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Abstract

Traditional FPGA design flows have treated logic syn-
thesis and physical design as separate steps. With the re-
cent advances in technology, the lack of information on the
physical implementation during logic synthesis has caused
mismatches between the final circuit characteristics (delay,
power and area) and those predicted by logic synthesis. In
this paper, we present a technique that tightly links the logic
and physical domains—we combine logic and placement
optimization in a single step. The combined algorithm is
based on simulated annealing and hence, very amenable
to new optimization goals or constraints. Two types of
moves, directed towards global reduction in the cost func-
tion (linear congestion), are accepted by the simulated an-
nealing algorithm: (1) logic optimization steps consisting
of removing or replacing redundant wires in a circuit using
functional flexibilities derived from SPFDs [12] and (2) the
placement optimization steps consisting of swapping a pair
of blocks in the FPGA. Feedback from placement is very
valuable in making an informed choice of a target wire dur-
ing logic optimization moves. Experimental results demon-
strate the efficacy of our approach over the placement inde-
pendent approach.

1. Introduction

FPGAs consist of a large number of programmable logic
blocks, which can implement a small amount of digital
logic, and programmable routing which allows the inputs
and outputs of logic blocks to be connected to form larger
circuits. In a Look Up Table (LUT) architecture, each logic
block can implement any k-input Boolean function.

The synthesis flow for FPGAs typically consists of four
steps. In the first step, a logic synthesis tool [8] performs
technology independent logic optimization to transform the
design into a multi-level network. In the second step, a tech-
nology mapper [8, 4] maps the circuit onto logic blocks to

minimize the number of lookup tables and/or the depth of
the circuit. Placement and routing form the final two steps.
Traditional placement and routing tools for FPGAs accom-
plish the job based solely on the connection structure of the
multi-level network. This practice more often than not leads
to congestion of wiring channels in certain areas of FPGA,
resulting in longer wiring delay and increased power dis-
sipation. There is no systematic way to make incremental
changes to satisfy design constraints. Such changes, how-
ever, are unpredictable and may amount to unproductive de-
sign iterations.

Most circuit delay in FPGAs is due to routing delays,
rather than logic block delays, and most of an FPGA area
is devoted to routing. Hence, logic techniques that perform
intelligent wire removal and/or replacement are essential to
improve circuit characteristics and reduce design iterations.
In this paper, we present a technique to perform simul-
taneous logic and placement optimization to reduce delay
and power dissipation in circuits mapped to FPGAs. The
combined algorithm is based on simulated annealing and
hence, very amenable to new optimization goals or con-
straints. Two types of moves, directed towards global re-
duction in congestion, are performed by the simulated an-
nealing algorithm: (1) the logic optimization steps consist-
ing of removing or replacing redundant wires in a circuit
using functional flexibilities derived from SPFDs [12] and
(2) the placement optimization steps consisting of swapping
of a pair of blocks in the FPGA. Feedback from placement
is very valuable in making an informed choice of a target
wire during logic optimization moves. Logic optimization
steps that do not have such a feedback, remove or replace
wires with little or no beneficial effect on the final placed
and routed circuit.

In previous work on FPGAs, the authors of [3] present
a post-layout optimization technique to perform wire re-
placement using implication based techniques. Wires that
have alternate wires for replacement are identified during
logic optimization and are used during routing. This infor-
mation is used to replace an unroutable wire by a poten-
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tially routable wire chosen from the replacement set. The
authors of [9], working independently, presented a com-
bined logic and placement optimization technique for stan-
dard cell based designs. To the best of our knowledge, our
method is the first to combine logic and placement opti-
mization for FPGAs. The technique presented in this paper
can also be incorporated in the framework of [9].

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly describe SPFDs and present an algo-
rithm to remove/replace wires at the technology indepen-
dent level. This section also presents results and discusses
the shortcomings of this approach. Simultaneous placement
and logic optimization algorithm and its benefits are pre-
sented in Section 3. Finally, conclusions are presented in
Section 4.

