
Transformational Placementand Synthesis

Wilm Donath,PrabhakarKudva,LeonStok PaulVillarrubia LakshmiReddy,Andrew Sullivan,
KanadChakraborty

IBM TJWatsonResearchCenter IBM Server Group IBM Server Group
Yorktown Heights Austin,TX Hopewell Junction,NY

Abstract

Novel methodologyand algorithms to seamlesslyinte-
gratelogic synthesisandphysicalplacementthrougha trans-
formationalapproach are presented.

Contrary to mostplacementalgorithmsthat minimizea
global cost functionbasedon an abstract representationof
thedesign,wedecomposedtheplacementfunctioninto a set
of transformsandcoupledthemdirectlywith incrementaltim-
ing, noise,and/orpoweranalyzers.Thiscouplingresultsin a
directandmoreaccuratefeedback onoptimizationsfor place-
mentactions.

Theseplacementtransformsare thenintegratedwith tra-
ditional logic synthesistransformsleading to a converging
setof optimizationsbasedon theconcurrent manipulationof
boolean,electrical,aswell asphysicaldata.

Experimentalresultsindicatethat theproposedapproach
createsan efficient converging designflow that eliminates
placementand synthesisiteration. It results in timing im-
provements,andmaintainsotherglobal placementmeasures
such aswire congestionandwire length.

Theflexibility of thetransformationalapproach allowsus
to easilyadd, extendand supportmore sophisticatedalgo-
rithmsthat involvecritical aswell asnon-critical regionsand
target a variety of metricsincluding noise,yield and manu-
facturability.

1 Intr oduction and RelatedWork

Timing optimizationin traditionallogic synthesisis basedon
a transformationalapproach.The net list is graduallymod-
ified and refined. Timing, noise and power analyzersin-
crementallymeasurethe designandprovide feedbackto the
transformsthatmaketheactualdesignchanges[23]. An eval-
uator (or the transformitself) queriesthe analyzersandde-
cidesif the designactuallyimprovesandaccepts/rejectsthe
netlistmodifications.

The advantageof the above approachis that direct feed-
back from the analyzer(s)is usedin the synthesisoptimiza-
tions. Thereis a directcouplingbetweentheanalyzersused
for thefinal sign-off criteriaandtheoptimization.Thisdirect
couplingallows discretelogic andelectricalnetlistoptimiza-
tionswithin synthesis.

Algorithms for placementhave the advantageof a rigid
underlyingmathematicalformulation. They have beenvery
successfulin optimizingnet lengthandcontrollingwire con-
gestionandtheir complexities scalewell to handlelargerde-
signs. Most placementalgorithmsusecontinuousformula-
tionsandhencedo not lend themselvesto discreteoptimiza-
tionstypically usedin synthesis.

Timing drivenplacementtechniqueshave often usedthe
ability to specify constraintsinto the placementalgorithm
suchasnet weightsandcapacitancetargetsto achieve such
goals[9, 20, 14]. However, they do not directly takeinto ac-
count feedbackfrom for examplea timing analyzer. These
techniquesformulatetheir problemsascontinuousoptimiza-
tion problemsandhencedo not lendthemselveseasilyto in-
cludenetlisttransformationswhicharediscretein nature.

Includingtheseobjectivesdirectly in theproblemformu-
lation leadsto expensive optimizationalgorithms. In [21],
locationsare specifiedas variablesfor timing improvement
andanexactnon-linearoptimizationproblemis formulatedto
achieve this goal. However, therun time of non-linearmeth-
odstendsto grow quickly with thesizeof thedesigns.

A primaryapproachhasbeento usea snapshotof place-
mentasa startingpoint for netlist transformations,followed
by an incrementalplacementstep[12, 18, 16, 17] to legal-
ize theperturbationscausedby thenetlist transforms.These
approachessignificantlylimit thenetlist changesthat canbe
madeto be able to maintainincrementalityin the succeed-
ing placement.In POINT [22], the approachis extendedby
addinga flow-basedplacementimprovementphaseas a le-
galizationstep,therebyincreasingthe numberandscopeof
network changesthat can be tolerated. In [11], a method-
ology that enablesoneto invoke synthesistransformsin the
intermediatestepsof a partitioningbasedplaceris described.

All theseapproachesstartfrom anexisting placementand
only try to optimize aroundthis initial local solution. In
ourtransformationalplacementandsynthesisapproach(TPS)
we takethis a stepfurther. By creatinga sequenceof more
and less granularplacementand netlist modificationtrans-
forms a converging designclosureprocessis created,start-
ing from just a netlist without initial placement.The place-
mentfunction is decomposedinto a setof placementtrans-

formsaddressingeachaspecificphaseof theplacementprob-
lem. Eachplacementstepbecomesjustanothertransformthat
changesthedesignspace,in this casetheplacementof cells.
Theseplacementtransformscanbefreelymixedandmatched
with thetraditionallogic synthesistransformsthatchangethe
netlist. The accuracy versusruntimetradeoff of theseopti-
mizationscanbe refinedasthequality of theplacementand
netlistdataimprovesin a converging flow.

