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Abstract 
We integrate data and control flow at the system speci-

fication level, using the two specialized and well estab-
lished languages Matlab and SDL. For this we provide a 
modeling technique, which integrates the timing concepts 
and allows synchronization of vector-based computation 
with event based state transition. The technique is sup-
ported by a library of wrappers and communication func-
tions, which has been implemented to make cosimulation 
easy to use and almost transparent to the user. A method-
ology formulates the rules to use the modeling technique, 
to partition the system, and to select communication 
modes. A complex industrial example illustrates the mod-
eling technique and the methodology, and shows the effi-
ciency of the Matlab-SDL cosimulation. 

 

1. Introduction 

The desire to specify and simulate heterogeneous 
embedded real time systems at a high abstraction level in 
a multilanguage environment is recognized in many appli-
cation areas such as multimedia [4], automotive [3], avi-
onics [5], mechatronics [2], and telecommunication [6]. In 
all these application domains, we observe both a need for 
implementation neutrality in the specification model and 
the necessity to model different parts in conceptually dif-
ferent ways. Implementation neutrality is required to al-
low for thorough design space exploration [11].  Different 
parts of a heterogeneous system, such as control flow, 
data flow, analog and mixed signal components, must be 
modeled in different ways due to different problem char-
acteristics but also because of traditionally separate de-
sign flows, languages and competence of engineers. 

For digital embedded real-time systems with complex 
control and high data throughput we address the problem 
of co-specification and co-simulation of dataflow and 
control dominated parts with the MASCOT (Matlab And 
SDL Codesign Techniques) methodology. It describes 
how to model and simulate a heterogeneous system speci-
fication based on an abstract communication mechanism 
[7], which, to a large extent, can be implicitly derived 
from the system specification. For the two parts of control 
and dataflow, we adopt different languages, SDL 
([9],[10]) and Matlab. Both are specialized in their respec-

tive domains, well established in their user community 
and they enjoy sophisticated tool support. They allow the 
specification at the system level without bias towards 
implementation. Our guiding principle has been simplic-
ity for the user. Consequently, MASCOT can be applied 
without restricting the involved languages, without new 
formalisms, and with minimal design overhead. It leads to 
a specification that: 
• Is complete and unambiguous, rendering a unique 
interpretation, which governs a correct implementation. 
• Can be simulated, providing specification validation 
that minimizes the number of changes made during im-
plementation and encourages specification maintenance. 
• Clearly defines the interface between design do-
mains, eliminating “twilight zones” in the specification. 

MASCOT consists of two parts: (1) a modeling and 
co-simulation technique, which integrates the different 
timing concepts and allows the synchronization of vector-
based computation in Matlab with event based state tran-
sition in SDL; (2) a methodology, which provides rules 
for partitioning a system into SDL and Matlab parts and 
for selecting communication modes between the two. The 
communication mode defines synchronization policy, 
timing resolution, and simulation granularity, and greatly 
influences simulation speed and accuracy.  

Thus, MASCOT provides a technique to glue specifi-
cations together, whereas design is still carried out in the 
appropriate domain for different parts. Design space ex-
ploration across the domain boundary must be done at the 
specification level, when the SDL-Matlab model is devel-
oped. The design and implementation is done separately 
for the two parts with the established methodologies and 
tools. The paper is organized as follows, the next section 
is dedicated to related work, section 3 introduces an ex-
ample that will be used throughout the rest of the paper. 
Section 4 describes the conceptual modeling technique, 
section 5 the proposed methodology in a step-by-step 
fashion, and in section 6 an industrial case study illus-
trates the techniques presented. 

2. Related work 

The CoWare approach [6] offers both homogeneous 
and heterogeneous system specification and allows for 



system simulation at different abstraction levels. For het-
erogeneous specifications the languages C, DFL, VHDL 
and Verilog are supported to day. All of them are imple-
mentation rather than application oriented languages and 
therefore represent a bias towards a specific implementa-
tion technology. In contrast, a specification based on ap-
plication-oriented languages such as Matlab or SDL al-
lows better trade-off analysis of application relevant pa-
rameters and a better design space exploration during the 
design process. However, synthesis is harder with these 
languages because more design decisions must be made. 

