
MASCOT: A Specification and Cosimulation Method
Integrating Data and Control Flow

Per Bjuréus, CelsiusTech Electronics AB, Sweden
Axel Jantsch, Royal Institute of Technology, Stockholm, Sweden

Abstract
We integrate data and control flow at the system speci-

fication level, using the two specialized and well estab-
lished languages Matlab and SDL. For this we provide a
modeling technique, which integrates the timing concepts
and allows synchronization of vector-based computation
with event based state transition. The technique is sup-
ported by a library of wrappers and communication func-
tions, which has been implemented to make cosimulation
easy to use and almost transparent to the user. A method-
ology formulates the rules to use the modeling technique,
to partition the system, and to select communication
modes. A complex industrial example illustrates the mod-
eling technique and the methodology, and shows the effi-
ciency of the Matlab-SDL cosimulation.

1. Introduction

The desire to specify and simulate heterogeneous
embedded real time systems at a high abstraction level in
a multilanguage environment is recognized in many appli-
cation areas such as multimedia [4], automotive [3], avi-
onics [5], mechatronics [2], and telecommunication [6]. In
all these application domains, we observe both a need for
implementation neutrality in the specification model and
the necessity to model different parts in conceptually dif-
ferent ways. Implementation neutrality is required to al-
low for thorough design space exploration [11]. Different
parts of a heterogeneous system, such as control flow,
data flow, analog and mixed signal components, must be
modeled in different ways due to different problem char-
acteristics but also because of traditionally separate de-
sign flows, languages and competence of engineers.

For digital embedded real-time systems with complex
control and high data throughput we address the problem
of co-specification and co-simulation of dataflow and
control dominated parts with the MASCOT (Matlab And
SDL Codesign Techniques) methodology. It describes
how to model and simulate a heterogeneous system speci-
fication based on an abstract communication mechanism
[7], which, to a large extent, can be implicitly derived
from the system specification. For the two parts of control
and dataflow, we adopt different languages, SDL
([9],[10]) and Matlab. Both are specialized in their respec-

tive domains, well established in their user community
and they enjoy sophisticated tool support. They allow the
specification at the system level without bias towards
implementation. Our guiding principle has been simplic-
ity for the user. Consequently, MASCOT can be applied
without restricting the involved languages, without new
formalisms, and with minimal design overhead. It leads to
a specification that:
• Is complete and unambiguous, rendering a unique
interpretation, which governs a correct implementation.
• Can be simulated, providing specification validation
that minimizes the number of changes made during im-
plementation and encourages specification maintenance.
• Clearly defines the interface between design do-
mains, eliminating “twilight zones” in the specification.

MASCOT consists of two parts: (1) a modeling and
co-simulation technique, which integrates the different
timing concepts and allows the synchronization of vector-
based computation in Matlab with event based state tran-
sition in SDL; (2) a methodology, which provides rules
for partitioning a system into SDL and Matlab parts and
for selecting communication modes between the two. The
communication mode defines synchronization policy,
timing resolution, and simulation granularity, and greatly
influences simulation speed and accuracy.

Thus, MASCOT provides a technique to glue specifi-
cations together, whereas design is still carried out in the
appropriate domain for different parts. Design space ex-
ploration across the domain boundary must be done at the
specification level, when the SDL-Matlab model is devel-
oped. The design and implementation is done separately
for the two parts with the established methodologies and
tools. The paper is organized as follows, the next section
is dedicated to related work, section 3 introduces an ex-
ample that will be used throughout the rest of the paper.
Section 4 describes the conceptual modeling technique,
section 5 the proposed methodology in a step-by-step
fashion, and in section 6 an industrial case study illus-
trates the techniques presented.

2. Related work

The CoWare approach [6] offers both homogeneous
and heterogeneous system specification and allows for

system simulation at different abstraction levels. For het-
erogeneous specifications the languages C, DFL, VHDL
and Verilog are supported to day. All of them are imple-
mentation rather than application oriented languages and
therefore represent a bias towards a specific implementa-
tion technology. In contrast, a specification based on ap-
plication-oriented languages such as Matlab or SDL al-
lows better trade-off analysis of application relevant pa-
rameters and a better design space exploration during the
design process. However, synthesis is harder with these
languages because more design decisions must be made.

