
Automatic Lighthouse Generation for Directed State Space Search

Praveen Yalagandula
ECE Department

The University of Texas
Austin, TX

Vigyan Singhal
Tempus Fugit, Inc.

525 Curtis St
Albany, CA 94706

Adnan Aziz
ECE Department

The University of Texas
Austin, TX

Abstract

Previous researchers have suggested the use of “light-
houses” to act as guides in directed state space search. The
drawback of using lighthouses is that the user has to manu-
ally derive them, through a potentially laborious examina-
tion of the design. Additionally, specifying a large number
of lighthouses results in wasted effort during the search. We
present approaches to automatically generate high-quality
lighthouses for hard-to-cover targets.

1 Introduction

We address the problem of efficiently searching the s-
tate space of synchronous digital hardware designs, starting
from a single designated initial state. State space search
has many applications — verification of safety properties
(e.g., bus contention), justifying the reachability of a given
state for an equivalence checker, generating tests to satis-
fy missing coverage, analysis of third–party RTL code to
understand behavior, etc.

Conventionally, state space search has been performed
by simulation. Large numbers of input sequences, called
tests, are applied to a software model of the design; these
tests are generated by random test pattern generators, or by
hand. Simulation is simple, and scales well in the sense that
the time taken to simulate is proportional to the design size.
However, for large designs, the fraction of the state space
which can be covered in this methodology is vanishingly
small [1].

This state of affairs has led to the proposal of symbolic
search strategies, based on the use of BDD’s to implicitly
represent set of states, next state functions, and perform ba-
sic FSM manipulations [4]. Conceptually, these approaches
systematically explore all states reachable from the initial
state. The computational complexity of symbolic search is
enormous; as such it is limited to designs containing of the
order of a hundred latches.

1.1 Directed Search: SIVA

Ganai et al. [2] present a stand-alone tool, SIVA, which
combines simulation with symbolic methods to form a ro-
bust method for state space search directed towards user-
specified targets.

The working of SIVA is described as follows. The design
is read into SIVA as a netlist of gates and latches. Targets
are specified (node; value) pairs, where node is a node in
the design, and value is 0 or 1. SIVA then tries to find input
sequences which lead to covering the targets, i.e., for each
target, set its node to the corresponding value. The tool s-
tarts by simulating randomly generated input vectors at the
initial state; this gives a set of states that can be reached in
from the initial state. The routine randomSimulate perform-
s this step and returns the new states reached. This func-
tion also prunes the target list T if any targets are satisfied
in simulation. The tool stops if all targets are covered in
random simulation. Otherwise, a deterministic procedure,
symbolicSolve is invoked.

The function symbolicSolve takes as arguments a state s
and a target aTarget. It attempts to generate an input vec-
tor which on application at s leads to a state where aTarget
is covered; if it is successful, symbolicSolve returns the se-
quence (called a witness). The symbolicSolve uses a com-
bination of SAT-based ATPG [5] and BDD building with
size and backtrack limits to keep it robust. SIVA stops if all
targets are reached by invoking symbolicSolve. Otherwise,
the tool selects a state from the reached states and starts ex-
ploring the next states by random simulation. This process
continues till either all targets are satisfied or the computa-
tional resources are exhausted.

Generally, targets which are difficult to cover with SIVA
are distant from the initial state in the state transition graph.
Purely simulation based search is prone to getting lost in
the state space, exploring states from which target cannot
be ever covered.

It is often the case that the user may be able to give
“hints” which will help generate inputs leading to the target-
s. For example, if a target is several levels of conditionals
deep, it is necessary to satisfy the preceding conditionals be-
fore the target can be satisfied. Users can specify such hints

to SIVA in the form of lighthouses. A lighthouse is also
specified as a (node; value) pair, covering which is taken
by SIVA as evidence that the search is proceeding in the
right direction. Operationally, when lighthouses are spec-
ified, the symbolicSolve routine tries to satisfy lighthouses
along with targets.

An example of the use of lighthouses is given in Fig-
ure 1. In this design, u is of 8 bits length and a, b and c are
single bit latches. The goal is to set the latch c to 1. In this
case, it can be readily seen that (a; 1) and (b; 1) are possi-
ble lighthouses for the target (c; 1). If we do not specify the
lighthouses, then it is hard to find the input sequence which
satisfy the target.

s0

s1 s2

s3

s0,s1,s2,s3: controller states
u: input vector
a,b,c: latches

?
?