Ptolemy [8] is a general framework that connects a 
large number of design domains and allows for heteroge-
neous cosimulation of discrete event and dataflow mod-
els. The current implementation of the communication 
mechanism between discrete event and dataflow domains 
is based on a technique that transmits samples individu-
ally, which is slow. 

Kenter et al. [4] propose a design methodology that is 
based on the Felix VCC environment, which allows for 
functional simulation. It targets IP block composition, 
architecture mapping, and implementation. The YAPI 
communication is implemented as a handshake protocol 
in ECL, which is an expensive (in terms of simulation 
speed) communication mechanism. 

The MUSIC methodology [2] hosts a set of tools and 
languages and provides heterogeneous system specifica-
tion and cosimulation. The heterogeneous specification is 
assembled using SOLAR [5], and cosimulation is per-
formed concurrently on simulators that can be distributed 
throughout a network. However, there is no built-in syn-
chronization between the simulators. Also, unless a time 
coordinator is introduced, there is no way to synchronize 
stimuli to two different simulators, which restricts the 
specification of a simulation scenario. 

The SONORA framework [1] introduces a model-
based Codesign methodology. For specification in the 
discrete domain, DEVS-Java and possibly StateCharts is 
used. Components in the continuous time domain are 
modeled with Difference Equation System Specification 
(DESS). A behavioral simulation technique is proposed, 
but to the best of our knowledge, to date the SONORA 
framework has not yet been fully implemented and no 
results have been reported. Currently, no link exists be-
tween the discrete event and continuous domains, and no 
cosimulation mechanism has yet been developed. 

Other heterogeneous modeling techniques have been 
proposed, but none addresses the problem in the same 
way as MASCOT. Some propose new formalisms (e.g. 
[1],[4]), which we consider a disadvantage given the huge 
investment in existing languages and tools. Others use 
implementation-biased languages (e.g. CoWare), which 
do not support well the system level trade-off analysis. 
None of the published approaches addresses the synchro-
nization and communication in a mixed event and vector-
based computation environment. In general frameworks, 
such as CoWare and Ptolemy, our technique could also be 
implemented. However, it has not yet been done and it is 

not clear, if the result would not become complicated and 
compare unfavorably to the simplicity and convenience of 
MASCOT for experienced SDL and Matlab users. 

3. Example 

Throughout this paper, we will refer to a single exam-
ple to illustrate the proposed methodology; it is intention-
ally small and somewhat artificial. The example does not 
demonstrate the advantages of using SDL and Matlab and 
is not primarily intended to motivate the methodology but 
rather to explain it. A motivating example will be thor-
oughly explained in section 6. 

The example is a simple audio equalizer, and will be 
referred to as the Equalizer. The Equalizer has five input 
signals and one output signal, summarized in Table 1. 

Table 1. Equalizer interface 

Name Dir Description 

AudioIn In Digital audio input 

BassUp In Increase bass button 

BassDn In Decrease bass button 

TrebleUp In Increase treble button 

TrebleDn In Decrease treble button 

AudioOut Out Digital audio output 
 

The idea is that a digital audio input stream (AudioIn) is 
fed to the Equalizer from an audio source, e.g. a CD 
player. Four buttons are connected to the Equalizer 
(BassUp, BassDn, TrebleUp, TrebleDn), controlling the bass 
and treble level of the digital audio output stream 
(AudioOut). The Equalizer reacts to the button presses, not 
taking into account how long the button is pressed but 
only how many times it is pressed, and adjusts the audio 
accordingly. To make the Equalizer a little bit more inter-
esting it detects when too much bass is used, and auto-
matically prevents the user from increasing the bass while 
it cuts down the bass level. 

This short description will be used as a very simple re-
quirement specification for the Equalizer. 