Ptolemy [8] is a general framework that connects a
large number of design domains and allows for heteroge-
neous cosimulation of discrete event and dataflow mod-
els. The current implementation of the communication
mechanism between discrete event and dataflow domains
is based on a technique that transmits samples individu-
ally, which is slow.

Kenter et al. [4] propose a design methodology that is
based on the Felix VCC environment, which allows for
functional simulation. It targets IP block composition,
architecture mapping, and implementation. The YAPI
communication is implemented as a handshake protocol
in ECL, which is an expensive (in terms of simulation
speed) communication mechanism.

The MUSIC methodology [2] hosts a set of tools and
languages and provides heterogeneous system specifica-
tion and cosimulation. The heterogeneous specification is
assembled using SOLAR [5], and cosimulation is per-
formed concurrently on simulators that can be distributed
throughout a network. However, there is no built-in syn-
chronization between the simulators. Also, unless a time
coordinator is introduced, there is no way to synchronize
stimuli to two different simulators, which restricts the
specification of a simulation scenario.

The SONORA framework [1] introduces a model-
based Codesign methodology. For specification in the
discrete domain, DEVS-Java and possibly StateCharts is
used. Components in the continuous time domain are
modeled with Difference Equation System Specification
(DESS). A behavioral simulation technique is proposed,
but to the best of our knowledge, to date the SONORA
framework has not yet been fully implemented and no
results have been reported. Currently, no link exists be-
tween the discrete event and continuous domains, and no
cosimulation mechanism has yet been developed.

Other heterogeneous modeling techniques have been
proposed, but none addresses the problem in the same
way as MASCOT. Some propose new formalisms (e.g.
[1],[4]), which we consider a disadvantage given the huge
investment in existing languages and tools. Others use
implementation-biased languages (e.g. CoWare), which
do not support well the system level trade-off analysis.
None of the published approaches addresses the synchro-
nization and communication in a mixed event and vector-
based computation environment. In general frameworks,
such as CoWare and Ptolemy, our technique could also be
implemented. However, it has not yet been done and it is

not clear, if the result would not become complicated and
compare unfavorably to the simplicity and convenience of
MASCOT for experienced SDL and Matlab users.

3. Example

Throughout this paper, we will refer to a single exam-
ple to illustrate the proposed methodology; it is intention-
ally small and somewhat artificial. The example does not
demonstrate the advantages of using SDL and Matlab and
is not primarily intended to motivate the methodology but
rather to explain it. A motivating example will be thor-
oughly explained in section 6.

The example is a simple audio equalizer, and will be
referred to as the Equalizer. The Equalizer has five input
signals and one output signal, summarized in Table 1.

Table 1. Equalizer interface

Name Dir Description

AudioIn In Digital audio input

BassUp In Increase bass button

BassDn In Decrease bass button

TrebleUp In Increase treble button

TrebleDn In Decrease treble button

AudioOut Out Digital audio output

The idea is that a digital audio input stream (AudioIn) is
fed to the Equalizer from an audio source, e.g. a CD
player. Four buttons are connected to the Equalizer
(BassUp, BassDn, TrebleUp, TrebleDn), controlling the bass
and treble level of the digital audio output stream
(AudioOut). The Equalizer reacts to the button presses, not
taking into account how long the button is pressed but
only how many times it is pressed, and adjusts the audio
accordingly. To make the Equalizer a little bit more inter-
esting it detects when too much bass is used, and auto-
matically prevents the user from increasing the bass while
it cuts down the bass level.

This short description will be used as a very simple re-
quirement specification for the Equalizer.

