
Protocol Stack-based Telecom Emulator

Takahiro Murooka and Toshiaki Miyazaki

NTT Network Innovation Laboratories

Yokosuka, Kanagawa, 239-0847, Japan

Tel: +81-468-59-3572 Fax: +81-468-55-1604

e-mail: fmurooka, miyazakig@exa.onlab.ntt.co.jp

Abstract

The paper describes the concept and implementation

of a telecom emulator that features both recon�gurabil-

ity and high-speed processing. The emulator can be eas-

ily transmuted into any telecom system as a real node.

It has two innovative system design concepts. The �rst

is to divide the speci�cation into simpli�ed processes

based on the open system interconnection (OSI) refer-

ence model. The second is the use of a sophisticated

hardmacro and its software-callable driver. We imple-

mented a prototype system called ATTRACTOR and

applied it to some telecom applications. The applica-

tions were able to be implemented in a short design

time and were operated in real computer network envi-

ronments.

1. Introduction

Today's telecommunication (telecom) nodes require
continuous enhancement to support various kinds of

new multimedia services, and e�ective enhancements

in a timely manner is the key to surviving the time-to-
market race. However, the development of new tele-

com nodes requires a long design period that involves

mainly veri�cation time. This is because very long data
streams are used in the veri�cation process to ensure

functionality and reliability, and veri�cation is done
with software-based logic simulators in general. If we

had an emulation system that could be operated on

a real network, we could e�ectively shorten the ver-
i�cation time. To create such a design environment,

we examined the architecture of a telecom emulation

system.

Field programmable gate arrays (FPGAs) based em-

ulators [1, 2] give us some hints as to how
exibility can
be improved. They are widely used in designing appli-

cation speci�c ICs (ASICs). Although their operation

clock rate is around 1-MHz, which is much faster than

software-based simulators, they as yet cannot be ap-

plied to real telecom data processing, which generally

requires clock rates of at least 20-MHz.

A telecom emulator has recently been developed [3]
that uses a performance-oriented FPGA called PRO-

TEUS [4] and has a novel system architecture that can
handle telecom data at a real clock rate. The tele-

com application is implemented entirely on the FPGAs

without the need for any software. This is because
the emulator targets only the lower protocol layer's

telecom data, which have simple formats and struc-

tures. Hence, it does not have to manipulate complexly
structured telecom data, such as the internet protocol

(IP) and internet transmission control protocol (TCP),

which are often manipulated with software running on
a micro-processors (MPUs) or digital signal processors

(DSPs).

Our goal is to construct a telecom emulator that is
both
exible and fast and has a easy-to-use application

design environment. The key ideas to achieving these

goals are a protocol-structure-oriented system architec-
ture and a formalized hardware/software interface.

The rest of this paper is organized as follows. Sec-

tion 2 discusses our concept in detail. Section 3 de-
scribes implemented system and design environment.

Section 4 gives test results for telecom applications.

Section 5 concludes this paper.

2. System concept

2.1. System model

Telecom applications are often designed based on
the open system interconnection (OSI) reference model

[5]. The model consists of seven layers and is depicted

in Fig. 1(A).

The telecom data is processed layer by layer, start-

ing with layer one, and each process works indepen-

dently. In general, processes in layer one and two

Layer Name

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6
5

4

3

2

1

File transfer (FTP)

ATM

Optical cable

UDP

(A) (B)

IP

Figure. 1. Open system interconnection (OSI) reference

model (A) and an implemented application structure (B).

Layer N
processor

Layer 3
processor

Layer 1
processor

Layer 2
processor

Layer 3
processor

Layer 2
processor

Layer 1
processor

I/O

Functional
memory

Standard
memory

Programmable
logic circuits MPU

Processing module

Figure. 2. The basic structure of a high-performance telecom

emulator.

are implemented as hardware, while processes in the

upper layers are implemented as software. This is be-

cause layer one and two have simple data processing
algorithms that require a rigorous timing speci�cation.