4. Modeling 

Building a model of a system is essential to system de-
sign; the modeling process allows the designer to assem-
ble components and to reason about properties and behav-
ior of the system. Modeling in MASCOT is based on two 
languages, Matlab and SDL, and the model is built as a 
hierarchical specification. The top-level specification is 
written in SDL, which provides a graphical description of 
the system components and their interconnection. The key 
component in MASCOT modeling is the process. We 
assume that each process is specified in either Matlab or 
SDL. Matlab processes model dataflow behavior and SDL 
processes model control flow behavior. Matlab processes 
can communicate with other Matlab processes through 



dataflow signals and with SDL processes using control 
signals. SDL processes can only communicate using con-
trol signals. Choosing between Matlab and SDL processes 
and between dataflow signals and control signals is part 
of the MASCOT methodology, which is described in the 
next section. The MASCOT model can be simulated. The 
SDL simulator drives the simulation and calls the Matlab 
engine to process dataflow signals. The execution of Mat-
lab processes is based on a cosimulation technique de-
scribed in [7]. This technique is founded on the assump-
tion that dataflow signals can be executed piece-wise and 
distinguishes between two types of synchronization; head 
synchronization and tail synchronization. Piece-wise exe-
cution assumes that dataflow streams be split into frames, 
every frame corresponding to a pre-determined amount of 
time. Each frame is processed in a single step which is 
performed either when the frame starts, head synchro-
nized, or when the frame ends, tail synchronized. The 
selection of synchronization policy of a Matlab process 
affects its ability to exchange control signals. Choosing 
head synchronization requires input control signals to be 
exchanged at the frame start, while output control signals 
can be exchanged during the frame duration. This implies 
an approximation of the time of occurrence on input con-
trol signals. Conversely, choosing tail synchronization 
implies an approximation of the time of occurrence on 
output control signals. The synchronization policy also 
affects how frames can be split or concatenated between 
Matlab processes. Output frames from a head synchro-
nized process can be split into smaller frames without a 
delay penalty, but cannot be concatenated. Conversely, 
output frames from a tail synchronized process can be 
concatenated without a delay penalty, but cannot be split. 
More complex rules apply when head and tail synchroni-
zation is mixed, but that is beyond the scope of this text, 
and the reader is referred to [7]. 

5. Methodology 

The goal of the MASCOT methodology is to write a 
comprehensive specification that connects the heteroge-
neous components of the system with each other using 
abstract communication structures. The specification 
should be intuitive to understand, easy to change, and 
straightforward to simulate. The specification should de-
scribe the functional behavior of the system and the speci-
fication environment should encourage the system de-
signers to “play around” with the specification prior to 
implementation. Finally, the specification should govern 
correct implementation of the system. The methodology 
consists of three phases: 
1. Functional Decomposition 
2. Domain selection 
3. Domain Interface design 

Functional decomposition is a natural phase in each 
system design and is often carried out in a top-down fash-
ion. The Domain Selection phase considers what language 

should be used to describe the subsystems. Finally, the 
Domain Interface Design phase integrates the SDL and 
Matlab simulators in three simple steps. 

5.1. Functional decomposition 

The first phase decomposes the system into a number 
of functional blocks. The decomposition can be the result 
from an earlier analysis activity, such as Object-Oriented 
Analysis. It is performed in a hierarchical manner using 
the block structure available in SDL, which allows for 
subsystem simulation at each hierarchical level. In large 
projects where a number of different design teams are 
involved, it is advantageous to let the blocks also reflect 
the task assignment between groups. The interconnection 
between blocks and hierarchies should reflect how the 
subsystems are connected, and what signals they will ex-
change. Note, that signals in a MASCOT specification 
can represent both discrete events (control signals) and 
data streams (dataflow signals). 

The block interconnection interfaces will probably 
change as the specification evolves through design itera-
tion loops and gradual refinement. This evolution is a 
natural and important process, and by employing a sys-
tem-level perspective, we will prevent that interfaces are 
changed in one subsystem without the interconnected 
subsystems being notified. This is the key to specification 
maintenance, and will govern a correct implementation 
and ensure that the specification agrees with the final im-
plementation. 
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Figure 1. System Equalizer 

In the Equalizer example we choose to divide the sys-
tem into four blocks, shown in Figure 1. The ButtonCtrl 
block handles the button presses and the override signals 
from the DistortionCtrl block. The ButtonCtrl block also 
keeps track of the bass and treble levels, and signals the 



Filter block each time a bass or treble level changes. The 
Filter block contains the audio filter, it transforms the au-
dio input to audio output, taking into account the current 
bass and treble levels. The Analyzer block analyzes the 
audio stream after the filter, it issues pass or fail signals to 
the DistortionCtrl block, and outputs the audio stream. The 
DistortionCtrl block receives the pass and fail signals from 
the Analyzer, and determines if the user should be pre-
vented from increasing the bass level, and if the bass level 
should be cut down. 