4. Modeling

Building a model of a system is essential to system de-
sign; the modeling process allows the designer to assem-
ble components and to reason about properties and behav-
ior of the system. Modeling in MASCOT is based on two
languages, Matlab and SDL, and the model is built as a
hierarchical specification. The top-level specification is
written in SDL, which provides a graphical description of
the system components and their interconnection. The key
component in MASCOT modeling is the process. We
assume that each process is specified in either Matlab or
SDL. Matlab processes model dataflow behavior and SDL
processes model control flow behavior. Matlab processes
can communicate with other Matlab processes through

dataflow signals and with SDL processes using control
signals. SDL processes can only communicate using con-
trol signals. Choosing between Matlab and SDL processes
and between dataflow signals and control signals is part
of the MASCOT methodology, which is described in the
next section. The MASCOT model can be simulated. The
SDL simulator drives the simulation and calls the Matlab
engine to process dataflow signals. The execution of Mat-
lab processes is based on a cosimulation technique de-
scribed in [7]. This technique is founded on the assump-
tion that dataflow signals can be executed piece-wise and
distinguishes between two types of synchronization; head
synchronization and tail synchronization. Piece-wise exe-
cution assumes that dataflow streams be split into frames,
every frame corresponding to a pre-determined amount of
time. Each frame is processed in a single step which is
performed either when the frame starts, head synchro-
nized, or when the frame ends, tail synchronized. The
selection of synchronization policy of a Matlab process
affects its ability to exchange control signals. Choosing
head synchronization requires input control signals to be
exchanged at the frame start, while output control signals
can be exchanged during the frame duration. This implies
an approximation of the time of occurrence on input con-
trol signals. Conversely, choosing tail synchronization
implies an approximation of the time of occurrence on
output control signals. The synchronization policy also
affects how frames can be split or concatenated between
Matlab processes. Output frames from a head synchro-
nized process can be split into smaller frames without a
delay penalty, but cannot be concatenated. Conversely,
output frames from a tail synchronized process can be
concatenated without a delay penalty, but cannot be split.
More complex rules apply when head and tail synchroni-
zation is mixed, but that is beyond the scope of this text,
and the reader is referred to [7].

5. Methodology

The goal of the MASCOT methodology is to write a
comprehensive specification that connects the heteroge-
neous components of the system with each other using
abstract communication structures. The specification
should be intuitive to understand, easy to change, and
straightforward to simulate. The specification should de-
scribe the functional behavior of the system and the speci-
fication environment should encourage the system de-
signers to “play around” with the specification prior to
implementation. Finally, the specification should govern
correct implementation of the system. The methodology
consists of three phases:
1. Functional Decomposition
2. Domain selection
3. Domain Interface design

Functional decomposition is a natural phase in each
system design and is often carried out in a top-down fash-
ion. The Domain Selection phase considers what language

should be used to describe the subsystems. Finally, the
Domain Interface Design phase integrates the SDL and
Matlab simulators in three simple steps.

5.1. Functional decomposition

The first phase decomposes the system into a number
of functional blocks. The decomposition can be the result
from an earlier analysis activity, such as Object-Oriented
Analysis. It is performed in a hierarchical manner using
the block structure available in SDL, which allows for
subsystem simulation at each hierarchical level. In large
projects where a number of different design teams are
involved, it is advantageous to let the blocks also reflect
the task assignment between groups. The interconnection
between blocks and hierarchies should reflect how the
subsystems are connected, and what signals they will ex-
change. Note, that signals in a MASCOT specification
can represent both discrete events (control signals) and
data streams (dataflow signals).

The block interconnection interfaces will probably
change as the specification evolves through design itera-
tion loops and gradual refinement. This evolution is a
natural and important process, and by employing a sys-
tem-level perspective, we will prevent that interfaces are
changed in one subsystem without the interconnected
subsystems being notified. This is the key to specification
maintenance, and will govern a correct implementation
and ensure that the specification agrees with the final im-
plementation.

ButtonCtrl

Filter Analyzer

DistortionCtrl

Buttons

TrebleUp, TrebleDn,
BassUp, BassDn

Level

Treble, Bass

PostFilter

FilterOut

Distortion

Pass, Fail

Override

Lock, CutBass,
Release

ToSpeakers

AudioOut

FromCD

AudioIn

Figure 1. System Equalizer

In the Equalizer example we choose to divide the sys-
tem into four blocks, shown in Figure 1. The ButtonCtrl
block handles the button presses and the override signals
from the DistortionCtrl block. The ButtonCtrl block also
keeps track of the bass and treble levels, and signals the

Filter block each time a bass or treble level changes. The
Filter block contains the audio filter, it transforms the au-
dio input to audio output, taking into account the current
bass and treble levels. The Analyzer block analyzes the
audio stream after the filter, it issues pass or fail signals to
the DistortionCtrl block, and outputs the audio stream. The
DistortionCtrl block receives the pass and fail signals from
the Analyzer, and determines if the user should be pre-
vented from increasing the bass level, and if the bass level
should be cut down.