?

}
 c=1;
if (u=131 && a=1 && b=1){

}
 b=1;
if (u=21){

}
 a=1;
if (u=49){

Figure 1. Control flow illustrating the need for lighthous-
es.

Ganai et al. [2] observed that lighthouses play a major
role in generating input sequences for hard-to-cover target-
s. The drawback of using lighthouses is that the user has
to manually examine the design to find them. This can be
tedious, and takes away from the usefulness of SIVA. In
addition, specifying an excessively large number of light-
houses results in performance degradation, since SIVA (as
described in [2]), applies the symbolicSolve routine to each
of them. In this paper, we develop approaches to automat-
ically generating high-quality lighthouses for hard-to-cover
targets.

2 Lighthouse Generation

2.1 Intuition

Conceptually, we want to automatically generate in a
pre-processing step conditions on various nets of the design
whose satisfaction during the search guarantees “progress”
towards the target. Note that there is usually some ordering
present between the conditions. So, in addition to light-
houses, we want to schedule them so that when we satisfy
them in given order, we make progress towards the target.
In this way, we avoid the inefficiency of trying to satisfy all
of them simultaneously. For simplicity, we generate con-
ditions only on latch outputs, rather than arbitrary nodes in
the design.

A naive approach is to use every latch in the transitive
fanin of the target as a lighthouse for that target. There are
several problems with this approach:

1. The number of latches present in the transitive fanin
cone of target is very large, making the symbolicSolve
step in SIVA a performance bottleneck.

2. The graph may be cyclic, and hence will not tell us
where to start.

3. For some targets, it may not be necessary to toggle a
fanin latch to cover the target.

Again, since there is usually some ordering present be-
tween the conditions needed to cover a target, we need some
way of ordering latches so that we concentrate on a subset
at each symbolic solve step. We propose a way of finding
such a partial ordering the latches by building a latch graph.
Then during the search, we use only those latches as light-
houses, whose predecessors in the partial order are already
satisfied.

Let us suppose that to set a latch l to value 1, we need
another latch m to be 1 in previous cycle. If (l; 1) is our tar-
get, then (m; 1) is a natural lighthouse for the target (l; 1).
So the first step towards finding the schedule of lighthous-
es is to identify edges between the vertices which must be
taken to progress from one vertex to the next. Since con-
ditions which set a latch from 0 to 1 and conditions which
set the latch from 1 to 0 are different, we have two different
vertices for each latch in the latch graph.

Formally, the latch graph is defined on the vertex set�
(l; b) j l 2 L; b 2 f0; 1g

	
, where L is the set of latch-

es in the design. Initially, an edge
�
(l1; a); (l2; b)

�
exists in

the latch graph if and only if a combinational path from l 1 to
l2 exists in the design. An edge from (v1; p) to (v2; q) in the
latch graph is defined to be a required edge if the toggling
of latch v2 from q to q requires v1 to be p in the previous
cycle. Since at the initial state half of the vertices are satis-
fied, we concentrate only on the other half of the vertex set.
In particular, the initial-valued vertices (vertices of the form
(l; �) where � is the initial value of latch l) will not have
any fanin vertices in the latch graph.

It may be that in the latch graph the target vertex have
incoming edges which are not required edges. Suppose we
have an edge from (a; 1) to (b; 1) in the graph. Also as-
sume that there exists an assignment to the inputs of the
fanin cone at the input of latch b in network which sets the
output to 1 regardless of latch a’s value. Heuristically, as-
signing (a; 1) to be a lighthouse for (b; 1) is not useful. So
we remove such edges in the second step, by performing u-
niversal quantification on latches with respect to their fanin
latches.