When the block hierarchy is established, processes are 
identified. A process is a subsystem that operates concur-
rently and independently with all other processes in the 
system. In the Equalizer, to keep things simple, we choose 
to identify a single process in each block. 
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Figure 2. Filter process 

The Filter block process is shown in Figure 2; the other 
blocks are defined in a similar manner. 

This far, nothing has been decided on how the different 
processes will behave, this decision is left to the individ-
ual design teams. The behavior is encapsulated in the 
processes, which can be specified in SDL or Matlab, as 
we will see in the next section. 

5.2. Domain selection 

The domain selection decides whether the behavior is 
going to be described in SDL or Matlab. To this end we 
inspect the signals in the system and decide whether they 
are dataflow or control signals. A dataflow signal is a 
continuous signal sampled at regular intervals. A control 
signal is a non-periodic signal that occurs at certain time 
instances. All processes that are connected to one or more 
dataflow signal have to be specified in the Dataflow do-
main using Matlab, and the other processes can be speci-
fied in the Control domain using SDL. 

In the Equalizer example, we decide that AudioIn, 
FilterOut, and AudioOut are dataflow signals. All other sig-
nals are control signals. Hence, the Filter and Analyzer 
processes will be specified in the Dataflow domain, and 

ButtonCtrl and DistortionCtrl will be specified in the Control 
domain. 

In SDL, signals are sent on signal paths, which is ei-
ther channels or signal routes. In the Equalizer we will 
make sure that dataflow and control signals are sent over 
separate signal paths. Thus, the dataflow signals are 
equipped with individual paths: AudioIn, FilterOut, and 
AudioOut are conveyed over the channels FromCD, PostFil-
ter, and ToSpeakers respectively. 

The domain is selected for processes individually or at 
the block level for all processes in a block. 

This far, all external signals that interact with the sys-
tem are connected to the environment (the frame) of the 
SDL system diagram. However, dataflow sources and 
sinks require interaction with the Matlab engine and must 
be declared explicitly as functional components of the 
system. 

In the Equalizer example, the AudioIn and AudioOut sig-
nals are dataflow signals that interact with the environ-
ment. These signals require that the environment must be 
replaced with an explicit dataflow source and sink. 
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Figure 3. Equalizer source and sink 

Figure 3 depicts the CDPlayer source and Speakers sink 
that are added to the Equalizer specification. 

5.3. Domain interface design 

The last step in the MASCOT methodology is to select 
the communication mechanism between the Dataflow and 
Control domains. 

Communication between Control processes, such as 
ButtonCtrl and DistortionCtrl, only involves control signals 
and is carried out the normal way in SDL. Inter-domain 
communication between Control and Dataflow processes 
such as ButtonCtrl and Filter, and communication between 
two Dataflow processes such as Filter and Analyzer require 
a domain interface. The latter requires a domain interface 
since the simulation is driven by dataflow signals in the 
Control domain. 

Designing a domain interface is simple and involves 
three steps: 
1. Set dataflow processing properties. Determine sam-
pling frequency and frame size for each dataflow signal 
and process and select synchronization policy for each 
dataflow process. 
2. Set inter-domain communication properties. Decide 
whether inter-domain signals are notification signals or 
message signals and assign default values to them. 



3. Construct the dataflow process wrapper. Select SDL 
wrapper templates and write a Matlab or Simulink execu-
tion script. 

When these steps have been accomplished, a simula-
tion can be performed, using the analysis tools in Matlab 
and SDL to validate the behavior. 

 
Dataflow processing. For each dataflow signal, and for 
each dataflow process, the sampling frequency and frame 
size has to be determined. These parameters can be 
changed at any time, and constitute a powerful tool to 
tune the simulation. By increasing the frame size, the 
number of calls to the Matlab engine will decrease and the 
simulation will run faster, however, the granularity of the 
simulation will be coarser. The frequency and frame size 
together determine the duration of one frame. For signals, 
the duration corresponds to the amount of time that one 
dataflow signal represents, for processes, the duration 
corresponds to the time between process execution calls. 