2. Placement Independent Logic Optimization

The authors of [12], introduced a new approach, SPFDs,
for expressing the flexibility that a node can have in a multi-
level network. The don’t cares represented by SPFDs can be
seen as a set of incompletely specified functions. They can
be computed efficiently and are independent, like compati-
ble sets of permissible functions (CSPFs) [7], but express
more flexibility; SPFDs are a generalization of CSPFs.
SPFDs can be exploited to perform logic optimization by
removing/replacing wires and nodes in a network. For more
details the reader can refer to [12, 10].

We have applied SPFDs (based on the idea of cluster of
CLBs [6]) to remove/replace redundant wires in the circuit.
SPFDs can be computed for the entire network starting from
the primary outputs in reverse topological order. However,
this is feasible only for small networks. In order to han-
dle large circuits we constrain ourselves to nodes in smaller
regions (clusters) of the circuit and compute SPFDs only
for such nodes. Working with clusters reduces not only the
amount of time required to optimize a circuit but also the
memory requirements.

Figure 1 illustrates the concept of clusters. For a given
target wire, we compute the fanout cluster up to a user spec-
ified depth. The depth can be anywhere between 1 (immedi-
ate fanout) and the maximum topological depth of the net-
work. A depth-first search, from the target wire up to the
user specified depth, is performed to compute the cluster
nodes. Nodes in the cluster with highest topological depth
are called boundary nodes. The nodes within the cluster are
called internal nodes. The SPFDs for boundary nodes are
computed from their local ON-set and OFF-set. This en-
sures that any changes made within the cluster need not be
propagated beyond the boundary nodes. This setup drasti-
cally reduces the time to perform costly fanout function up-
dates. SPFDs can be computed for every node in the cluster
by starting at the boundary nodes [12]. The order in which

Target wire

Boundary
Nodes

Internal
Nodes

Figure 1. Fanout cluster.

the edges of node SPFD are distributed to its fanin is chosen
according to the heuristics outlined in Section 2.1.

2.1. Heuristics

We have implemented many heuristics and incorporated
memory optimizations, to accomplish the wire removal and
wire replacement task. The following heuristics are em-
ployed to select a node whose fanout wires we target for
removal or replacement.

� Switched capacitance: When the optimization objec-
tive is power reduction, nodes in the circuit are sorted
according to their switched capacitance, SWC. The
node switching activity is computed via simulation
of representative set of user specified patterns or ran-
domly generated patterns based on user specified pri-
mary input statistics. During placement-independent
wire removal or replacement, the fanout count of the
node is used as an estimate of load capacitance. When
this heuristic is applied during simultaneous logic
and placement optimization in Section 3, the half-
perimeter length of the net bounding box, weighted
by the fanout count, is used as an estimate of the
load capacitance. Also, during SPFD propagation,
the switched capacitance is used to order fanin nodes.
During optimization, when an alternative function is
extracted from the node SPFD, the one that reduces
node switching activity the most is chosen.

� Topological depth: As in the switched capacitance
heuristic, the topological depth of a node is used to
sort the fanin nodes during SPFD propagation. A node
closer to the primary inputs is set to have lower pri-
ority (less flexible) than a node farther away. The ra-
tionale behind this choice is that a loosely constrained
(more flexibility) node can propagate more flexibility
information to its fanin than a tightly constrained node.
A convex combination, α �SWC+(1�α) �depth, 0�
α � 1:0, of switched capacitance and topological depth
can also be used.
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� Depth of cluster: The depth of the cluster is a user-
defined option. The depth of the cluster can be var-
ied to trade-off memory and computational time re-
quirements against functional flexibility extracted. The
same depth is used to limit the search for potential
nodes whose output can replace the source node of the
current target wire.

Memory optimization is a primary concern in any soft-
ware implementation. In the implementation of the algo-
rithm, efficient techniques were used to ensure reuse of
BDD variables. Auxiliary variables are required during the
computation of SPFDs. Instead of allocating new BDD
variables, necessary auxiliary variables are chosen from the
pool of existing BDD variables. The choice of a variable is
made in such a way that the resulting Boolean functions do
not result in memory blow-up. For example, when comput-
ing a Boolean relation, BDD variables (representing the in-
dividual functions) which are at the top of the BDD variable
order are chosen. In all the experiments we ran, memory
explosion was never a problem even for the largest bench-
marks. Memory usage seldom exceeded 50MB.