When the block hierarchy is established, processes are
identified. A process is a subsystem that operates concur-
rently and independently with all other processes in the
system. In the Equalizer, to keep things simple, we choose
to identify a single process in each block.

Filter

Level

Level

Treble, Bass

PostFilter

FilterOut
PostFilter

FromCD

AudioIn

FromCD

Figure 2. Filter process

The Filter block process is shown in Figure 2; the other
blocks are defined in a similar manner.

This far, nothing has been decided on how the different
processes will behave, this decision is left to the individ-
ual design teams. The behavior is encapsulated in the
processes, which can be specified in SDL or Matlab, as
we will see in the next section.

5.2. Domain selection

The domain selection decides whether the behavior is
going to be described in SDL or Matlab. To this end we
inspect the signals in the system and decide whether they
are dataflow or control signals. A dataflow signal is a
continuous signal sampled at regular intervals. A control
signal is a non-periodic signal that occurs at certain time
instances. All processes that are connected to one or more
dataflow signal have to be specified in the Dataflow do-
main using Matlab, and the other processes can be speci-
fied in the Control domain using SDL.

In the Equalizer example, we decide that AudioIn,
FilterOut, and AudioOut are dataflow signals. All other sig-
nals are control signals. Hence, the Filter and Analyzer
processes will be specified in the Dataflow domain, and

ButtonCtrl and DistortionCtrl will be specified in the Control
domain.

In SDL, signals are sent on signal paths, which is ei-
ther channels or signal routes. In the Equalizer we will
make sure that dataflow and control signals are sent over
separate signal paths. Thus, the dataflow signals are
equipped with individual paths: AudioIn, FilterOut, and
AudioOut are conveyed over the channels FromCD, PostFil-
ter, and ToSpeakers respectively.

The domain is selected for processes individually or at
the block level for all processes in a block.

This far, all external signals that interact with the sys-
tem are connected to the environment (the frame) of the
SDL system diagram. However, dataflow sources and
sinks require interaction with the Matlab engine and must
be declared explicitly as functional components of the
system.

In the Equalizer example, the AudioIn and AudioOut sig-
nals are dataflow signals that interact with the environ-
ment. These signals require that the environment must be
replaced with an explicit dataflow source and sink.

SpeakersCDPlayer

ToSpeakers

AudioOut

FromCD

AudioIn

Figure 3. Equalizer source and sink

Figure 3 depicts the CDPlayer source and Speakers sink
that are added to the Equalizer specification.

5.3. Domain interface design

The last step in the MASCOT methodology is to select
the communication mechanism between the Dataflow and
Control domains.

Communication between Control processes, such as
ButtonCtrl and DistortionCtrl, only involves control signals
and is carried out the normal way in SDL. Inter-domain
communication between Control and Dataflow processes
such as ButtonCtrl and Filter, and communication between
two Dataflow processes such as Filter and Analyzer require
a domain interface. The latter requires a domain interface
since the simulation is driven by dataflow signals in the
Control domain.

Designing a domain interface is simple and involves
three steps:
1. Set dataflow processing properties. Determine sam-
pling frequency and frame size for each dataflow signal
and process and select synchronization policy for each
dataflow process.
2. Set inter-domain communication properties. Decide
whether inter-domain signals are notification signals or
message signals and assign default values to them.

3. Construct the dataflow process wrapper. Select SDL
wrapper templates and write a Matlab or Simulink execu-
tion script.

When these steps have been accomplished, a simula-
tion can be performed, using the analysis tools in Matlab
and SDL to validate the behavior.

Dataflow processing. For each dataflow signal, and for
each dataflow process, the sampling frequency and frame
size has to be determined. These parameters can be
changed at any time, and constitute a powerful tool to
tune the simulation. By increasing the frame size, the
number of calls to the Matlab engine will decrease and the
simulation will run faster, however, the granularity of the
simulation will be coarser. The frequency and frame size
together determine the duration of one frame. For signals,
the duration corresponds to the amount of time that one
dataflow signal represents, for processes, the duration
corresponds to the time between process execution calls.