For each dataflow process, the synchronization has to 
be determined; a dataflow process is either head- or tail-
synchronized. The process synchronization policy deter-
mines whether the process execution call will be carried 
out at the start, or at the end of a frame, see [7]. A number 
of thumb-rules are supplied to guide the designer in the 
choice of frame size and synchronization policy: 
• Dataflow source processes should be head synchro-
nized, using large frames, since a head synchronized 
frame can be split into smaller frames and/or transferred 
to tail synchronization without penalty. Furthermore, 
since sources do not have any inputs, they will not suffer 
from input signal approximation. 
• When a dataflow process needs to accept input con-
trol signals without approximation, tail synchronization 
must be employed. A tail synchronized process produces 
output control signals with approximation, and since 
frame splitting after tail synchronization cannot be per-
formed without penalty, the frame size should be small. 
• Dataflow sink processes should be tail synchronized, 
using large frames, since tail synchronization allows 
frame concatenation without penalty. Furthermore, since 
sinks do not have any outputs, they do not suffer from 
output signal approximation. 

Following these rules, we decide sampling frequencies, 
frame sizes and synchronization policies for the signals 
and processes in the Equalizer example. We assume that 
the dataflow design team has decided to use a CD source 
sampled at 44100Hz, and that they want to try out a 4096 
sample wide FFT for the Analyzer. The sampling fre-
quency will be equal throughout the whole system; so all 
dataflow signals and processes are assigned a 44100Hz 
sampling frequency. Starting from the dataflow source 
and moving to the sink, we now inspect each process and 
signal to assign a frame size and synchronization policy. 
The CDPlayer process is the source and is assigned head 
synchronization policy, the frame size is set to the largest 

possible frame size, which is the size of the whole stream 
used in simulation. The AudioIn signal is also assigned a 
frame size that equals the size of the whole stream. For 
the Filter process, we decide that in order to let changes in 
bass and treble levels affect the filter immediately, we do 
not want input control signal approximation; hence, we 
must switch to tail synchronization. Peeking forward in 
the data stream path we find that the Analyzer will operate 
on 4096 sample wide input. To match the FFT, we choose 
frame size 4096. Choosing larger frames would not allow 
the Analyzer to operate on 4096 sample frames without 
penalty, and choosing smaller frames would slow down 
simulation. For the FilterOut signal and Analyzer process, 
the 4096 sample frame size is thus preserved and tail syn-
chronization is selected. Since the Analyzer process has 
control signal outputs, we have to accept that they will be 
approximated. However, in this particular example, it 
does not matter, since the Analyzer only produces one Pass 
or Fail signal for each frame that is processed. Finally, we 
arrive at the AudioOut signal and Speakers process, and 
guided by the rules, we again select the size of the whole 
stream as frame size, and tail synchronization as synchro-
nization policy. 

 
Inter-domain communication. The control signals that 
connect to dataflow processes are either notification sig-
nals or message signals. Notification signals do not carry 
a value and are used to notify a process that an event has 
occurred. In the Equalizer example, the Pass and Fail sig-
nals are examples of notification signals. Message signals 
carry a value and are used to indicate a change of some 
variable or parameter. In the Equalizer example, the Bass 
and Treble signals are examples of message signals. All 
control signals that are connected to dataflow processes 
must fall into one of the two categories. There is a third 
type of inter-domain communication, punch, which is a 
compound of the notification and message signals. Punch 
signals are used to extract data from a stream, and consist 
of a signal pair – one input notification signal and one 
output message signal. Punch signals will not be covered 
in detail here, for synchronization policy selection it is 
sufficient to regard them as output signals. See [7] for 
details. 