All transformshave anunifiedview of theplacementand
synthesisdesignspace.Synthesis,timing, andplacemental-
gorithmsanddataareconcurrentlyavailableto all transforms.
This opensup thepossibilityfor anentirenew classof trans-
forms thatmodify thenetlistandplacementconcurrently. A
transformto eliminatewire congestioncan do this both by
moving cells or re-decomposinga pieceof the netlist. An
electricalcorrectiontransformcanlet its choiceto cloneacell
or buffer its outputbedrivenby how muchspaceis available
to do oneor the other. Section4 describesvariousof these
transforms.

To beableto apply this transformationalapproachto in-
dustrialsizedesigns,efficient datastructuresneedto beem-
ployed. Section2 describesour abstractionof theplacement
image. This imagegraduallyrefinesitself during the course
of the algorithmstherebyproviding efficiency up-front and
precisionin thefinal stagesof thedesignflow. All timing cal-
culationsin TPSarefully incrementalandrecalculationsonly
happenin regions affectedby netlist or placementchanges.
Section3 describeshow thewire-length(andload)calculation
is done.Section4.1 describeshow theplacementproblemis
decomposedsuchthatwemaintaintheglobalproperties(like
wire-lengthandwire congestion)andin additioncanaddress
localproblems(like timing andnoise).

Section 5 describeshow the placement,synthesisand
combinednetlist/placementtransformscanbegroupedin sce-
nariostoobtainanefficient(orderof runtimesimilarto sumof
synthesisandplacementstand-alone)andconverging design
flow.

2 PlacementImage
The placementdataof a designneedsto be representedat a
variablelevel of abstraction.On onehandthecell placement
needsto berepresentedpreciseenoughto getaccurateinfor-
mationfrom the analyzers.On the otherhandonedoesnot
want to spenda lot of time updatingdetailedplacementin-
formationthat doesnot have a major impacton the analysis
results.

A bin-basedplacementimageis selectedsinceit canbe
efficiently updatedandcangraduallyrepresentmoreprecise
placementinformation. The chip/designareais dividedinto
bins as shown in figure 1. Only abstractedinformation is
maintainedwith respectto eachbin. Eachbin hasassociated
with it a certaincell capacity, andwiring capacity. Circuits
canbe moved betweenthe binswithout a complex legaliza-
tion procedure.Instead,we keeptrackof a simplermeasure

of how muchof thebin capacityis usedupby circuitsalready
placedin thebin.

Area in BIN_2 blocked by custom datapath

BIN_DATA{

AREA CAPACITY

AREA USED

WIRE CAPACITY

WIRE USED

BLOCKAGE DATA

BIN_8

BIN_3

BIN_6 BIN_5

BIN_4

BIN_2

BIN_1

BIN_7

Figure 1. Coarse Image View

Thebin structurehasfunctionsthatrelateto thephysical
characteristicsof thechipimage:whereandhow many circuit
locationsareavailable,wherei/o’sareplaced,largepartitions
areplaced,block spacefor othercircuits,wherepower lines
areplacedandhow they blockotherwiring. This information
is sufficient to ensurethat a legal detailedplacementcanbe
obtainedandthat the wire-ability metricsfor the routingare
met.

Thebinscanhave any size.Thesmallerthebin, themore
precisetheplacementof thecellsin thisbin. Eventually, each
bin could containone cell and the cell will be fixed in the
locationof thebin. In the caseof detailedlocations,thecir-
cuitshaveexactlegal locationsfor agivenchip imageandthe
circuit rowsandwiring tracksareexactlydefined.

The bin structureis especiallybeneficial in a synthe-
sis/physicaldesignenvironmentwheresignificantchangesare
madeto the designand maintaininglegal locationsfor de-
tailedplacementwould beexpensive. Thebin structurenatu-
rally supportsour optimizationflow, wheremoredrasticre-
structuringdecisionsare madeup-front, and smallerdeci-
sions,supportedby morepreciseanalysisinformationlater.
Gradualrefinementof thebinswill creategraduallymorepre-
cisewire-lengthestimatesandbettertiming andnoiseanaly-
sis.

3 Wir e Length Calculation
Figure 2 shows the tracking betweenthe net-lengthof a
Steinertree and the final routing of the net. It shows the
numberof netsthat have a certainpercentagepredictioner-
ror. The threedatasetsshown (left to right) wereobtained
by successively removing the shortest10%and20% of nets
from the statistics.Onecanseethatall largererrorpercent-
agesdisappearif theshortestnetsareremoved.Theerrordue
to shortnetsdoesnot have a significanteffect on delay. For
the slightly longer and long netsthe precisionof a Steiner
lengthapproximationis sufficientfor thetransformationsthat
are donein the TPS phase. This is especiallytrue, if this
Steinertreeis alsobeingusedto initialize the global router.
Also a final sizing after routing canbe doneto compensate

for the in-accuraciesof theSteinertreewithout changingthe
placement.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

100

200

300

400

ne
ts

Figure 2. Wire load histogram

The Steinertreeis calculatedusingthe positionsof each
cell andits pins. Cell positionsmight beeitherexact (in the
final phases)or derived from the bins the gate is in. The
Steinertree getsdynamicallyre-calculatedwhen gateposi-
tionschangeaswell aswhennew cellsarecreatedor old ones
deleted.

For shortwires,anElmoredelay[25] modelis used.The
wire loadcapacitancesareestimatedaslumpedcapacitances
proportionalto the Steinerestimatesof the lengthsof the
wires. For longerwires wherethe RC componentis signif-
icant,anappropriatedelaymodel[19, 5] is chosen.