For each dataflow process, the synchronization has to
be determined; a dataflow process is either head- or tail-
synchronized. The process synchronization policy deter-
mines whether the process execution call will be carried
out at the start, or at the end of a frame, see [7]. A number
of thumb-rules are supplied to guide the designer in the
choice of frame size and synchronization policy:
• Dataflow source processes should be head synchro-
nized, using large frames, since a head synchronized
frame can be split into smaller frames and/or transferred
to tail synchronization without penalty. Furthermore,
since sources do not have any inputs, they will not suffer
from input signal approximation.
• When a dataflow process needs to accept input con-
trol signals without approximation, tail synchronization
must be employed. A tail synchronized process produces
output control signals with approximation, and since
frame splitting after tail synchronization cannot be per-
formed without penalty, the frame size should be small.
• Dataflow sink processes should be tail synchronized,
using large frames, since tail synchronization allows
frame concatenation without penalty. Furthermore, since
sinks do not have any outputs, they do not suffer from
output signal approximation.

Following these rules, we decide sampling frequencies,
frame sizes and synchronization policies for the signals
and processes in the Equalizer example. We assume that
the dataflow design team has decided to use a CD source
sampled at 44100Hz, and that they want to try out a 4096
sample wide FFT for the Analyzer. The sampling fre-
quency will be equal throughout the whole system; so all
dataflow signals and processes are assigned a 44100Hz
sampling frequency. Starting from the dataflow source
and moving to the sink, we now inspect each process and
signal to assign a frame size and synchronization policy.
The CDPlayer process is the source and is assigned head
synchronization policy, the frame size is set to the largest

possible frame size, which is the size of the whole stream
used in simulation. The AudioIn signal is also assigned a
frame size that equals the size of the whole stream. For
the Filter process, we decide that in order to let changes in
bass and treble levels affect the filter immediately, we do
not want input control signal approximation; hence, we
must switch to tail synchronization. Peeking forward in
the data stream path we find that the Analyzer will operate
on 4096 sample wide input. To match the FFT, we choose
frame size 4096. Choosing larger frames would not allow
the Analyzer to operate on 4096 sample frames without
penalty, and choosing smaller frames would slow down
simulation. For the FilterOut signal and Analyzer process,
the 4096 sample frame size is thus preserved and tail syn-
chronization is selected. Since the Analyzer process has
control signal outputs, we have to accept that they will be
approximated. However, in this particular example, it
does not matter, since the Analyzer only produces one Pass
or Fail signal for each frame that is processed. Finally, we
arrive at the AudioOut signal and Speakers process, and
guided by the rules, we again select the size of the whole
stream as frame size, and tail synchronization as synchro-
nization policy.

Inter-domain communication. The control signals that
connect to dataflow processes are either notification sig-
nals or message signals. Notification signals do not carry
a value and are used to notify a process that an event has
occurred. In the Equalizer example, the Pass and Fail sig-
nals are examples of notification signals. Message signals
carry a value and are used to indicate a change of some
variable or parameter. In the Equalizer example, the Bass
and Treble signals are examples of message signals. All
control signals that are connected to dataflow processes
must fall into one of the two categories. There is a third
type of inter-domain communication, punch, which is a
compound of the notification and message signals. Punch
signals are used to extract data from a stream, and consist
of a signal pair – one input notification signal and one
output message signal. Punch signals will not be covered
in detail here, for synchronization policy selection it is
sufficient to regard them as output signals. See [7] for
details.

Notification signals and message signals are inter-
preted in different ways when they are converted between
the Control and Dataflow domains. In the Dataflow do-
main, control vectors are used to represent control signals.
Control vectors have a sampling frequency and frame size
that is inherited from the dataflow process that the control
signal connects to. Control vectors also have a default
value that must be chosen by the designer. Notification
vectors represent notification signals and message vectors
represent message signals. Conversion between vectors
and signals is carried out on the border between the do-
mains. Since the vectors have sampling frequency, the
time that each sample occurs is implicitly defined. Thus, a
control signal, which consists of a time-value pair, can be
mapped to a specific sample in a vector and vice versa. A

notification vector contains the default value (typically
NaN) in all samples that do not map to a control signal,
and some other value (typically 1 or 0) in those that do. A
message vector contains the default value in all samples
up to the first control signal, thereafter it contains the
value of the first signal up to the second signal and so on,
in effect ‘latching’ the value into the vector. The represen-
tation of notification signals and message signals has to
be known to the execution script designer when the data-
flow process wrapper is designed, which is described in
the next section.