Notification signals and message signals are inter-
preted in different ways when they are converted between 
the Control and Dataflow domains. In the Dataflow do-
main, control vectors are used to represent control signals. 
Control vectors have a sampling frequency and frame size 
that is inherited from the dataflow process that the control 
signal connects to. Control vectors also have a default 
value that must be chosen by the designer. Notification 
vectors represent notification signals and message vectors 
represent message signals. Conversion between vectors 
and signals is carried out on the border between the do-
mains. Since the vectors have sampling frequency, the 
time that each sample occurs is implicitly defined. Thus, a 
control signal, which consists of a time-value pair, can be 
mapped to a specific sample in a vector and vice versa. A 



notification vector contains the default value (typically 
NaN) in all samples that do not map to a control signal, 
and some other value (typically 1 or 0) in those that do. A 
message vector contains the default value in all samples 
up to the first control signal, thereafter it contains the 
value of the first signal up to the second signal and so on, 
in effect ‘latching’ the value into the vector. The represen-
tation of notification signals and message signals has to 
be known to the execution script designer when the data-
flow process wrapper is designed, which is described in 
the next section. 

 
Dataflow process wrapper. A process in the SDL speci-
fication that is specified in Matlab contains a wrapper that 
interfaces between the SDL simulator and the Matlab 
engine. The MASCOT environment provides a number of 
wrapper templates designed in SDL that are used to build 
an SDL wrapper for Matlab processes. The templates, 
summarized in Table 2, are pieces of SDL code that are 
assembled in the wrapper process.  

Table 2. SDL Wrapper Templates 

Template Description 

InitProcess Initialize the dataflow process 

InitInStream Initialize an input stream port 

InitInControl Initialize an input control port 

InitOutStream Initialize an output stream port 

InitOutControl Initialize an output control port 

InStream Read an input stream 

InMsgSignal Read input message signal 

InNotSignal Read input notification signal 

Execute Execute the dataflow function 

OutStream Write an output stream 

OutMsgSignal Write output message signal 

OutNotSignal Write output notification signal 

Punch Punch a stream 
 
The minimal set of templates needed in a wrapper con-

sists of InitProcess and Execute, which initializes and exe-
cutes the process. The wrapper templates use C library 
functions that come with MASCOT. Currently, the SDL 
wrapper templates are selected manually, but in the near 
future this will be fully automated. 

When the appropriate templates have been selected, 
the only remaining task is to specify a Matlab execution 
script, which is called by the Execute wrapper template. 
This script has to be explicitly defined by the designer. Its 
purpose is to connect input and output variables through 
Matlab function calls, and to keep track of the internal 
state of the process. Not all dataflow processes have an 
internal state, but those that do need special attention. In 
the Equalizer example, the Filter process must be able to 
retain its internal state between function calls. Since the 
Matlab function filter, called from the execution script, 
takes a state vector as input argument and returns a state 

vector in its output, handling the state is just a matter of 
storing the state in a variable between function calls. 

5.4. Simulation 

When the domain interface has been designed, the 
simulator can be built. It will start a new Matlab engine 
and all Dataflow processing will be performed in the 
same Matlab workspace. During simulation, the designer 
has full access to all tools in both SDL and Matlab, and 
can perform advanced analysis of the system behavior. 
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Figure 4. MSC Excerpt from simulation 

Figure 4 shows an excerpt from a simulation of the 
Analyzer traced as an MSC (Message Sequence Chart) 
diagram. We clearly see how a high bass level causes the 
Analyzer to issue fail signals, which cut the bass value and 
locks the BassUp button. 
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Figure 5. Simulation output 

Figure 5 shows 18 seconds of the AudioOut stream visu-
alized as a spectrum response in the 0-2000Hz range 
(upper diagram) and amplitude (lower diagram) using 
Matlab. The bass was cut three times during simulation. 



6. Case study 

To illustrate and test the MASCOT concept, a larger 
case study has successfully been carried out at Cel-
siusTech Electronics. 

The system selected for the case study is EMSIM, an 
emitter simulator, which is used to simulate radar pulses 
that an aircraft is exposed to when flying in a radar envi-
ronment. EMSIM will be implemented partly as software 
running on a PC and partly as an accelerator card con-
nected to a VME bus in the PC. At startup, EMSIM reads 
a scenario configuration from a file and populates the 
environment with radar emitters. During run-time, EM-
SIM will either read pre-recorded flight data from a file, 
or receive flight data from a joystick. 