Thesemodelsare registeredas net-delaycalculatorsin
an incrementaltiming analysisengine[10]. Both changesto
positionsof cells andchangesto the netlist may trigger in-
crementalrecalculationsof the timing andSteinertrees.We
canhave differentwire-lengthcalculatorsfor wireswithin the
bins. For example,one may useapproximatewire lengths
obtainedfrom Rentrule [6, 7].

4 Transformations
4.1 PlacementTransformations
Differentplacementalgorithmsneedto be appliedat differ-
ent stagesof the designflow. Theplacementalgorithmsde-
ployedwithin TPS includemulti-level partitioning [2, 13],
look aheadmin-cut[4], clustering,reflow, quadratic[14], and
collectionsof greedydetailedplacementheuristics.Most of
theseplacementalgorithmsweredevelopedandtunedwithin
a placementtool [11]. Thedominantflow duringmostplace-
menttransformsis thatof thetraditionalbipartitioningplace-
mentmethodology. In this flow, thestartingpoint is a netlist
consistingof fixed and movable circuits, along with floor-
planningconstraintssuchasprimaryIO portassignments,re-
servedareas,capacitancetargets,andareasassignedfor aspe-
cial setof logic circuits.

The Partitioner transformseparatesthemovableobjects
into two partitionsdefinedby a dividing line (cut line) that

Algorithm Partitioner+Reflow

/* Initialize thewindow list to onewindow thatcoverstheentiredesign.*/
starthead= initialize window list();
for(cut number= 0; cut number

�
numberof cuts;cut number++)

/* Partitioner */
for(window = starthead;window != NULL; window = window- � next)

/* extractthecontentsof thiswindow from thechip */
this subset= get subset(window);
/* partitionthissubsetusingmulti-level partitioning*/
partition subset(thissubset);
/* Putthepartitionedresultsbackinto thechip*/
put subset(thissubset);

endfor;
/* Reflow */
start head= subdivide eachwindow in the list(start head);
for(window = starthead;window != NULL; window = window- � next)

reflow window = merge(window,window- � next);
this subset= get subset(reflow window);
partition subset(thissubset);
put subset(reflow window);

endfor;
endfor;

splits thedesigninto two halves. Theobjectsfor eachparti-
tion areselectedsoasto minimizethe total numberof wires
thatcrossthecut line, andso that theamountof circuit area
andconnectionsin eachpartitionareapproximatelyequal.At
this point we have two partitions. Applying the samealgo-
rithm recursively, the two partitionsbecomefour, theneight
andso on. For every partition operationfollowing the first
thereis the addeddifficulty of terminalprojection,which is
themethodfor modelingconnectionsthatflow from onepar-
tition into another. TPShandlesterminalprojectionby mak-
ing theentirenetlistof objects,andtheir placementlocations
visible to every partitioningoperation.In this waythereis no
datamodelsetupoverhead.Connectionsthatexit a partition
areseennatively, andreactedto accordingly.

Oneof the criticismsof the partitionertransformis that
decisionsmadeearlyon in theprocesstendto ”trap” objects
into certaingeometricareas,providing little meansfor them
to escapewhat may have beena suboptimalassignment.A
reflowalgorithmcanresolve thesesituations.Logic is given
theopportunityto flow backinto areasthat thestrict biparti-
tionerhasexcluded.This is accomplishedby deployinga se-
riesof sliding windowsthatroamaroundthechip in between
thepartitioningstepsof the bipartitioner. In this processthe
sizeof the roamingwindows startoff large andprogressto
small in size. In additionto thereflow transform,othertech-
niquessuchasvaryingtheinitial cut line coordinatesandus-
ing detailedplacementtechniquesalsohelp.With thesealgo-
rithmsdeployedtheresultingplacementdistributionsvisually
appearlessgrainy thanstrict bipartitioning,andlook similar
to the resultsof a simulatedannealer. The partitionercom-
binedwith the reflow algorithmconstitutesthe global phase
of placement.

Algorithm Partitioner+Reflow describesthe partitioner
andthe reflow algorithmappliedduringa placementcut. In
general,eachof thesestepscould beappliedindependently.
For many chips,thecombinationof partitioningfollowedby
reflow seemsto work well. At any pointbeforeor afterparti-
tioning andreflow, othersynthesisandplacementtransforms

Algorithm DetailedPlaceOpt

/* DetailedPlacementOptimizations */
/* Createasmallwindow, approximatelylargeenoughfor 20objects*/
slider window = initialize it;
/* Slidethiswindow acrosstheentirechip*/
for(postition= first; position!= NULL; position= next)

positionslider window(slider window,position);
for eachobject in slider window

try swappingwith eachof theotherobjectsin thewindow
pick severalobjects,andtry all permutationsof reordering
acceptthebestof all of thesemoves;
legalizemove

endfor;
endfor;

maybeapplied.In onetypicalTPSscenariodescribedin Sec-
tion 5, synthesistransformsareappliedimmediatelyafter re-
flow.

The detailedplacementtransformsinvolve the useof a
collectionof greedyheuristicsthat involve selectingan ob-
ject for a move, or a pair of objectsfor a swap. A detailed
placementtransformof swapis givenin algorithmDetailed-
PlaceOpt. Following themove or swap,a legalizercleansup
any overlaps. Next, we scorethe result. The scoringfunc-
tion includestiming, noiseandareaobjectives. If we have
improved the designwe keepthe move and badmoves are
rejected.