Dataflow process wrapper. A process in the SDL speci-
fication that is specified in Matlab contains a wrapper that
interfaces between the SDL simulator and the Matlab
engine. The MASCOT environment provides a number of
wrapper templates designed in SDL that are used to build
an SDL wrapper for Matlab processes. The templates,
summarized in Table 2, are pieces of SDL code that are
assembled in the wrapper process.

Table 2. SDL Wrapper Templates

Template Description

InitProcess Initialize the dataflow process

InitInStream Initialize an input stream port

InitInControl Initialize an input control port

InitOutStream Initialize an output stream port

InitOutControl Initialize an output control port

InStream Read an input stream

InMsgSignal Read input message signal

InNotSignal Read input notification signal

Execute Execute the dataflow function

OutStream Write an output stream

OutMsgSignal Write output message signal

OutNotSignal Write output notification signal

Punch Punch a stream

The minimal set of templates needed in a wrapper con-

sists of InitProcess and Execute, which initializes and exe-
cutes the process. The wrapper templates use C library
functions that come with MASCOT. Currently, the SDL
wrapper templates are selected manually, but in the near
future this will be fully automated.

When the appropriate templates have been selected,
the only remaining task is to specify a Matlab execution
script, which is called by the Execute wrapper template.
This script has to be explicitly defined by the designer. Its
purpose is to connect input and output variables through
Matlab function calls, and to keep track of the internal
state of the process. Not all dataflow processes have an
internal state, but those that do need special attention. In
the Equalizer example, the Filter process must be able to
retain its internal state between function calls. Since the
Matlab function filter, called from the execution script,
takes a state vector as input argument and returns a state

vector in its output, handling the state is just a matter of
storing the state in a variable between function calls.

5.4. Simulation

When the domain interface has been designed, the
simulator can be built. It will start a new Matlab engine
and all Dataflow processing will be performed in the
same Matlab workspace. During simulation, the designer
has full access to all tools in both SDL and Matlab, and
can perform advanced analysis of the system behavior.

BassUp

Bass

2.4000 Pass

Fail

Lock

Fail

CutBass

Bass

1.4000 Pass

Pass

BassUp *
Pass

Pass

Release

Figure 4. MSC Excerpt from simulation

Figure 4 shows an excerpt from a simulation of the
Analyzer traced as an MSC (Message Sequence Chart)
diagram. We clearly see how a high bass level causes the
Analyzer to issue fail signals, which cut the bass value and
locks the BassUp button.

2 4 6 8 10 12 14 16 18

500

1000

1500

2000

2 4 6 8 10 12 14 16 18
-4

-2

0

2

4

Figure 5. Simulation output

Figure 5 shows 18 seconds of the AudioOut stream visu-
alized as a spectrum response in the 0-2000Hz range
(upper diagram) and amplitude (lower diagram) using
Matlab. The bass was cut three times during simulation.

6. Case study

To illustrate and test the MASCOT concept, a larger
case study has successfully been carried out at Cel-
siusTech Electronics.

The system selected for the case study is EMSIM, an
emitter simulator, which is used to simulate radar pulses
that an aircraft is exposed to when flying in a radar envi-
ronment. EMSIM will be implemented partly as software
running on a PC and partly as an accelerator card con-
nected to a VME bus in the PC. At startup, EMSIM reads
a scenario configuration from a file and populates the
environment with radar emitters. During run-time, EM-
SIM will either read pre-recorded flight data from a file,
or receive flight data from a joystick.

The core of the EMSIM is the emitter simulation
subsystem, hereafter only referred to as the Emitter, which
contains the pulse generation and amplitude attenuation
calculation.