The core of the EMSIM is the emitter simulation 
subsystem, hereafter only referred to as the Emitter, which 
contains the pulse generation and amplitude attenuation 
calculation. 
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Figure 6. EMSIM emitter simulation subsystem 

The Emitter, decomposed in SDL using the MASCOT 
methodology, is shown in Figure 6. Not shown here is the 
scenario reader, containing a file parser and flight data 
source process, and the pulse descriptor receiver. Control 
and Dataflow signals enter the Emitter from the 
EmitterControl channel, which is split into two signals 
routes, one for the Control signals, entering the Supervisor, 
and one for the Dataflow signal, entering the PosHandler. 
Thus, the EmitterControl channel is an example of a signal 
path containing both control signals and dataflow signals. 

The PosHandler process receives the flight path data as a 
stream of position tuples sampled at 15Hz. A position 
tuple consists of six elements, the x, y, and z coordinates, 
and the roll, pitch, and yaw angles of the aircraft. 
PosHandler splits the data stream into frames, and passes 
the frames to the Locator process. The Locator performs 
three calculations based on the aircraft position and the 
position of the Emitter itself. First, the relative position of 
the aircraft with respect to the Emitter is calculated as ele-
vation and azimuth angles, which are transmitted to the 
ScanGen process. Second, the position of the Emitter with 
respect to the aircraft is calculated as azimuth and eleva-
tion angles and transmitted to the DescGen process. Fi-
nally, the Locator calculates the distance between the air-
craft and the Emitter, and based on the distance and rela-
tive position of the Emitter, the receiver attenuation with 
respect to the receiving antennas located on the aircraft is 
calculated and transmitted to the Adder process. The 
ScanGen process generates a transmitter attenuation pro-
file, which reflects the scan pattern of the Emitter. The 
transmitter attenuation profile is a data stream with a 
sampling frequency of 1200Hz, which means that the 
position retrieved from the Locator is upsampled 40 times. 
The ScanGen process also generates a synchronization 
signal each time a scan pattern is completed. The syn-
chronization signal is transmitted as a notification signal 
to the PulseGen process. The Adder process adds the 
transmitter attenuation profile from the ScanGen process 
with the receiver attenuation from the Locator. Since the 
data stream from ScanGen has a sampling frequency of 
1200Hz, the Adder must upsample the receiver attenuation 
40 times. The Supervisor process handles the control sig-
nals during initialization; it sets the Emitter pulse pattern, 
scan pattern, and position. The PulseGen process imple-
ments the pulse pattern table and emits pulses according 
the pulse pattern. A synchronization signal from the 
ScanGen process will cause PulseGen to jump to a syn-
chronization pulse table entry. The DescGen process re-
ceives the pulses from the PulseGen process, and com-
bines the pulse with attenuation data from the Adder and 
attitude data from the Locator, and generates a pulse de-
scriptor, which is transmitted to the BusOut channel. 

The PosHandler, Locator, ScanGen, Adder, and DescGen 
processes are modeled as Matlab processes since they 
connect to dataflow signals. The Supervisor and PulseGen 
processes are modeled as SDL processes. The only data-
flow process with an internal state is ScanGen, which has 
to keep track of its current position in the pattern. Since 
none of the dataflow processes have input control signals 
(the Pulse and DOut signals connected to DescGen is a 
punch signal pair and therefore regarded as an output) we 
are free to use head synchronization throughout the whole 
dataflow path without signal approximation. Thus, we are 
also free to select whatever frame sizes we want, and a 
first choice might be a frame size of 15 for 15Hz dataflow 
components and 1200 for 1200Hz components. Dataflow 
processing will then be carried out one (simulated) second 
at a time. 



The specification of EMSIM using MASCOT was 
based on an earlier design where the Dataflow part was 
specified as software in C. The Control part was parti-
tioned into software and hardware, specified in C and as 
schematics respectively. Migrating the design to a MAS-
COT specification had several advantages. First, a large 
reduction (60%-65%) in code size between C and Matlab 
could be observed. Second, the specification could be 
simulated, which was not possible earlier. Third, the new 
specification was implementation independent. 