On the other hand, upper layers have to adopt vari-
ous kinds of internetworking protocols. Hence, their

processes were implemented as software in the conven-

tional nodes.
Figure 1(B) shows the corresponding application for

the �le transfer program (FTP) on asynchronous trans-

fer mode (ATM) networks. A physical signal is termi-
nated in layer one, and the payload data is transferred

to the ATM layer. The ATM layer terminates data as

ATM adaptation layer (AAL layer) data and transfers
it to the IP layer. It evaluates the network address of

the data and transfers the data to the user diagram
protocol layer (UDP layer), where data is generated

by the FTP of the source computer. This application

reads the data frame from the UDP layer. The whole
process is very complex, but each individual process is

simple. From this independently layered process struc-

ture, we came up with a novel concept for creating a
high-performance telecom emulator.

Figure 2 illustrates the basic concept behind our
telecom emulator. The processing modules consist of

I/O port, programmable logic circuits, MPU and mem-

ories and handle a protocol layer's data with imple-
mented hardware and software. Programmable logic

circuits are used for the hardware part of the imple-

mented process. The MPU executes tight hardware-

Bus

M
odule

M
odule

M
odule

. . . .

M
odule

(A)

M
odule

M
odule

M
odule

. . . .
M

odule

(B)
Serial-link

Figure. 3. Inter-module communications: (A) bus-based

method, (B) cable-connection-based method.

Layer A
process

Layer B
process

MPU MPU

. MAIN
MPU

 System bus
(for control communications)

Serial / parallel conversion and
serial-link module

Serial-link cable
(for telecom data transformation)

Processing moduleProcessing module

Figure. 4. The �nal model of our telecom emulation system.

related routines and house-keeping tasks. Each mem-

ory is used as a table with an implemented hardware
function. The processing modules have a homogeneous

architecture.

In our model, a performance bottleneck may occur

in the inter-module communication. To remedy this
situation, we adopted two kinds of inter-module com-

munication mechanisms, as shown in Fig. 3.

Figure 3 (A) shows the bus-based method, which is

good for highly
exible connections and joint memory

access communication. Unfortunately, several mod-
ules must share the bus, which limits overall perfor-

mance. Hence, this method can not ensure adequate
data transformation performance all the time.

Figure 3 (B) shows the cable-connection-based
method, which is based on point-to-point serial-links.

While this method does not have any performance

problems, the connections are not very
exible. How-
ever, dynamic
exibility is not required in our emula-

tor because the implemented protocol structure is not
changed while it is running. Therefore, we adopted

method (B) for inter-module data connection of our

telecom emulator.

Figure 4 illustrates the �nal model of our telecom
emulator. Two kinds of communication interfaces can

be used to connect any two modules, even if their layer

processes are di�erent. One is a serial-link that con-
nects two modules directly. The other is a system

bus. The system bus is used to send a control signal

from/to modules and to communicate with the main

MPU, which controls the entire system. In other words,
each heterogeneous layer process can be encapsulated

by a common communication interface that allows us

to access any process in the same way without worrying
about the di�erences between the processes.

This module arrangement allows us to freely alter
the telecom system's functionalities by choosing the

layer process combination that best �ts a given appli-

cation without sacri�cing system performance.

2.2. Design environment

Target telecom applications have to manipulate
higher OSI protocol layers, which are, in general, im-

plemented using only software. We used the processing

module to accelerate these layers. Each layer process is
divided into a hardware part and a software part that

are implemented in the processing module.

To implement them e�ectively, we needed a hard-

ware/software interface routine that could provide a
simple hardware control mechanism. These software

routines are called device drivers. Device driver de-

velopment requires knowledge of both hardware and
software, and is, in general, very di�cult. Our design

environment concept is to provide a simple, e�ective

method of designing the device drivers.

The core idea of this concept is to make a set of

system elements that includes coarse-grain hardmacros
for implementation, a behavioral description for simu-

lation and a hardmacro device driver description for
the software. This set is called the \virtual part".

The coarse-grain hardmacro is a large-scale high-
functionality module that can manipulate processes in

one layer and can be loaded into the programmable

logic circuits of the layer's processing module (Fig. 2).
The hardmacros are designed so that they satisfy the

performance requirements of the implemented func-

tions. Hence, the designer can be freed from a lot of
performance-oriented design work.

The device drivers provide formal access for all hard-

macros. The programmer can design a piece of soft-

ware without worrying about access di�erences be-
tween hardmacros. This concept gives us an e�ective

environment with which to realize a shorter design turn

around time.