We now present an example of a design with five latch-
es illustrating the significance of above two steps and the
reason for their order of execution. Consider the RTL code
fragment shown in Figure 2. Here a, b and c are single

assign a = (input==134) ? 1 : 0;

always@(posedge clk) begin
if (a||b){

c = 1;
count = 2’b00;

}
else if (c==1){

if (count==2’b11){
c = 0;
b = 1;

}
else{

count ++;
}

}
end

Figure 2. RTL code fragment

count[0],1 count[1],1

a,1

c,1 b,1

Figure 3. Latch graph for code shown in Figure 2

bit latches and count is a 2-bit latch. Assume the target
is (b; 1). The initial latch graph will be as shown in Fig-
ure 3, assuming the initial values of all latches as 0. (For
clarity, we do not show initial valued vertices in the figure).
Consider the vertex (c; 1). If we perform universal quan-
tification step on this vertex, both the edges from (a; 1) and
(b; 1) are removed. But we know that to reach the target
(b; 1), we need to satisfy (a; 1). So we apply following rule
when finding required edges of a vertex:

Rule RA: If (lp; r) is required to be satisfied before (lq; s)
can be reached, then assume lq set at value s when finding
required edges of vertex (lp; r).

When we find required edges, the edge from (c; 1) to
(b; 1) will turn out to be a required edge. So applying the
rule, we can assume b to be 0 when we are finding the re-
quired edges of (c; 1). This time the edge from (a; 1) to
(c; 1) will become a required edge. We can remove the edge
from (b; 1) to (c; 1) in this case. Once we find the required
edge from (a; 1) to (c; 1), by Rule RA, we can assume that
both b and c are 0 when we are trying to satisfy (a; 1).

We have found that Rule RA is quite important and pow-
erful in practice, finding many useful lighthouses. With
each required edge found, say from (l; p) to (m; q), we may
find more required edges for vertices in the transitive fanin

of (m; q). So we need to call the required condition finding
algorithms iteratively till no new edges are found.

Another useful observation is the fact that we can prune
some edges when we find required edges: if we find that an
edge from (a; 1) to (b; 1) is a required edge, then we can
remove the edge (a; 0) to (b; 1). Some more edges can also
be removed on basis of information from using Rule RA.
For example, for the latch graph in Figure 3, we can remove
edge from (b; 1) to (c; 1).

After completing the above two steps, we will have t-
wo types of edges left in the latch graph. Some of these
edges are required condition edges found in first step; other
edges correspond to those edges which did not get removed
in universal quantification. Because of these edges the latch
graph may not be a DAG.

At this stage, we form the graph of strongly connected
components and treat each SCC as an entity to satisfy. Es-
sentially, all vertices in an SCC �1 are treated as lighthouses
for vertices in SCC �2 having �1 as a predecessor in SCC
DAG. (Our experiments observes that most of the SCCs are
of single vertex.) We maintain a frontier to keep informa-
tion about how close to the target we have moved and apply
the latches before the frontier as lighthouses. Initially, the
frontier will have the initial valued leaves of the DAG root-
ed at target. The procedure for constructing the latch graph
is described in detail in the next section.

2.2 Implementation

The routine latchGraphConstruct constructs the latch
graph from the given network applying the two step-
s explained in previous section. Initially, this routine
forms the graph (V;E), where V =

�
(l; b) j l 2

flatches in networkg; b 2 f0; 1g
	

and the edge set E =��
(v1; p); (v2; q)

�
j v1 is in transitive fanin of v2

	
. The

second step of the procedure is to find required edges by the
method of constant propagation, explained in Section 2.2.1.
The method of constant propagation is incomplete — it does
not find all required edges. To find the complete set, we use
an approach based on ATPG and simulation, explained in
Section 2.2.2. These two routines are invoked iteratively till
no new required conditions are found. The last step is to
perform universal quantification of all nodes with respect to
their inputs, described in Section 2.2.3.

2.2.1 The Method of Constant Propagation

The first step in the procedure is to find required edges
between vertices. Some required conditions can be easily
found simply by propagating the value at the output back-
wards. We found it to be quite useful on many latches,
though all required edges can not be found.

For each vertex in the graph, we extract the single output
combinational cone whose output is the input to the latch
corresponding to the vertex. The next step is to set the al-
ready known inputs which arise by applying Rule RA.

We do a forward propagation of known values before go-
ing for backward propagation of values. These techniques
are quite well used in the ATPG field [3] to generate the
input vector satisfying the given logic network.