4.2 Cir cuit Migration

Thecircuit migrationtransformallowsoneto have morepre-
cisecontrol over the placementof cells to meetspecifictar-
gets.Themaindifferencebetweenplacementalgorithmssuch
asreflow andthealgorithmpresentedin this sectionis thedi-
recttight couplingwith theanalysistool, in this casethetim-
ing analyzer.

In orderto improve thetiming of a designby moving ap-
propriatecircuits,weneedto understandhow circuit motions
affect the capacitanceof a net or a setof nets. Many situa-
tions occurwhereindividual circuit movementshave no ef-
fect or could even worsenthe timing of the circuit. On the
otherhandthe collective motion of several circuits together
may have significantimprovements.In the following exam-
pleswe will makethe simplifying assumptionthat timing is
directlyproportionalto thenetlength.

Considerthemeanderin a critical pathin Figure3. Mov-
ing only oneof the circuits

�����
or � would have no bene-

ficial effect on the total net length. The movementof
�����

and � togetherwould reducetotal net lengthand therefore
improvetiming. Theproblembecomesmorecomplex if

�����
or � have multiple faninsandfanouts.Thecircuit migration
transformaddressesthis issue. Similarly, considera single
netwith threenodesconnectedusinga steinertreeasshown
in Figure4. If we move any individual nodeA or B in the
verticaldirection,thereis no reductionin net length(assum-
ing orthogonalrouting). If we move the two nodestogether
asshown thetotalnetlengthcanbedecreased.

A circuit migrationtransformto performtiming optimiza-
tion in conjunctionwith anincrementaltiming analyzerbased

Algorithm LogicalEffortNetWeight

initialize min cut placement()
logical efforts = analyzelibrary()
numberof cuts= 0
while(cutsto beprocessed)

CR= obtaincritical region(design);
if (mode= absolute)

for eachnetin CR
absoluteslackweight= computeslack weight(net)
net weight= � (absoluteslackweight,logicaleffort/max logical effort)

endfor;
elseif (mode= incremental)

for eachnetin CR
absoluteslackweight= computeslack weight(net)
previous slackweight= previous slackweight(net)
new slackweight= 	 (absoluteslackweight,previousslackweight)
net weight= � (new slackweight,logicaleffort/max logical effort)

endfor;
endif;

endwhile;

on the notionof strongmoveshasbeendevelopedin [8]. A
strongmoveinvolvesmoving anoptimalsetof circuitsto im-
provethetiming andhasthepropertythatmoving any proper
subsetof this setwill result in a suboptimalor no improve-
ment.For examplein Figure3 themotionof

�
,
�

, � together
in the downwarddirectionis a strongmove. A strongmove
for a netconsistsof moving a setof circuitsall of which are
connectedto that net. Likewise, a strongmove for a group
of netsconsistsof moving a setof circuits all of which are
connectedto at leastonenetin thegroup.

Circuit migrationtransformusesefficient techniques[8]
to computethesetof strongmoveswhich improve timing for
all individualnetsin thecritical regionidentifiedby thetiming
analyzer. Next, it combinesthesestrongmoves to generate
strongmovesfor a groupof netsin thecritical region. Such
strongmovesareappliedif the placementbin capacitiesare
notexceededandif thereis significanttiming improvement.

C D E

E

Fixed Fixed

A B F GC D

Figure 3. Changes in Locations for Critical
Paths

A B

A B

C C

Figure 4. Motion of individual Circuits

4.3 Logical Effort basedNet Weights
Timing driven placement[9, 20, 1] techniquesoften used
in typical chip designmethodologies[15] incorporatecon-
straints (such as net weights, capacitance/delaybudgeting

etc.) into a placementalgorithm to improve the locations
for timing. Oneproblemwith selectingnet weightsprior to
placementis that the weightsare determinedby the timing
sign-off obtainedaftersynthesis.Synthesistypically operates
onwire loadmodels,andmaypredictthecritical pathsincor-
rectly. Assigningnetweightsandbudgetingdelaywouldbias
theplacementto optimizepathsthatmaynot becritical after
placement.Further, netweightsoftendonottakeinto account
thedelaysensitivity of agivengatetypeto thecapacitancere-
sultingfrom thewire length.

Thetechniquespresentedin this section,allow theuseof
netweightsto controlthetiming moreprecisely. Net weights
areupdatedon thenetsduringeachcutastheplacementgets
morerefined.Thenetweightsarenotonlyscaledaccordingto
how timing critical thenetsare,but arealsoscaledaccording
to thelogicaleffort [24] of thegatesdriving thenets.

In thegainbasedsynthesistechniqueused[24, 3], thede-
lay of a gateis determinedby its gainandis independentof
theloaddrivenby thegateasgivenin equation1.

���������������������
(1)

where
��������� �"!$#��&%('

,
�"!

is the capacitative load the
outputpin drivesand

�&%)'
is the input pin capacitanceof the

correspondinginput pin of the gate(eacharc from input to
outputhasanequationof theform 1).