3. Implementation

3.1. System hardware

We developed a prototype telecom emulator and its
dedicated design environment around the concept just

outlined. The prototype system is called ATTRAC-

TOR and operates on an ATM network with a 156-

O/E

O/E

O/E

O/E

SDH/ATM

SDH/ATM

SDH/ATM

SDH/ATM

MPU card

CAM

FPGA

SRAM

MPU card

Bus

FPGA

MPU card

Bus

FPGA

FPGA

MPU card

MPU

DRAM

HD

I/O

User terminal
Ethernet

Serial (TTY)

CompactPCI (System bus)

Layer 1 module
Processing
 module Buffer module

Universal
 module

OC-3 X 4

1-Gbps serial-link (Front panel wiring)

MPU module

Figure. 5. An overview of ATTRACTOR.

Mbps optical connection (OC-3). An overview of AT-

TRACTOR is illustrated in Fig. 5.

The system consists of heterogeneous modules, in-

cluding a layer one termination module, protocol pro-
cessing module, data bu�ering module, universal re-

con�gurable logic module, and a main MPU module.

Each module, except for the MPU, has an MPU-card
as the on-board controller for executing house-keeping

tasks and hardware-related routines of the application

software. All logic circuits, except for functions real-
ized by dedicated parts, are implemented as FPGAs.

We used a custom-made FPGA called PROTEUS-Lite
[8] for the universal module and commercial FPGAs

for the other modules.

Ideally, we should use the same kind of processing

modules as in the system model shown in Fig. 2. How-

ever, this model is di�cult to implement. So we de-
signed some dedicated modules, which still inherit the

basic structure of the processing module, i.e, a MPU

card and inter-module communication mechanism.

The layer one module is dedicated to OC-3 termi-
nation. The processing module consists of content ad-

dressable memories (CAMs), static RAMs (SRAMs)

and FPGAs for protocol processing. The bu�er mod-
ule consists of highly functional FIFOs that are capable

of ATM cell storage and AAL frame termination. The

universal module consists of many FPGAs and can be
used as a data analyzer. The main MPU module uti-

lizes a high-performance MPU, a large-scale memory,

a hard disk, and several kinds of I/Os. It executes
the user interface and the house-keeping tasks for the

whole system, as well as the complex parts of the user's
application software.

There are two di�erent ways to interchange
data/informations among modules: the CompactPCI

[6] bus and the 1-Gbps wide-band serial-link connec-

tion. The telecom data is transfered between any two

modules using serial-links, which are in the form of
the coax-cables connections on the front panel of each

module. A user can freely combine any two modules

by using the serial-links. This serial-link mechanism in-
creases the
exibility of each module connection. The

CompactPCI bus corresponds to the system bus in

Fig. 5 and is mainly used for interconnections between
the main MPU and MPU cards on other modules. A

photograph of the prototype system is shown in Fig. 6.

3.2. Operating environments

The MPU cards and the main MPU execute their

own operating environment on a real-time operating

system called VxWorks [7]. The system control soft-
ware of all applications and ATTRACTOR's own op-

erating environment are executed using VxWorks. The
operating tasks depend on the module's structure but

the following functions are implemented on all MPU

cards.

Command Interpretation reads a commands from the

CompactPCI bus and then invokes the appropriate

routine.

Module Con�guration allows the module to set itself

up. This includes down-loading the con�guration data

into FPGAs and setting the initial data of the SRAMs

and CAMs on the module. The application software is

then loaded into memory and invoked. This function

is invoked whenever ATTRACTOR is started.

Status Report gives the current status of the module.

The values of the status registers can be read from

the main MPU.

The con�guration data of the FPGAs, memory ini-
tialization data and application software are stored in

Figure. 6. A photograph of the prototype ATTRACTOR.

a hard disk attached to the main MPU module. The
MPU card of each module can access the disk through

the system bus.

In additional, we adopt a World-Wide-Web
(WWW)-based graphic user interface. A hyper text

transfer protocol (HTTP) server runs on the main
MPU module and provides all user interface menus.

3.3. Design environment

A system design environment based on the our de-
sign concept is illustrated in Fig. 7. ATTRACTOR's

design environment is composed of a hardware design
environment, a software design environment, and a

\virtual parts" library as a design database.