2.2.2 ATPG and Simulation based methods

Constant propagation will not be able to find all required
conditions for a vertex. We need to use some other methods
for finding this type of required conditions. One approach
might be to build BDDs for the cones, and perform cofactor-
ing. However, building BDD’s tends to be computationally
infeasible. Another approach is to use ATPG techniques
to resolve the dependencies by performing two ATPG calls
per each fanin of a vertex (setting fanin to 0 once and 1 next
time). A better way of doing the same is shown in Algorith-
m 1, which cuts down half of the above ATPGs at the cost
of one ATPG for each vertex.

Here for each vertex n = (l; p), we perform ATPG to
check the whether Fl, the function at the input of latch l,
can be set to value p. We impose following constraints on
the ATPG problem: (a) the required edges are to be satis-
fied, and (b) conditions because of Rule RA. These two con-
ditions are always imposed on all ATPG queries invoked
in the algorithms. If Fl is satisfiable, the ATPG tool re-
turns the witness tn. Latches corresponding to fanin vertex
f = (m; q) of n will have some value in tn. We perform
another ATPG operation to check if F l is satisfiable when
the value of m is toggled from its value in tn. If it is still
satisfiable, then we know that f is not a required fanin of n.

Algorithm 1 atpgReqdCondFinder
1: for each vertex n do
2: if faninToCheck(n) = 0 then
3: continue
4: L(ffanins of n to check forg
5: tn (ATPG for n
6: while L 6= ; do
7: Pick a fanin f 2 L

8: u(ATPG for n with f flipped
9: if u = ; then

10: (f; n) is a reqd edge.

Still, the number of ATPG operations performed on in-
vocation of above algorithm is quite large — the number of
vertices plus the number of edges. We can use the witness
u found in Step 8 to reduce some ATPG operations as fol-
lows. Check for fanins whose values in tn are different from
u. We can safely remove them from the list L. Another im-
provement comes from the fact that the witness returned by
ATPG contains some dont cares, i.e., some of the bits in the
witness are X’s. We can remove the corresponding fanin-
s also from the list L. The ATPG tool, we used [5], does
not always return all possible dont cares in the witness. We
find the remaining dont cares in simulateRemove1 routine
which is invoked by the algorithm on every witness found.

Another enhancement to the above procedure to further
prune the number of ATPG operations comes from the ob-
servation that the combinational input cones to latches are
not different for all latches. Most of them share a great
number of gates. Since simulation is cheap step, we can
use the previously found witnesses to check if they satisfy
the present vertex under consideration. The final version of
algorithm with all enhancements is shown in Algorithm 2.

Algorithm 2 atpgSimReqdCondFinder

1: T (;
2: for each vertex n do
3: if faninToCheck(n) = 0 then
4: continue
5: L(ffanins of n to check forg
6: if any ti 2 T satisfies n then
7: tn = ti

8: else
9: tn (ATPG for n

10: T (T [ftng
11: simulateRemove1(tn; L)
12: while jLj 6= 0 do
13: pick a fanin f 2 L

14: u(ATPG for n with f flipped
15: if u then
16: for all m 2 L do
17: if m has diff. values in tn and ufn then
18: L(L� fmg
19: simulateRemove1(u; L)
20: else
21: (m;n) is a reqd edge

2.2.3 Universal Quantification Step

The second step in the construction of latch graph is to re-
move some edges by performing universal quantification.
We can implement this step either by using BDDs or using
ATPG techniques. As mentioned earlier, the use of BDDs is
limited to small networks — for big networks, construction
of the BDD for the next state function for even a single latch
can cause memory explosion.

Our approach is to duplicate the given combinational net
and tie together the corresponding inputs in two nets excep-
t the inputs corresponding to variable, on which universal
quantification has to be done. To check whether 8a(F b) is
satisfiable, we set the input a in one net to 0 and in other net
to 1. Then we feed this net to the ATPG solver and check
for a stuck-at-0 fault.

The algorithm for this step is shown in Algorithm 3.
We use some of the simulation techniques used in find-
ing required edges here to speed up the step. The
simulateRemove2 routine invoked from this step acts in
a slightly different way compared to simulateRemove1
used in required edge finding algorithms. If we find that
a latch b is a dont care in the witness of vertex (l; p), then

we remove the edges (b; 0) to (l; p) and (b; 1) to (l; p) from
the latch graph.