The logical effort of a gatetype (say nand,nor, invert)
givesa measureof thedelaysensitivity of a gatetypeto gain.
Logicaleffort canbeusedtodecidethecapacitancesthatgates
in a netlist shoulddrive relative to eachother. For exam-
ple gateswith lower logical efforts (suchasstatic inverters)
arepreferredto drive larger capacitancesandwires whereas
higher logical efforts (suchas static xors) are usedonly to
drive smallerloads.Scalingweightsin proportionto thelog-
ical effort is similar to designersrule of thumbwheremore
complex gatesareallowed to drive only shorterwires while
simplergatessuchasinvertersandnandgatesarepreferredto
drive longerwires. Theconceptof logical effort allows usto
automaticallyincorporatetheserulesof thumb.

In algorithmLogicalEffortNetWeight, the library is an-
alyzedprior to placementto obtainthe logical efforts of the
gatesin thelibrary. On eachcut of theplacement,a new crit-
ical region is obtainedandthe weightsareestimatedfor the
nets. In the absolutemodenew weightsarecalculatedand
assignedoneachcut independentof any previousweights.If
the incrementalmodeis chosen,thepreviousnetweightsare
usedin the computationof the new net weights,allowing a
smootherchangein theassignmentof netweights.

4.4 GateSizing
Gatesizing is traditionally performedto both optimize the
performanceof critical pathsandto satisfytheelectricalcon-
straintsimposedby thedesignrules. In addition,sizingalso
performsarearecoveryonthenon-criticalregions.A largeva-

Algorithm PlacementDisc

initialize min cut placement()
initialize wire estimates()
initialize steinerbasedtiming analysis()
cut status= 0
while(cutsto beprocessed)

if (cut status== T)
ExecuteDiscretization,link cells
Updatetiming analysismodeto actual

endif;
if (cut status* T)

Timing analysismodeis gainbased
Executevirtual discretization
(sizedcellsnot linked)passon netlist
Providewidth andheightof cellsto placement

endif;
if (cut status+ T)

Timing analysismodeis basedonactualsizes
Performothertiming optimizations

endif;
updatewire estimates()
updatesteinerbasedtiming analysis()

endwhile;

riety of gatesizingalgorithmsareavailablerangingfromnon-
linearoptimizationproblemswith sophisticated,run-timein-
tensive optimizationsto quickandfastheuristics.In TPSthe
accuracy of theappliedgatesizingalgorithmincreasesasthe
placementtransformsprogress.Thismeansthattheprecision
of thegatesizingis controlledandmorepreciseoptimizations
areappliedas the physicallocationsof gatesand therefore
wire loadestimatesbecomemoreaccurate.

Theconceptof gainintroducedin section4.3is usedin the
processof gatesizing.Prior to placement,thegatesaremod-
eledas sizelesscells (only a gain value is assignedto each
gate). During placement,a processof discretizationis per-
formed. The sizeof eachgateis derived from the gain and
theload(thesumof wire loadandpin loads).An appropriate
matchfrom thelibrary for thesizeis thenobtained.

As shown in Algorithm PlacementDisc, virtual dis-
cretizationis applieduntil a thresholdcutstatus, is reached.
This meansthat althoughthe algorithmfor discretizationis
appliedon eachinstancein thedesign,thesolutioncell from
thelibrary is foundbut is not instantiatedin thedesign.That
is, by applyingdiscretization,thesizeandshapeof thephys-
ical cell which matchesthe given load are provided to the
placer, but the timing analysisis not updatedto reflect this
choice.Virtual discretizationdoesnot causethe incremental
timing analysis[10] to recompute.Thismakesa majordiffer-
enceto timing analysis,sinceperformingactual discretiza-
tion would result in re-implementationof the timing graph
andthereforecanbeexpensive in termsof run time.

After discretization,the sizesof the gatescanbe further
tunedasthecutsprogress.In mostlibraries,differentdrive-
strengthswith thesamefoot-printsareavailable. In TPSone
cancompensatefor thedifferencebetweentheestimatedwire
lengthandwire lengthsresultingfrom actualroutingby per-
forminga final in-footprintgatesizingafterrouting.

4.5 Clock TreeandScanChain NetLength Optimization
Clock treeoptimizationaimsto minimizethe total lengthof
netsin a clock treebetweenregistersandclock bufferssoas

to maximizeperformanceandminimizeclock skew. In most
designstheamountof registersandnumberandsizeof clock
buffersrequirethatclock treeoptimizationbeanintegralpart
of TPS.

Traditionally, an initial placementis doneignoringclock
netssothatregistersareassignedlocationsbasedontheirdata
connections[15]. Next, clock treeoptimizationis performed
by assigninglocationsandconnectionsto clockbuffersbased
on registerlocations.

The fact thatclock blocksaretypically muchlarger than
registers(andothergates)createsa majordisturbanceat this
relatively late stagein placement. It is very hard to cre-
ateenoughlegal spacearoundthe new locationof the clock
blocks.In addition,holescreatedby moving theselargeclock
buffersfrom theiroriginal locationsmaynotbevery well uti-
lized. Fixing thetopologyof theclocktreesbeforehandtakes
awaytheflexibility to optimizethisandlet thedata-flow dom-
inatetheregisterplacement.

