, which is part of the system test-
bench. Figure 3 shows the RPM profile as it is reconstructed
by the system. Simulations are run not only under nominal
conditions: we have accounted for every fault which may
occur on any of the two sensors, as specified by the func-
tional requirements.

Simulations use the real acquisition (sampled and quan-
tized) of the output of the sensors of 4 seconds of engine
management. As shown in Figure 3, the first 3 seconds re-
fer to the engine’s crank and idle phases, starting from en-
gine start-up. This represents the most critical condition for
synchronization since the synchronism has to be established
and because of the maximum RPM changing rate. The idle
phase is then followed by an acceleration (0.8s), bringing
the engine up to 7000rpm, and a hold period of 0.2s at the
maximum rpm value. In this way, we can assess the be-
havior of the system also under a maximum load condition,
which is extremely important especially when coping with

2This value refers to the functional description. Mapping a function on
architectural resources might require to assign one or more CFSMs to two
or more parts.

Figure 3. Simulated RPM profile

its implementation onto finite resources.
The system’s simulation takes about 10 seconds on a

Windows NT 4.0 PC with a 333MHz PentiumII CPU and
a 96MB memory.

4. Architecture Definition

The target architecture is based on the Hitachi SH7055
micro-controller architecture [2]. Only the basic topology
has been captured: not every communication path is de-
scribed. Each architectural element has been defined as an
abstract performance model with no implementation detail.

The hardware partition relies on two components: the
CPU and the Advanced Time Unit (ATU). The CPU is a
32-bit load-store RISC architecture with a 40MHz maxi-
mum operating frequency and processes most instructions
in a single clock cycle through a five-stage pipeline. In
the VCC environment, the CPU model is characterized by
a table of coefficients giving cycle counts for a basic set
of generic or atomic operators. These common operators,
such as load to/from memory,store to memory, ALU opera-
tion, register move, branch/return, map into actual proces-
sor instructions. This performance model does not take into
account any micro-architectural detail. In order to account
for the effects of pipeline stalls, we may use average perfor-
mance parameters estimated by benchmarking. For safety
reasons, we have chosen a different approach using a worst
case execution time (WCET) performance model: instruc-
tion cycles have been counted taking into account all the
delays introduced by pipeline stalls, whenever they are pos-
sible to occur.

The ATU is a configurable unit featuring twelve chan-
nels. Each channel provides different specialized func-
tions, including interval timer operations, free-running or
cyclic counter operations, compare&match and input cap-
ture functions, PWM timer functions, event count and event
cycle measurement, input edge measurement and edge in-



put cessation detection functions, noise cancellation. The
ATU’s capabilities are augmented by the possibility of com-
bining one or more of the functions listed above to perform
a more complex operation. For example, the ATU offers
the capability of detecting crankshaft wheel teeth filtering
out unwanted glitches, of counting teeth, of measuring tooth
period, of signaling particular conditions (such as TDC oc-
currences), without intensive CPU involvement.

On the software side, the support needed for task execu-
tion, i.e. task scheduling and CPU assignment, is provided
and modeled. It implies both IRQ management and the
choice of a scheduling policy. At this level of abstraction,
ISRs are modeled simply as drivers between the hardware
and software layers: they detect the presence of an IRQ on
the hardware side and pass the control to the RTOS. It in
turns activates all the tasks sensitive to that IRQ, according
to the selected scheduling policy. This scheme is also called
Deferred Service Routine. The interrupt handlers are char-
acterized by a priority level, set in the mapping phase, and
an ISR overhead. Similarly, task scheduling is modeling the
scheduling policy and the context switch overhead needed
to start, suspend, resume and stop each task execution.

5. Architecture Exploration

The target architecture has been investigated using four
different cost functions: CPU load, interrupt frequency,
task switching and task number (strictly related to memory
requirements). We have analyzed three different variations
of the basic hw/sw architecture.

Mapping “A”: a choice for software re-use. The first
mapping is intended to allow software re-use and portabil-
ity. In this choice, the software implementation has not
been optimized for the Hitachi architecture. This means
that we have not used some specific ATU features to have a
more portable code. Thus we have employed only those
ATU functions, such as input edge measurement and in-
terval timer operations, likely to be provided also by other
micro-controllers featuring a different, simpler timer unit.

In order to map the functional specification to the se-
lected architecture, we decomposed it to an equivalent de-
scription “mappable” onto the hardware and software par-
titions (functional restructuring). In this case, the mapped
behavior consists of 13 CFSMs, 3 down-counters, 1 free-
running counter and 1 input capture.

The task scheduling policy is chosen taking into account
that task execution is fired by two asynchronous events, i.e.
the crankshaft and the camshaft edges. Since the tooth fre-
quency is about 60 times higher than the one of the camshaft
edges, we scheduled statically all the software CFSMs in or-
der to minimize both the task number and the context switch
overhead.3 On each crankshaft and camshaft edge every

3A static scheduled task chain is equivalent to a single, complex task.

task is fired and eventually skipped if not to be executed.
Performing performance simulation, we have collected

the data summarized in Table 1 (refer to mapping “A1”) and
analyzed task execution frequencies. The analysis reveals
how some tasks are often skipped, since there is no input
event firing them. A logical conclusion is that the CPU load
could be reduced by reducing the number of task skipped
on each execution.

In mapping “A2”, we have removed from the static
scheduled chains the tasks with the lowest activation fre-
quency and introduced a second static scheduled chain con-
sisting of the tasks with the minimum activation frequency.
The two task chains are dynamically scheduled by a static
priority scheduler and their priorities are assigned according
to the Rate Monotonic Algorithm, i.e. more frequent tasks
are given a higher priority. As shown in Table 1, the over-
head introduced by the higher task switching is not worth
the reduction in the number of skipped tasks. The overall
CPU load is higher than solution “A1” and using a single
static scheduler seems a better choice for the scheduling
policy. In this work we have selected “manually”, though
with the aid of the tool, the ”best” number of tasks. How-
ever, new techniques exist that allow, in some cases, this
choice to be made automatically [4].