The witnesses set T collected in previous step shown in
Algorithm 2 is passed as an arguement to this procedure.
We found it was quite useful in pruning lot of ATPGs, which
otherwise would have been called in Step 8 of Algorithm 3.

Algorithm 3 univQuantification(witnessSet T)
1: for each vertex n do
2: if faninToCheck(n) = 0 then
3: continue
4: L(ffanins of n to check forg
5: if any ti 2 T satisfies n then
6: tn = ti

7: else
8: tn (ATPG for n
9: T (T [ftng

10: simulateRemove2(tn; L)
11: while jLj 6= 0 do
12: Pick a fanin f 2 L

13: u(ATPG for 8f(n)
14: if u then
15: simulateRemove2(u; L)

3 Experiments

In this section, we give an outline of the design used
in our experiments, which is a data decompresser chip.
Decompressor is the entire design. This module has
70 inputs, 10333 latches. After decomposing into NAND
gates, the design has 109666 gates. TreeDec is a part of
Decompressor. TreeCtl is a simple controller inside
TreeDec. TreeDec and TreeCtl share some of the in-
puts supplied by the Decompressor module (ex: BOB).
TreeDec has 49 inputs, 2864 latches and 38161 gates;
TreeCtl has 26 inputs, 75 latches and 1161 gates.
BOB is an input signal to the TreeCtl module which

starts the controller. The sequential flow of different steps
in the TreeCtl module are shown in the Figure 4. The
names inside ellipses corresponds to the latches in the de-
sign. Initially all latches are set to 0. A name in ellipse
denotes that the corresponding latch is set, on reaching that
step. And when the controller goes out of that step, the latch
is reset. OpInd is a 2-bit register and its value is retained
through the steps. HCLen, HLit and HDist are 6-bit reg-
isters and SymCnt is a 9-bit register.

The targets we have chosen for our experiments on
TreeDec and TreeCtl are CLTab, WAT, CodGen,
GoBsCd and Done. In addition, we chose BOB as a tar-
get while experimenting on Decompressor. The tough-
est target of all is Done which is located quite deep in
the state space. Done can be 1 only when DnCdGn
is 1 and (OpInd==’00’). The first time DnCdGn

Done

CntBc++

CntBc!=HLit

CntBc!=HDist

CntBc!=HCLen

read

Bob3readBob2readBob1

rst
Bob==1

CntSym!=SymCnt

CntSym++

OpInd++

ClrReg

GoBsCd DBCG

GenBsCd

WAT

CntBc!=HCLen

CntBc++

CntBc++

CntBc==HCLen

CntBc==HDist

CntBc==HLit

CntSym==SymCnt

CntSym!=SymCnt

CntSym==SymCntDnCdGn

OpInd==00

CntBc==HLit

CntBc!=HLit

CntBc==HDist

CntBc!=HDist
CntBc==HCLen

CodGen

CLT

HLit HDist
HCLen

Figure 4. Flow diagram of TreeCtl module

becomes 1, OpInd increments to 01. Thus, the con-
troller has to go through the loop three more times before
(OpInd==’00’) is satisfied.

In the version of SIVA we were given access to, the s-
tate selection strategy was to pick one of the reached states
randomly. We experimented with the strategy of picking
a newly reached state instead of random selection; we call
this version siva-�. When applied on TreeCtl, all targets
were reached even without the specification of light hous-
es. But when applied on TreeDec, it could only reach till
CLTab. This is due to the existence of many other paths
from the starting states.

We experimented with the new SIVA algorithm en-
hanced with automatic light house generator. All the exper-
iments were done on a 450MHz Pentium-II running Linux.
The results of different steps performed on latch graph are
tabulated in Table 1. All times are in seconds.

Constant propagation results are in rows whose heading
is const Prop. From the results, it is easy to observe that a lot
of required edges were found by this method. The row with
heading rem edges gives the number of edges removed in
this method. The remaining required edges are found using
ATPG based techniques. Some edges are also removed in
this routine. These are also presented in the Table 1.