2.2. Basic Algorithm

for (iter = 0; ; iter++) f
if(useSWC)

if(iter % N == 0)
PerformCompleteSimulation();

else
PerformPartialSimulation();

node = PickUnlockedNode(network, SortHeuristic);
if (node == NULL) f

break;
g else f
ProcessFanoutWires(node, maxDepth);
LockNode(node);

g
g

Core:
ProcessFanoutWires(node, maxDepth) f

foreach(targetWire 2 fanoutWires(node)) f
cluster = SelectCluster(targetWire, maxDepth);
ComputeClusterSPFDs(cluster);
ComputeWireSPFD(targetWire);
if (IsWireRemoveable(targetWire)) f
RemoveWire(targetWire);

g else if (IsWireReplaceable(targetWire)) f
ReplaceWire(targetWire);

g
g

g

Figure 2. SPFD-based wire removal and re-
placement.

Figure 2 provides an outline of the placement-
independent wire removal and replacement algorithm. If

the switched capacitance heuristic is used, pattern based
simulation is performed to compute the switching activity
for the nodes in the circuit. Complete simulation, using all
the specified vectors, is performed only at the beginning of
the algorithm. Every N iterations, partial simulation (using
only a portion of the specified vectors) is performed to get a
rough estimate of switching activity. Initially all the nodes
in the network are unlocked, i.e., all the nodes are avail-
able for optimization. As optimization progresses, every
node whose fanout wires have been examined are locked
and hence, are not selected in future iterations. The algo-
rithm ends when all the nodes are locked.

Nodes in the network are ordered according to their
switched capacitance. For every node that is selected,
the fanout cluster is computed according to a specified
maxDepth. SPFDs are then computed for the cluster nodes
and the targetWire. If the SPFD of the target wire is empty
then it is removed, else if a node exists whose function sat-
isfies the wire SPFD, the target wire is replaced. The node
is then locked after examining all the fanout wires.

2.3. Results

We have implemented the above algorithm in VIS [2].
We use CUDD [11] as the underlying BDD package. We
have tested our algorithm on several MCNC benchmark cir-
cuits. All original circuits were fed to SIS [8] for logic op-
timization and mapping onto 4-input LUTs. The script we
used for this task is the one suggested in the SIS manual.
The mapped circuit is then used as an input to our optimiza-
tion tool. The wire removal algorithm was run only once
on each benchmark circuit, i.e., no repeated passes were
performed and any single wire is examined only once; re-
peated passes did not increase substantially the number of
wires removed to justify the time spent. The number of
wires removed range from a low 5% to a maximum 30% of
the original wire count. We ran the different heuristics on
each of the benchmark circuits and the percentage of wires
and nodes removed was recorded.

The optimized circuits (78 total) were then placed and
routed using VPR [1], a place and route tool for FPGAs. We
have used the timing-driven (based on Elmore delay) router
in VPR. The FPGA routing architecture has single-length
wire segments and two input/output pads per row and col-
umn. The FPGA architecture we have chosen is simple, as
we wish to isolate the effects of wire removal/replacement
from that of the FPGA architecture. The order of logic
blocks, in circuit descriptions of both the original and opti-
mized circuits, were forced to be the same (except of course,
the redundant blocks removed), in order to reduce any side-
effects of different input seen by VPR. The same experi-
mental conditions are retained for the results in Section 3.

The results obtained in this section should not be con-
strued as a manifestation of potential VPR drawbacks. Cur-
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rently VPR produces the best results among various public
domain tools in terms of quality of results. Our conjec-
ture, drawn from our experiments, is that similar observa-
tions can be drawn if other place and route tools are used.
Figure 3 shows the distribution of all the circuits after place-
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Figure 3. Distribution of placement and rout-
ing results.

ment and routing. Symbol + indicates an increase, – a de-
crease and = no change in delay or width (measured by
number of tracks per channel) of the routing channel. Of
all the optimized circuits, after placement and routing, only
12:8% resulted in the reduction of critical path delay as well
as the number of tracks (per channel) needed to route the
circuit. On the other hand, 56:4% circuits had either negli-
gible change (<�2%) in performance or were slow, disre-
garding the number of tracks (minimum) required to route.
The results of Figure 3 clearly bring out the fact that the ef-
fects of placement-independent logic optimizations can be
unpredictable.