The designer speci�es the telecom application by re-
ferring to the OSI model. Thus the speci�cation can

be easily allocated to each protocol layer and imple-
mented in each module. Most of the speci�cation's

processes are implemented with hardware and require

control software. The layer processing module editor
uses the hardmacros in the virtual parts library for the

hardware part. This provides a simple design environ-

ment for generating the hardware description language
(HDL) descriptions. The FPGA CAD translates HDL

descriptions into the FPGA's con�guration data. The

software part is described using the generated hard-
ware/software interface routines and is compiled into

executable data. The processed data are stored in the
hard disk which is equipped on the main MPU as the

layer processor con�gurations. The con�gurations are

installed in the modules and executed.

The \virtual parts" library is the most unique fea-

ture of our design environment. It contains frequently
used hardware designs for the protocol layer processing

User application

Layer #
process

....

Hardware
part

Software
part

Editor

Coarse-grain
hardmacros

Hw/Sw
interface

"Virtual parts" library

FPGA CAD

Compile and Links

Layer processor
configurations

Device-drv.
generator

Layer processing
module editor

Hardware design
environment

Software design
environment

Figure. 7. Design environment for ATTRACTOR.

Table 1: Implemented circuits performance and grain size of

hardmacro.
Circuits Grain size of hardmacro

not used Fine Coarse

Circuit A 104 72 49
Circuit B 151 58 45

Critical path delay (nsec)

Address decoder

BASE = 0xA0000010

REG 0 REG 2REG 1

Selector

(Course-grain
hardmacro)

Circuits

Data

Interface registers

Address

MPU
(MPU card)

Data /
Address

Virtual part: SAMPLE

#define BASE 0xA0000010
#define REG0 BASE + 0x1
#define REG1 BASE + 0x2
#define REG2 BASE + 0x3

Header file for
the virtual part : SAMPLE

Application software interacting with
the SAMPLE virtual part.

include "sample.h"
.
REG1 = 1 ; / Send reuest */
while(*REG0 == 1) ; /* Wait ACK */
REG2 = 0 ; / Send execute */

Interface circuit

Figure. 8. Interaction between the virtual part and the

application software.

modules. Each virtual part consists of a coarse-grain

hardmacro and software interface routines. The coarse-

grain hardmacro is a large-scale logic circuit netlist.
The functionality of the hardmacro is the same as that

for an OSI protocol layer like AAL termination or IP
layer handling.

Table 1 shows the relationship between the grain

size and the implemented circuits performance in case
of PROTEUS-Lite. The circuits that have coarse-grain

hardmacro can work faster than the others and thus
satisfy our requirements.

Figure 8 illustrates how we can use the virtual parts
with the software. Each virtual part communicates

through the MPU interface circuit with the software

running on the MPU card. All interface registers in
the MPU interface circuits are mapped onto MPU-

accessible memory addresses. The device driver gen-

erator generates a header �le (C language), which
includes interface register address de�nitions as static

values for each virtual part. During program develop-
ment, a programmer can use nicknames, de�ned in the

header �le, instead of the raw addresses. The base ad-

dress of each circuit in the header �le uses the address
map of each module, which prevents address conges-

tion. Thus, the designer can be freed from the address

management work.

Traffic monitor

Controller

VC# VC

OC-3

VC1

VC2 . . .

VCn

VC

OC-3

VC-converter

Figure. 9. A simpli�ed block diagram of the dynamic VC

switch function.

Layer 1
module

Universal
module

Processing
module

Layer 1
module

Main MPU
module

Layer 1

Layer 2

Control signalMonitor data

ATM (VCs)

OC3

ATM (VC)

OC3

Software

Figure. 10. A block diagram of the implemented dynamic

VC switch.

4. Application implementations

We implemented several applications on the AT-

TRACTOR to evaluate our concepts. Two of them
are described here. The �rst one is a layer two appli-

cation called \Dynamic VC (Virtual Channel) switch"

that manipulates ATM cell header information. The
second is a layer three application called \IP router"

that manipulates IP header information.

4.1. Dynamic VC switch

Figure 9 is a simpli�ed block diagram of the dynamic

VC switch. The incoming ATM cell tra�c load, which
can be identi�ed by ATM header information, is con-

tinuously monitored for each VC. The VC that has the
largest load is automatically connected to the outgoing

VC via the VC-converter.