TPS addressesthe problem as follows. Initially, net
weights on clock nets are set to zero so that they are ig-
noredby the placementtransforms.In addition,the sizesof
clock buffersarereducedto zeroandthe sizesof the corre-
spondingregistersare increasedto account(or save space)
for clockbuffers.After placementhasprogressedsufficiently
(sayabout30% of thefinal placement),netweightsonclock
netsarerestoredto their original values. The sizesof clock
buffers andregistersarealsorestoredto their original sizes.
Note that restoringregistersto their original sizesresultsin
free spacein the bins containingthe registers. Next, clock
net optimizationis performedwhich takesadvantageof this
freespacein assigninglocationsto clockbuffers.As a result,
typically very little or no overlapis createdby clock net op-
timization. Placementthenprogressesandutilizes any free
spaceleft over afterclockbuffer locationassignment.

Scanchainoptimizationaimsto minimizethetotal length
of netsin a scanchain. This is typically doneby reordering
registersin scanchainsoncelocationsof registersareknown.
Similar to clock net optimization,net weightson purescan
nets(scannetswith nodataconnections)areinitializedtozero
sothatthey areignoredby placementtransforms.After place-
mentis nearlycomplete(sayabout80 % of final placement),
netweightson scannetsarerestoredto their original values.
Next, scanchainoptimizationis performedby reorderingreg-
istersin scanchainsbasedonthelocationsof registersto min-
imize total lengthof scannets.

Algorithm Clock and Scan Net Optimization summa-
rizesthe above descriptionof clock andscannet lengthop-
timization. Pleaserefer to Section5 for moredetailsabout
cut statusvariable.

4.6 Cir cuit Relocation
In addition to the transformsdescribedearlier, all exist-
ing synthesisoptimizationssuchascloning,buffer insertion,
remappingandsoonhave beenadaptedto work with theTPS

Algorithm Clock and ScanNet Optimization

initialize min cut placement()
cut status= 0
while(cutsto beprocessed)

if (cut status== 10)
initialize all netweightsto defaultvalue
setclocknetweightsto 0
setscannetweightsto 0
reduceclockbufferssizesto 0
increaseregistersizes

endif;
if (cut status== 30)

setclocknetweightsto defaultvalue
restoreclockbuffer sizes
restoreregistersizes
performclocknetoptimization

endif;
if (cut status== 80)

setscannetweightsto defaultvalue
performscannetoptimization

endif;
endwhile;

environment.Thesealgorithmshave beenmodifiedin sucha
waythat thenetlistchangesthey causewill resultin minimal
perturbationto theexisting placement.

Considera transformthatattemptsto clonegatesin order
to improve timing. During theevaluationphase,it maydeter-
minethattheclonehasto residein thesamebin asthecloned
gate.If thecurrentspacein thebin is not sufficient, it is nec-
essaryto createspacewithin abin withoutadverselyaffecting
theworstcasetiming.

In mostcasesit is possibleto move noncriticalcellsaway
from the local bin to allow timing optimizationon critical
cells. A mincostnetworkoptimizationalgorithm,calledcir-
cuit relocationhasbeendevelopedwhichdeterminesthebest
combinationof bin to bin cell movesthat freesthelocal area
for timing optimizations. Circuit relocationis a placement
utility that is eithercalledasa stand-alonetransformor from
within asingletransformto explicitly createspacein acertain
bin.

5 TPSScenario

Theflexibility of the transformationalapproachallows us to
easilydevelopspecificscenariostunedto takeadvantageof a
converging designprocess.Accuracy versusruntimetradeoff
for varioustransformationscanbe selectedasthe quality of
theplacementandnetlistdataimprovesin a converging flow.
Suchscenarioscanbedevelopedto targetavarietyof metrics
including noise,yield and manufacturability. The scenario
presentedin this sectionspecificallytargetstiming optimiza-
tion while maintainingthewirability metrics.

In oursystem,technologyindependentoptimization,tech-
nologymappingandtheearlypartof thetiming optimization
stage(wherewedocoarseoptimization)employagain-based
(load-independent)delaymodel[3]. As a result,theeffect of
wire loadmodelson area-delaytradeoffs performedis mini-
mized. The laterpartof timing optimization,wheredetailed
andaggressive optimizationis performed,is integratedwith
transformationalplacement.Globaloptimizationtransforms
areemployedin theinitial stagesof placement.On theother

hand,local anddetailedoptimizationtransformswhich tend
to causeveryminorperturbationto theplacement,areusedin
the later stagesof placement.Placementtransformssuchas
Partitioner, Reflow, andDetailedPlacementare invokedpe-
riodically to bring the designinto a desiredstateso that the
othertransformssuchasthosedescribedin Section 4 areap-
plied.

At any pointduringtheprocess,theprogressof placement
is measuredby thesizeof theplacementbins.ThePartitioner
transformis invokedto convert anexisting placementto one
with bins of desiredsize. Partitioner provides the statusor
progressof the placementby providing a numberbetween0
and100 basedon the bin sizes. Low numbersimply initial
stagesof placementwhile higher numbersare returnedfor
later stages. At any time, Partitioner may be invokedwith
atargetstatusnumbergreaterthantheexisting statusnumber.
Partitionerwill thenproceedwith placementandattemptto
bring the designinto a statewith statusnumberascloseas
possibleto thetargetstatusnumber. TheReflow transformis
typically invokedafterPartitionerto improve the placement.
In our approach,we let the placementadvancein stepsof a
specifiednumberandselectively apply transformsoncethe
desiredstateof placementis reached.The stepsizemay be
userspecifiedor derivedfrom thedesignsizeandotherprop-
erties.