The results of three different algorithms for finding re-
quired edges for the above mentioned designs are shown
in Table 2. The alg1 corresponds to Algorithm 1, alg3 is
the final version given in Algorithm 2 while alg2 is just as
Algorithm 2 without using the witnesses found in previous
ATPG operations. The results show that the integration of
the simulation techniques with ATPG techniques is quite ef-
ficient than using ATPGs alone. The results also show that
the augmentation step used in final version is quite success-
ful in pruning the number of ATPG operations.

The universal quantification step’s results are shown in

stats TreeCtl TreeDec Decomp

Initial
vertices 102 962 4424
edges 1276 37252 163028

Const
reqd edges 192 1995 11539

Prop
rem edges 387 2523 12408
time(secs) 0.11 24.5 349

ATPG
reqd edges 33 68 734
rem edges 71 144 854
rem edges 548 31330 133556

Univ
time 0.82 336 6097

Quant
ATPG calls 43 764 6231
ATPG time 0.70 291 5167
Sim time 0.09 38 846

graph vertices 102 962 4424
stats edges 270 3255 16210

num sccs 101 961 4423

Table 1. Results of latchGraphConstruct on three designs.
Decomp refers to Decompressor

Design alg1 alg2 alg3

TreeCtl

time 1.87 1.05 0.9
ATPG calls 210 129 102
ATPG time 1.81 0.9 0.76
Sim time 0 0.08 0.11

TreeDec

time 4823 248 212
ATPG calls 4201 1171 958
ATPG time 4816 217 169
Sim time 0 24 34

Decompressor

time >24hrs 4079 3675
ATPG calls n/a 7258 6555
ATPG time n/a 3529 2876
Sim time 0 406 665

Table 2. Results of the experiments with different ver-
sions of required condition finding algorithms explained in
Section 2.2.2

rows with heading Univ Quant in Table 1. Finally, the num-
ber of SCCs in the final graph are shown. Only one of the
SCCs contained two vertices and all other SCCs were of
single vertices.

The new SIVA was executed on TreeCtl and
TreeDec with automatic light house generator. The tool
was able to cover all targets in TreeCtl, while it reached
the target GoBsCd in TreeDec. But it could not reach the
target Done. The results of experiments on TreeCtl and
TreeDec are tabulated in Table 3 and Table 4.

4 Conclusions

In summary, we proposed a heuristic to generate light
houses automatically which will help the state space search

Target CLTab WAT CodGen GoBsCd Done
siva yes no no no no

siva-� yes yes yes yes yes
siva-II yes yes yes yes yes

Table 3. The performance of different versions of SIVA
on TreeCtl design. ‘yes’ denotes that the target is reached.
siva-� is sivaModified without using light houses, siva-II is
with light houses.

Target CLTab WAT CodGen GoBsCd Done
siva yes no no no no

siva-� yes no no no no
siva-II yes yes yes yes no

Table 4. The performance of different versions of SIVA
on TreeDec design. The notation is same as used in Table 3

tool in reaching the targets specified by the user. The result-
s show that the modified SIVA with automatic light house
generator was able to find more targets than the original SI-
VA.

This is part of an ongoing project. We have more ideas
related to guided search that we are working on. Right now
the latch graph is built statically as a preprocessing step. In
future, we would like to update the latch graph dynamically
depending on the states reached. Another idea is to make
the graph where vertices will not be just corresponding to a
particular latch state, but corresponds to the state of a par-
ticular group of latches.

References

[1] B. Chen, M. Yamazaki, and M. Fujita. Bug Identifica-
tion of a Real Chip Design by Symbolic Model Check-
ing. In Proc. European Conf. on Design Automation,
pages 132–136, March 1994.

[2] M. Ganai, A. Aziz, and A. Kuehlmann. Enhancing Sim-
ulation with BDDs and ATPG. In Proc. of the Design
Automation Conf., New Orleans, LA, June 1999.

[3] P. Goel. An Implicit Enumeration Algorithm to Gen-
erate Tests for Combinational Logic Circuits. IEEE
Transactions on Computers, C-31:215–222, 1981.

[4] Kenneth L. McMillan. Symbolic Model Checking. K-
luwer Academic Publishers, 1993.

[5] J. Silva and K. Sakallah. GRASP–A New Search
Algorithm For Satisfiability. In Proc. Intl. Conf. on
Computer-Aided Design, Santa Clara, CA, November
1996.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