The implemented result is shown in Fig. 10. The
OC-3 is terminated with the layer one module. The

universal module includes the tra�c monitor function

in layer two. The VC-converter function is done in
the processing module. The controller is implemented

as software running on the main MPU module. The
software reads the monitored data from the universal

module through the system bus and then analyzes it

to make the next decision.
To demonstrate this function, we sent video data

over two di�erent VCs at di�erent tra�c load through

ATTRACTOR. The implemented system could switch

quickly from the higher tra�c load VC to the lower
one whenever the higher tra�c load path was cut or

overloaded.

4.2. IP router

Figure 11 is a functional block diagram of the IP
router, which manipulates IP header information en-

capsulated in the ATM cells.

The incoming ATM cells are �rst terminated as an

AAL frame that contains an IP datagram, and then,

the IP address is extracted from the frame. The des-
tination VC is decided by looking it up on the routing

table, which contains many pairs of incoming IP ad-

dresses and destination VCs. The AAL frame is con-
verted to ATM cells using the destination VC.

Figure 12 is a block diagram of the implemented IP
router. The OC-3 line was terminated with the layer

one module as in the �rst case. We used the bu�er

module as the AAL terminator in layer two because
the AAL termination needs a high-performance FIFO,

which is a pre-implemented function of the bu�er mod-

ule. Hence, we used a bu�er module for layer two ter-
mination. The AAL frame consists of an IP datagram

and trailer data, which are located at a �xed position
on the frame. Thus, we can use the bu�er module to

extract the IP diagram from the AAL frame.

The bu�er module sends an IP datagram to a pro-
cessing module that has been loaded the IP address

extracting function in the FPGAs and the routing ta-
ble data in the CAMs. These are layer three functions.

The IP diagram is encapsulated in AAL frame again

and is converted to ATM cells using the destination
VC information in the processing module. The ATM

cells are sent by OC-3 line through the other layer-one

module. The system can also be operated as a node in
a real ATM-LAN environment.

OC-3

VC

OC-3

IP address
extracting

Destination
 VC (VC#)

IP Address

Routing table

AAL
termination

VC#

Table
maintenance

IP datagram
on AAL

AAL
ATM cell
creation

Figure. 11. A simpli�ed block diagram of the IP router

application.

Layer 1
module

Processing
module

Layer 1
module

Main MPU
module

Layer 1

Layer 2

OC3

ATM (VCs)

OC3

Buffer
module

Layer 3

IP datagram
on AAL

 ATM
 (With destination VC)

Table maintenance

Routing table info.

Software

Figure. 12. An implemented block diagram of the IP router.

5. Conclusion

We developed a telecom emulator that is able to op-
erate in a real network. The system is based on the

open system interconnection reference model in which

many di�erent layer processes are packed into indi-
vidual modules that are connected to each other with

wide-band serial-links. It can be applied to di�erent

telecom-applications by using homogeneous processing
modules, which are implemented in di�erent OSI lay-

ers. We demonstrated our prototype system's
exibil-

ity and high-speed processing capability with some real
network applications.

In the evaluation, we used simple applications that
could be categorized as being layer two or three. We

are currently implementing a higher layer application

as a further test of the usefulness of our concept.

References

[1] Aptix Corp. Aptix System Explorer, Brochure,
(http://www.aptix.com).

[2] Quickturn Systems, Inc. System Realizer M3000/M250,
Brochure, (http://www.qcktrn.com).

[3] K. Hayashi, et al. A Novel Approach to Real-Time Veri�ca-
tion of Transport System Design. Proc. of 7th IEEE Inter-
national Workshop on Rapid System Prototyping , pp. 5{9,
1996.

[4] N. Ohta, et al. PROTEUS: Programmable Hardware for
Telecommunication Systems, Proc. IEEE International Con-

ference on Computer Design (ICCD), pp. 178{183, 1994.

[5] Organization International Normalization(ISO) Information
technology { Open System Interconnection { Basic Reference
Model: The Basic Model ISO/IEC 7498-1, 1994.

[6] CompactPCI Speci�cation Short Form: PICMG 2.0 R2.1,
PCI Industrial Computer Manufactures Group, Sep. 1997,
(http://www.picmg.com).

[7] Wind River Systems, Inc., VxWorks Programmer's Guide
5.2., Manual, Mar. 1995.

[8] T. Miyazaki, et al. CAD-oriented FPGA and Dedicated
CAD System for Telecommunications. In Proc. of Field-
Programmable Logic (FPL), 1997.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