TPSscenarioin Figure 5 gives a high level description
of the optimizationprocess.First, the timing analyzer, wire
lengthcalculator, andclock treeoptimizerareinitialized. The
placementstatusrangeat thebeginningof someblocksgives
theconditionunderwhich thatblock is executed.For exam-
ple, Circuit Migration transformis appliedonly if statusis
between30 and50. On the otherhand,Clock Optimization
is performedonly oncewhen statusis 30. During the ini-
tial stagesof placement,gatesizingis performedin thenon-
critical regionsof thedesignto recover area,asmorerealistic
wire loadsareavailable. The clone transformwhich makes
clonedcopiesof gatesto distributeload,andthebuffer inser-
tion transformsareappliedduringthemiddlestagesof place-
ment. Note that clone and buffer insertiontransformstake
care to avoid overlap and congestionwhile assigningloca-
tionsto thenewly createdgates.Thesetransformsalsoutilize
thecircuit relocationtransformto createspacefor thenewly
createdgates.Theoutputof this systemis a fully synthesized
andlegally placeddesignthatcanbeinput to theroutingtool.
Post-routinga final in-foot-print gatesizing (which doesnot
disturbplacementor routing)is doneto compensatefor mis-
matchesin actualandSteinertreepredictedrouting.

6 Results
The resultsof experimentsaregiven in Table1. The exper-
imentwasto comparetheTPSscenariodescribedin the last
sectionwith traditionaliterativeloopof separatesynthesisand
placementsteps(SPR).Thegoalwastooptimizetiming while
maintainingotherplacementmetricssuchaswirability.

place_status
 < 100 ?

Intialization
status = 0;
target = 0;
step = 5;

target = status + step;
status = Partitioner(target);
Reflow();

YES

NO Detailed_placement();
Routing();
In_foot_print_gate_sizing();

20 < status < 30
Gate_sizing_for_area();

status > 30
Gate_sizing_for_speed();

status == 30
Clock_optimization();

30 < status < 50
circuit_migration();
Cloning_and_Buffering();

status > 50
Pin_swapping();

status > 80
Gate_sizing_for_area();

Figure 5. Optimization Flow Chart

Table 1. Results for TPS
Ckt Flow Area slack % cycletime Horiz Vert

icells impr. pk/avg pk/avg
Des1 SPR 18622 -380 295/224 305/234

TPS 16510 -222 6.5 273/207 292/227
Des2 SPR 25927 -376 376/275 307/248

TPS 23742 -168 8.6 426/305 320/273
Des3 SPR 39734 -364 461/324 584/453

TPS 37136 -192 7.1 472/357 746/642
Des4 SPR 21584 -410 343/248 277/202

TPS 19736 -134 11.5 403/290 333/249
Des5 SPR 14780 -230 226/180 270/216

TPS 12390 -56 7.25 203/151 272/205

Weused5 partitionsof amainframeprocessor. Synthesis-
placement-resynthesis(SPR)is comparedto the TPS.A pro-
prietary synthesizerand commercialquadraticplacer were
usedin SPR.In all testcaseswe have a timing improvement
(upto11%)of thecycle time. In all testcases,theareaof both
theSPRandTPSrunswereaboutthesamewith a slight im-
provementin thecaseof TPS.More importantlytheseresults
areobtainedwith a singleinvocationof TPScomparedto it-
erationstill timing closurewasacheivedfor SPR.Thetiming
improvementis significantsincethedesignswerehighly opti-
mizedthroughmany iterationsof placementandsynthesisin
SPRto meetaggressive timing constraints.

Wirability was measuredin termsof the horizontaland
vertical wires cut, andboth the peakand the averagewires
cut aregiven. The wireability did not increasesignificantly
andwe could routeall chip partitionsafter TPS.Thereis a
slight increasein congestionsincethepartitionswereprimar-
ily tunedfor timing.

TheCPUtimesfor SPRincludedrepeatedstepsof synthe-
sis andplacementaswell asmanualintervention. The CPU
time for TPSon the otherhandwasequalto aboutone run

of synthesisfollowedby placement.ThereforeTPSruntimes
weresignificantlybetter.

7 Conclusions

A transformationalapproachwhereplacementandsynthesis
transformsefficiently andconcurrentlymanipulatethedesign
spaceis presented.

Our ability to applyfine grainedtransformationsat vary-
ing levels of accuracy allows placementand synthesisto
progressinto a single converging flow. We thereforeavoid
costlyandunpredictablestandaloneplacementandsynthesis
iterations,usedin traditionaldesignmethdologies.

Theresultsindicatea significantimprovementin thetim-
ing of previously optimizeddesignswhile maintainingtra-
ditional measuresof placementlike total wirelength and
wirability.

Recentwork hasinvolvedextendingthemethodologyand
algorithmsto handlefull chipsof abouta million gatesflat.
Thepreliminaryresultsonthesechipsizesareconsistentwith
thosepresentedin the previous sectionwith reasonablerun
timesof a few hours. Otherwork involvesextendingalgo-
rithms to optimizemetricssuchasnoise,congestion,power
andyield.

References

[1] C. Alpert, T. Chan,A.B.Kahng,I. Markov, andP. Mulet. Fastermini-
mizationof linearwirelengthfor globalplacement.IEEE Transactions
on Computer-AidedDesign, 17(1),Jan.1998.