Supervisor

PulseGen

DescGen

PosHandler

LocatorScanGen

Adder

EmitterControl

InitControl

NEmt, NPrt, NScp,
NRun, NHalt

PulseControl

New, Run, Halt, End

PulseOut

Pulse

BusOut DOut

BusOut

LocControl

NLoc

Location Loc

Transmit

Tx

Sync

Sync

ScanAmp TxAmp

Amp Amp

Receive

Rx

Attitude

Att

Figure 6. EMSIM emitter simulation subsystem

The Emitter, decomposed in SDL using the MASCOT
methodology, is shown in Figure 6. Not shown here is the
scenario reader, containing a file parser and flight data
source process, and the pulse descriptor receiver. Control
and Dataflow signals enter the Emitter from the
EmitterControl channel, which is split into two signals
routes, one for the Control signals, entering the Supervisor,
and one for the Dataflow signal, entering the PosHandler.
Thus, the EmitterControl channel is an example of a signal
path containing both control signals and dataflow signals.

The PosHandler process receives the flight path data as a
stream of position tuples sampled at 15Hz. A position
tuple consists of six elements, the x, y, and z coordinates,
and the roll, pitch, and yaw angles of the aircraft.
PosHandler splits the data stream into frames, and passes
the frames to the Locator process. The Locator performs
three calculations based on the aircraft position and the
position of the Emitter itself. First, the relative position of
the aircraft with respect to the Emitter is calculated as ele-
vation and azimuth angles, which are transmitted to the
ScanGen process. Second, the position of the Emitter with
respect to the aircraft is calculated as azimuth and eleva-
tion angles and transmitted to the DescGen process. Fi-
nally, the Locator calculates the distance between the air-
craft and the Emitter, and based on the distance and rela-
tive position of the Emitter, the receiver attenuation with
respect to the receiving antennas located on the aircraft is
calculated and transmitted to the Adder process. The
ScanGen process generates a transmitter attenuation pro-
file, which reflects the scan pattern of the Emitter. The
transmitter attenuation profile is a data stream with a
sampling frequency of 1200Hz, which means that the
position retrieved from the Locator is upsampled 40 times.
The ScanGen process also generates a synchronization
signal each time a scan pattern is completed. The syn-
chronization signal is transmitted as a notification signal
to the PulseGen process. The Adder process adds the
transmitter attenuation profile from the ScanGen process
with the receiver attenuation from the Locator. Since the
data stream from ScanGen has a sampling frequency of
1200Hz, the Adder must upsample the receiver attenuation
40 times. The Supervisor process handles the control sig-
nals during initialization; it sets the Emitter pulse pattern,
scan pattern, and position. The PulseGen process imple-
ments the pulse pattern table and emits pulses according
the pulse pattern. A synchronization signal from the
ScanGen process will cause PulseGen to jump to a syn-
chronization pulse table entry. The DescGen process re-
ceives the pulses from the PulseGen process, and com-
bines the pulse with attenuation data from the Adder and
attitude data from the Locator, and generates a pulse de-
scriptor, which is transmitted to the BusOut channel.

The PosHandler, Locator, ScanGen, Adder, and DescGen
processes are modeled as Matlab processes since they
connect to dataflow signals. The Supervisor and PulseGen
processes are modeled as SDL processes. The only data-
flow process with an internal state is ScanGen, which has
to keep track of its current position in the pattern. Since
none of the dataflow processes have input control signals
(the Pulse and DOut signals connected to DescGen is a
punch signal pair and therefore regarded as an output) we
are free to use head synchronization throughout the whole
dataflow path without signal approximation. Thus, we are
also free to select whatever frame sizes we want, and a
first choice might be a frame size of 15 for 15Hz dataflow
components and 1200 for 1200Hz components. Dataflow
processing will then be carried out one (simulated) second
at a time.

The specification of EMSIM using MASCOT was
based on an earlier design where the Dataflow part was
specified as software in C. The Control part was parti-
tioned into software and hardware, specified in C and as
schematics respectively. Migrating the design to a MAS-
COT specification had several advantages. First, a large
reduction (60%-65%) in code size between C and Matlab
could be observed. Second, the specification could be
simulated, which was not possible earlier. Third, the new
specification was implementation independent.