6.1. Simulation speed 

To demonstrate the ability to choose simulation speed, 
a series of simulations was carried out on the EMSIM 
specification, using different frame sizes. A simulation 
scenario with one Emitter was used, and the flight path 
duration was 400 seconds. The result of varying frame 
sizes from 1 to 40 of the 15Hz components (and from 80 
to 3200 of the 1200Hz components to keep a consistent 
duration of processes) is shown in Figure 7 and Table 3. 
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Figure 7. Simulation speed vs. frame size 

A dramatic decrease in simulation time can be noted 
when going from 1 to 4 samples per frame. However, the 
larger the frame size, the larger the simulation steps, and 
if only the first second needs to be simulated, it is faster to 
use frame size 15 than 40, because we cannot interrupt the 
processing in the middle of a frame. 

Table 3. Simulation performance 

Frame 
Size 

Simulation 
Time (s) 

Relative 
Speed 

1 126 100% 

2 75 60% 

4 51 40% 

10 36 29% 

20 33 26% 

40 32 25% 
 

The simulation runs four times faster when frame size 
is increased from 1 to 40, which gives the designer free-
dom to trade off simulation speed versus granularity. 

7. Conclusion 

We conclude that the MASCOT methodology provides 
the system designer with an environment for heterogene-

ous modeling of data and control flow dominated sys-
tems. The system specification is written in SDL and Mat-
lab, and a minimal amount of work is needed to perform a 
cosimulation, thanks to the MASCOT wrapper libraries. 
The cosimulation relies on vector-based execution of 
dataflow processes, which is fast and offers an opportu-
nity to trade off simulation speed versus granularity. A 
MASCOT specification is implementation independent, 
and the methodology presented focuses on the behavioral 
description of the system. 

8. Acknowledgement 

The Telelogic Tau tool suite was used for SDL entry and 
simulation, courtesy of  Telelogic AB. 

9. References 

[1] S.J. Cunning, T.C. Ewing, J.T. Olson, J.W. Rozenblit, S. 
Schulz, “Towards an Integrated, Model-Based Codesign 
Environment”, Proc. of IEEE Conference and Workshop on 
Engineering of Computer-Based Systems, 1999. 

[2] P. Coste, F. Hessel, P.L. Marrec, Z. Sugar, M. Romdhani, 
R. Suescun, N. Zergainoh, A.A. Jerraya, “Multilanguage 
Design of Heterogeneous Systems”, Proc. of the 7th Inter-
national Workshop on Hardware/Software Codesign 
CODES’99, 1999. 

[3] P. Le Marrec, C.A. Valderrama, F. Hessel, A.A. Jerraya, 
M. Attia, O. Cayrol, “Hardware, software and mechanical 
cosimulation for automotive applications”, Proc. Interna-
tional Workshop on Rapid System Prototyping, 1998. 

[4] H.J.H.N. Kenter, C. Passerone, W.J.M. Smits, Y. Wata-
nabe, A. Sangiovanni-Vincentelli, “Designing Digital 
Video Systems: Modeling and Scheduling”, Proc. of the 7th 
International Workshop on Hardware/Software Codesign 
CODES’99, 1999. 

[5] M. Romdhani, P. Chambert, A. Jeffroy, P. de Chazelles, 
A.A. Jerraya, “Composing ActivityCharts/StateCharts, 
SDL and SAO Specifications for Codesign in Avionics”, 
Proc. of European Design Automation Conference, 1995. 

[6] I. Bolsens, H.J. De Man, B. Lin, K. Van Rompaey, S. Ver-
cauteren, D. Verkest, “Hardware/software co-design of 
digital telecommunication systems”, Proc. of the IEEE, 
vol.85, (no.3), p.391-418, March 1997. 

[7] P. Bjuréus, A. Jantsch, “Heterogeneous System-Level Co-
simulation with SDL and Matlab”, Proc. of the Forum on 
Design Languages, FDL’99, 1999. 

[8] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. 
Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. 
Smyth, J. Tsay, Y. Xiong, “Overview of the Ptolemy Pro-
ject”, ERL Technical Report UCB/ERL No. M99/37, Uni-
versity of California, Berkeley, USA, July 1999. 

[9] A. Olsen, O. Færgemand, Systems Engineering Using SDL-
92, North-Holland 1997. 

[10] J. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal Object-
oriented Language for Communicating Systems, Prentice-
Hall 1997. 

[11]  D. Gajski, F. Vahid, S. Narayan, J. Gong, Specification 
and Design of Embedded Systems, Prentice-Hall 1994. 


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