The results concerning power dissipation have been en-
couraging. We have seen reduction in power across all the
examples optimized (average 9:4%). Similar power reduc-
tions have been reported by [5]. The reduction in power
can be attributed to two factors: (1) reduced circuit capac-
itance because of wire removal and (2) reduction in func-
tional switching activity.

Table 1. Sample results to emphasize wire
quality.

Circuit Wires Nodes Channel Delay
removed removed width (ns)

C1355 35 5 6 43.6
35 5 7 37.7

C3540 130 21 7 105.2
127 22 7 88.9

As mentioned earlier, the percentage of wires removed
was different depending on the heuristics applied. We have
some interesting observations even in those cases where the
number of wires removed was equal. Table 1 shows just a

sample of two circuits optimized with two different heuris-
tics. Similar observations have been made in other exam-
ples, but we do not list them all due to space limitations.
For C1355 the two heuristics removed the same number of
wires (35) and nodes (5), but the resulting placed and routed
circuits require different number of routing tracks and have
different delays. The same is true for C3540 (except for
the number of tracks) when approximately the same num-
ber of wires and nodes are removed. This is due to the fact
that different methods removed different wires. Hence, it is
important to extract information about a wire before it is re-
moved. As enough physical information is not available at
the technology independent level, blind optimizations often
lead to unpredictable results. Section 3 presents a solution
to provide the necessary feedback to make intelligent wire
removal and replacement.

3. Placement Dependent Logic Optimization

The results from the previous section suggest the need
for physical information during logic optimization. Figure
4 shows the effect of using the placement of the original un-
optimized circuit to route the optimized circuits. The major-
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Figure 4. Distribution of placement and rout-
ing results.

ity of the circuits have the same performance characteristics
as the original circuit. This is a clear indication of the im-
portance of placement and the effect it has on final circuit
characteristics. The rest of this section describes an algo-
rithm that combines logic optimization (wire removal and
replacement) and placement into a single step.

Figure 5 shows the pseudo-code for the simulated
annealing-based simultaneous logic and placement opti-
mization algorithm. The generic simulated annealing al-
gorithm for placement [1] is adapted to incorporate logic
moves along with swapping of a pair of blocks. At ev-
ery inner iteration, i.e., during iterations corresponding to
a constant temperature, a logic move (wire removal or re-
placement) or a placement move is made based on a user-
defined or automatic schedule. The user-defined schedule
specifies the number of logic moves, typically 5-10, to be
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made at each temperature. The automatic schedule has been
determined empirically [1]. If a placement move is chosen,
two blocks within a square of side 2 �Rlimit are chosen for
swapping. Rlimit ranges from 1 to the maximum number of
rows or column in the FPGA. Rlimit is decreased gradually
as the temperature T is decreased. It initially covers the en-
tire FPGA and at lower temperatures it is set such that only
finer moves are performed. If a logic optimization move is
chosen, the core (Core) of the basic wire removal algorithm
of Figure 2 is invoked. The cost function, linear congestion,
the weighted sum of the bounding boxes of the nets in the
network, is updated after every move, either logic or place-
ment. Individual nets are weighted according to their fanout
count; the weights were determined empirically [1].

S = RandomPlacement();
T = InitialTemperature();
Rlimit = InitialR();

while(ExitCriterion() == False) f
while(InnerLoopCriterion() == False) f

Snew = LogicOrPlaceMove(Network,S,
Rlimit);

∆ C = Cost(Snew) - Cost(S);
if(random(0,1) < e�∆C=T ) f

S= Snew;
g

g
T = UpdateTemp();
Rlimit = UpdateR();

g

Figure 5. Simultaneous logic and placement
optimization.

The logic move in the combined algorithm now has in-
formation about the current placement. The half perimeter
length of the bounding box of a net, appropriately weighted
by the fanout count, is used to sort nodes in the network.
If switched capacitance heuristic is used instead, the cir-
cuit nodes are sorted according to the switching activity of
a node times the half perimeter length of the bounding box.
Fanout wires of the node with highest weight are then cho-
sen as target wires. These fanout wires are sorted and pro-
cessed according to the half perimeter length of their indi-
vidual bounding box. If a target wire cannot be removed, it
is examined for potential replacement. The details of wire
replacement strategy we employ are explained with the help
of Figure 6.