Mapping “B”: exploiting the ATU capabilities. The
second solution tries to minimize the amount of software
executed by the CPU by exploiting all the ATU’s functions.
The application has been completely customized on the
Hitachi architecture, using the noise cancelling, the com-
pare&match and the event counting features. The hardware
itself counts fly-wheel teeth, detects, for example, TDC oc-
currences and generates the events on which to fire the soft-
ware tasks. Because of the features of this architecture,
we have to re-partition the behavior into a different set of
CFSM to have the correct granularity that allows to fully
exploit the power of the ATU. The “new” system behavior
consists of 15 CFSMs, 3 down-counters, 1 input capture,
1 noise canceller, 1 compare&match and 1 TDC-period
counter.

As stated before, TDCs are detected directly by the hard-
ware and no other software intervention is needed to execute
the periodic related tasks. Nevertheless, crankshaft signal
filtering still requires one interrupt per tooth, and a single
statically scheduled task chain (Mapping “B1”) is again the
best choice (compare the CPU load of mappings “B1” and
“B2” in Table 1) as it was in the previous mapping.

Independently of the scheduling policy adopted, map-
ping “B” yields a reduction of CPU load, since several op-
erations are mapped to the hardware partition. This is ob-
tained mainly at the expense of interrupt frequency, needing
a stronger communication between hardware and software.
This could have been suggested by the finer decomposition
of the functional specification.



Table 1. Mapping cost parameters
mapping “C” “B2” “B1” “A2” “A1”
CPU load% 1.4 6.8 6.7 10.3 10.2
IRQs 1528 8626 8626 7739 7739
task switching 1673 7745 7616 7745 7616
task number 6 3 2 3 2

Mapping “C”: adding hardware. Finally we have ac-
counted for the possibility of customizing the selected ar-
chitecture for the engine control application. This imply the
addition of hardware to enhance the ATU’s capabilities, as
required by the specific application. As suggested by the
previous analysis, we have to tackle the fly-wheel signal fil-
tering issue, which is the key for cutting down CPU load
and interrupt frequency. Hence we have added virtual (i.e.
still not designed) hardware acting as crankshaft signal filter
to the selected architecture and analyzing its performance
effectiveness, to see if it is worth the cost and the work re-
quired. Once again, to evaluate this new solution, we have
modified the behavioral description ending with 18 CFSMs,
2 down-counters, 1 input capture, 1 noise canceller, 1 com-
pare&match, 1 TDC-period counter.

With regard to the task scheduling policy, in this case we
can optimize task activation by exploiting the asynchronous
events generated by the hardware (e.g. the TDC events),
instead of using a single, statically scheduled task chain.
A static priority4 dynamic scheduler has been adopted to
schedule 2 static scheduled task chains and 4 other tasks.
This results in a higher task number, but yields a very large
improvement in all other performance parameters, as shown
in Table 1. We have compared the different mappings refer-
ring to global performance metrics. However, performance
simulation allows us to analyze information such as the la-
tency time of some critical operations: for example, RPM
computation. The mean time between the activation and the
RPM output varies from 61µs for mapping “A1” to 53µs
for mapping “C”. Figure 4 shows an instance of the activa-
tion/reaction points, and the reaction time, as measured for
mapping “C”. The RPM is computed by the static sched-
uled task chain “0”, fired by the related ISR, according to
the deferred interrupt scheme used. In this case, since no
other interrupt occurs and no higher priority task has to be
executed, the overall latency time is the sum of the inter-
rupt completion overhead (estimated in 0.7µs), RTOS start
overhead (about 10µs) and task chain execution time. A
similar analysis can be carried out for each task and/or for
each activation in order to verify that all the deadlines are
met.

4Priorities have been assigned using the Rate Monotonic Algorithm.

Figure 4. Gantt chart for the RPM computation

6. Conclusions

In this paper we have applied a functional/architecture
co-design methodology to an engine management system.
The use of the Felix VCC framework has allowed the ex-
ploration of different architectures and mapping, by a ”tool-
driven” search in the solution space, in a total of two
week/man. In the presented case study, we have found
the “optimal” mapping to the selected hardware architec-
ture, based on the chosen cost functions, and we have iden-
tified those system functions candidates for hardware im-
plementation, evaluating their performance impacts before
implementation. The tool has also been used to estimate
the impact of different CPUs on system performance and
it is currently being used to evaluate the pros and cons of
a novel dual processor architecture for power-train control
functions.

Acknowledgments. Walter Nesci and Giorgio Bom-
barda of Magneti Marelli, Luciano Lavagno of Cadence
Berkeley Lab, Frank Schirrmeister and all the Felix/VCC
team have contributed valuable comments and suggestions.

References

[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh,
B. Tabbara, A. Jurecska, L. Lavagno, C. Passerone,
K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-design of Embedded Systems – The POLIS Ap-
proach. Kluwer Academic Publishers, 1997.

[2] Hitachi. SH7055. Hardware Manual, March 1998.
[3] G. Martin and B. Salefski. Methodology and technology

for design of communications and multimedia products via
system-level ip integration. In Proceedings of the Design Au-
tomation Conference, 1998.

[4] Y. Watanabe, M. Sgroi, L. Lavagno, and A. Sangiovanni-
Vincentelli. Synthesis of embedded software using free-
choice petri nets. In Proceedings of the Design Automation
Conference, pages 805–810, 1999.


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