[2] C. Alpert, D.Huang,andA.B.Kahng. Multilevel circuit partitioning.
In Proc. ACM/IEEE DesignAutomationConference, pages530–533,
1997.

[3] F. Beeftink,P. Kudva, D. Kung, andL. Stok. Gatesizeselectionfor
standardcell libraries. Proc. InternationalConf.Computer-AidedDe-
sign(ICCAD), 1998.

[4] B.Krishnamurthy. An improvedmin-cut algorithm for partitioning
VLSI networks.IEEE Transactionson Computer-AidedDesign, pages
438–446,1984.

[5] J. Cong,L. He,C.-K. Koh, andP. H. Madden.Performanceoptimiza-
tion of VLSI interconnectlayout. Integration, 21:1–94,1996.

[6] W. E. Donath. Equivalenceof memoryto randomlogic. IBM Journal
of ResearchandDevelopment, pages401–407,September1974.

[7] W. E. Donath. Wire length distribution for placementsof computer
logic. IBM Journalof ResearchandDevelopment,pages152–155,May
1981.

[8] W. E. Donath,P. Kudva, andL. Reddy. Performanceoptimizationof
network length in physicalplacement. In Proc. InternationalConf.
ComputerDesign(ICCD), pages258–265,Oct.1999.

[9] W. E. Donath,R. J.Norman,B. K. Agrawal,S.Y. H. S.E. Bello, J.M.
Kurtzberg,P. Lowy, andR. I. McMillan. Timingdrivenplacementusing
completepathdelays.In Proc.ACM/IEEEDesignAutomationConfer-
ence. IEEEComputerSocietyPress,June1990.

[10] D. Hathaway, R. Abato,A. Drumm,andL. vanGinneken.Incremental
timing analysis.Technicalreport,1996. IBM, U.S.patent5,508,937.

[11] S.Hojat andP. Villarrubia. An integratedplacementandsynthesisap-
proachfor timing closureof PowerPCmicroprocessors.Proc. Interna-
tional Conf.ComputerDesign(ICCD), pages206–210,1997.

[12] L. Kannan,P. R. Suaris,andH.-G. Fang. A methodologyandalgo-
rithmsfor post-placementdelayoptimization.In Proc.ACM/IEEEDe-
signAutomationConference. IEEEPress,June1994.

[13] G. KarypisandA. Kumar. Multilevel hypergraphpartitioning: Appli-
cationin vlsi domain.In Proc.ACM/IEEEDesignAutomationConfer-
ence, pages526–529,1997.

[14] K. Kleinhans,G. Sigl, F. Johannes,andK.J.Antreich. Gordian:VLSI
placementby quadraticprogrammingandslicing optimization. IEEE
Transactionson Computer-AidedDesign, pages356–365,1991.

[15] K.L.Shepard, S.M.Carey, E.K.Cho, B.W.Curran,
R.F.Hatch,D.E.Hoffman, S.A.McCabe,G.A.Northrop,andR.Seigler.
Designmethodologyfor theS/390parallelenterpriseserverg4 micro-
processors.In IBM Journalof ResearchandDevelopment, pages515–
547,July/September1997.

[16] M. T.-C. Lee and et. al. Incrementaltiming optimizationfor physi-
cal designby interactinglogic restructuringandlayout. International
Workshopin LogicSynthesis, pages508–513,1998.

[17] J.Lou, A. Salek,andM. Pedram.Exactsolutionto simultaneoustech-
nology mappingand linear placementproblem. Proc. International
Conf.Computer-AidedDesign(ICCAD), 1997.

[18] M. Murofushi, T. Ishioka, M. Murakata, and T. Mituhashi. Lay-
out driven re-synthesisfor low power consumptionlsis. In Proc.
ACM/IEEEDesignAutomationConference. IEEEPress,June1997.

[19] L. Pileggi. Timing metricsfor physicaldesignof deepsubmicrontech-
nologies.In Proc.InternationalSymposiumonPhysicalDesign, pages
28–33,1998.

[20] M. Sarrafzadeh,D. Knol, andG. Tellez. Unificationof budgetingand
placement. Proc. ACM/IEEE DesignAutomationConference, pages
758–761,1997.

[21] A. Srinivasan,K. Chaudhary, andE.S.Kuh. RITUAL: A performance
drivenplacementalgorithmfor small cell ICs. In Proc. International
Conf.Computer-AidedDesign(ICCAD), pages48–51,Nov. 1991.

[22] G. Stenzandet.al. Timing drivenplacementin interactionwith netlist
transformations.Proc. InternationalSymposiumon PhysicalDesign,
1997.

[23] L. Stok, D.S.Kung,D.Brand,A.D.Drumm, A.J.Sullivan, L.N.Reddy,
N.Hieter, D.J.Geiger, H.H.Chao,andP.J.Osler. Booledozer:logicsyn-
thesisfor ASICS. IBM Journal of Research and Development, July
1996.

[24] I. E.SutherlandandR.F.Sproull.Theoryof logicaleffort: Designingfor
speedonthebackof anenvelope.In AdvancedResearchin VLSI:Pro-
ceedingsof the 1991Universityof California SantaCruzConference,
C. SequinEd.TheMIT Press, 1991.

[25] W.C.Elmore. The transientresponseof dampedlinear networkswith
particularregardto widebandamplifiers. Journal of AppliedPhysics,
19(1):55–63,1948.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