Consider the wire connecting blocks i and j. The half
perimeter length of the bounding box connecting i and j
is 3. The blocks that can potentially replace i (resulting
in length less than 3, and hence, lower cost) are marked
by a plus. We can search for a candidate block in this re-
gion or, on the other hand, we can intentionally increase the
placement cost (non-greedy move) by searching for poten-

i

j

Figure 6. Search region for a replacement
node.

tial candidates in a larger region (unmarked blocks). Our
algorithm incorporates logic moves that, like the placement
moves, can move the cost in either direction and hence, po-
tentially lead to a better solution.
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Figure 7. Distribution of placement and rout-
ing results.

The experimental results using the combined algorithm
are presented in Figure 7. As mentioned earlier, the exper-
imental conditions of Section 2.3 were retained. The com-
bined algorithm leads to much better improvements when
compared to Figure 3. 67:2% of the circuits now show per-
formance gains as opposed to 43:6% due to placement in-
dependent optimization. Also, none of the circuits needed
more tracks for the same performance (as opposed to 5:1%).
Power reductions were higher (average 16:5%) than those
of Section 2.3 due to better wire removal.

We performed an additional experiment to ascertain the
advantages of simultaneous placement and logic optimiza-
tion. The final optimized circuits (obtained after simulta-
neous placement and logic optimization) were again placed
and routed, but this time ignoring the placement produced
by the combined algorithm. The experiment revealed a dis-
tribution very similar to Figure 3, except for a further but
marginal reduction in power dissipation and critical path de-
lay due to extra wires removed.

Table 2 shows a sample of logic optimization results.
The columns under Original show the original node and
wire count. The number of wires, W, and nodes, N, removed
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Table 2. Sample logic optimization results.
Circuit Original PI PD

W N W N W N
C1355 456 114 (32)71 (4)13 80 16
C1908 718 201 (110)91 (21)17 141 29
C3540 1597 462 (152)150 (26)24 179 26
C5315 2472 714 (277)313 (41)49 374 63
C880 530 142 (17)19 (3)3 38 4
alu2 504 141 (12)16 (1)2 38 2

apex6 888 242 (15)39 (2)3 68 5
apex7 298 85 (19)19 (4)4 29 4

des 5223 1493 (77)83 (6)6 250 6
f51m 136 39 (33)38 (8)9 44 10

rot 772 239 (10)17 (0)1 27 1
C2670 960 350 (146)156 (36)39 183 43
dalu 1705 471 (150)146 (16)21 189 30
frg2 1866 532 (45)69 (0)8 78 7
i9 1110 286 (147)145 (0)0 177 0
x3 1124 333 (27)65 (15)12 83 15

C7552 3490 1042 (524)600 (85)101 667 104
i10 3490 1004 (357)360 (22)22 471 35

after placement-independent optimization and placement-
dependent optimization are shown under columns PI and
PD, respectively. The table shows that the numbers of
wires and nodes removed during placement-dependent op-
timization are consistently higher than those of placement-
independent optimization. This is due to the fact that
the order in which nodes are examined during placement-
dependent optimization changes dynamically. On the con-
trary, during pure logic optimization, the nodes are chosen
according to a particular cost function and hence, over re-
peated invocations of the algorithm of Figure 2, will very
likely follow the same order. This observation is further
corroborated by the pair of numbers reported under PI for
each circuit. The first numbers, shown in brackets, are the
best numbers obtained (among various heuristics applied)
when nodes are sorted based on a specific cost function
and the other when nodes are examined randomly. Our al-
gorithm removes approximately 40% more wires and 27%
more nodes than pure logic optimization technique.

4. Conclusions

In this paper, we have presented a technique to per-
form simultaneous logic and placement optimization for cir-
cuits mapped to FPGAs. Our algorithm combines logic and
placement moves in a simulated annealing set up. The ex-
perimental results show that feedback from placement is
very valuable in making informed choices during logic op-
timization. Logic optimization without such a feedback has
little or no beneficial effect on final circuit characteristics.
The combined algorithm produced circuits that have bet-
ter performance and occupy less area when compared to

placement-independent logic optimization. Also, the com-
bined algorithm produced circuits that dissipated 7:8% less
power than those produced by pure placement-independent
logic optimization.
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