6.1. Simulation speed

To demonstrate the ability to choose simulation speed,
a series of simulations was carried out on the EMSIM
specification, using different frame sizes. A simulation
scenario with one Emitter was used, and the flight path
duration was 400 seconds. The result of varying frame
sizes from 1 to 40 of the 15Hz components (and from 80
to 3200 of the 1200Hz components to keep a consistent
duration of processes) is shown in Figure 7 and Table 3.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

Figure 7. Simulation speed vs. frame size

A dramatic decrease in simulation time can be noted
when going from 1 to 4 samples per frame. However, the
larger the frame size, the larger the simulation steps, and
if only the first second needs to be simulated, it is faster to
use frame size 15 than 40, because we cannot interrupt the
processing in the middle of a frame.

Table 3. Simulation performance

Frame
Size

Simulation
Time (s)

Relative
Speed

1 126 100%

2 75 60%

4 51 40%

10 36 29%

20 33 26%

40 32 25%

The simulation runs four times faster when frame size
is increased from 1 to 40, which gives the designer free-
dom to trade off simulation speed versus granularity.

7. Conclusion

We conclude that the MASCOT methodology provides
the system designer with an environment for heterogene-

ous modeling of data and control flow dominated sys-
tems. The system specification is written in SDL and Mat-
lab, and a minimal amount of work is needed to perform a
cosimulation, thanks to the MASCOT wrapper libraries.
The cosimulation relies on vector-based execution of
dataflow processes, which is fast and offers an opportu-
nity to trade off simulation speed versus granularity. A
MASCOT specification is implementation independent,
and the methodology presented focuses on the behavioral
description of the system.

8. Acknowledgement

The Telelogic Tau tool suite was used for SDL entry and
simulation, courtesy of Telelogic AB.

9. References

[1] S.J. Cunning, T.C. Ewing, J.T. Olson, J.W. Rozenblit, S.
Schulz, “Towards an Integrated, Model-Based Codesign
Environment”, Proc. of IEEE Conference and Workshop on
Engineering of Computer-Based Systems, 1999.

[2] P. Coste, F. Hessel, P.L. Marrec, Z. Sugar, M. Romdhani,
R. Suescun, N. Zergainoh, A.A. Jerraya, “Multilanguage
Design of Heterogeneous Systems”, Proc. of the 7th Inter-
national Workshop on Hardware/Software Codesign
CODES’99, 1999.

[3] P. Le Marrec, C.A. Valderrama, F. Hessel, A.A. Jerraya,
M. Attia, O. Cayrol, “Hardware, software and mechanical
cosimulation for automotive applications”, Proc. Interna-
tional Workshop on Rapid System Prototyping, 1998.

[4] H.J.H.N. Kenter, C. Passerone, W.J.M. Smits, Y. Wata-
nabe, A. Sangiovanni-Vincentelli, “Designing Digital
Video Systems: Modeling and Scheduling”, Proc. of the 7th
International Workshop on Hardware/Software Codesign
CODES’99, 1999.

[5] M. Romdhani, P. Chambert, A. Jeffroy, P. de Chazelles,
A.A. Jerraya, “Composing ActivityCharts/StateCharts,
SDL and SAO Specifications for Codesign in Avionics”,
Proc. of European Design Automation Conference, 1995.

[6] I. Bolsens, H.J. De Man, B. Lin, K. Van Rompaey, S. Ver-
cauteren, D. Verkest, “Hardware/software co-design of
digital telecommunication systems”, Proc. of the IEEE,
vol.85, (no.3), p.391-418, March 1997.

[7] P. Bjuréus, A. Jantsch, “Heterogeneous System-Level Co-
simulation with SDL and Matlab”, Proc. of the Forum on
Design Languages, FDL’99, 1999.

[8] J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J.
Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N.
Smyth, J. Tsay, Y. Xiong, “Overview of the Ptolemy Pro-
ject”, ERL Technical Report UCB/ERL No. M99/37, Uni-
versity of California, Berkeley, USA, July 1999.

[9] A. Olsen, O. Færgemand, Systems Engineering Using SDL-
92, North-Holland 1997.

[10] J. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal Object-
oriented Language for Communicating Systems, Prentice-
Hall 1997.

[11] D. Gajski, F. Vahid, S. Narayan, J. Gong, Specification
and Design of Embedded Systems, Prentice-Hall 1994.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

